Vegetation Dynamics in JULES: The TRIFFID model.

Vegetation Dynamics in JULES: The TRIFFID model. Vegetation Dynamics in JULES: The TRIFFID model.

<strong>Vegetation</strong> <strong>Dynamics</strong> <strong>in</strong><br />

<strong>JULES</strong> v2.0:<br />

<strong>The</strong> <strong>TRIFFID</strong> <strong>model</strong>.<br />

Rosie Fisher<br />

Stephen Sitch<br />

David Galbraith<br />

Chris Hunt<strong>in</strong>gford


<strong>TRIFFID</strong> history<br />

<strong>TRIFFID</strong> is the global vegetation <strong>model</strong><br />

embedded <strong>in</strong> the Hadley Centre GCM & <strong>JULES</strong>.<br />

<strong>TRIFFID</strong> is similar (not identical) to the majority<br />

of DGVMs <strong>in</strong> terms of physiology & PFT<br />

composition.<br />

Conceptually different <strong>in</strong> terms of vegetation<br />

competition & half-hourly hourly gas exchange.


<strong>TRIFFID</strong> Structure <strong>in</strong> <strong>JULES</strong><br />

Soils<br />

Growth<br />

Phenology (daily)<br />

MOSES<br />

NPP<br />

PFT LAI +<br />

Coverage<br />

<strong>TRIFFID</strong><br />

Competition<br />

Climate<br />

Disturbance<br />

Decomposition<br />

Turnover<br />

30-180 m<strong>in</strong>utes 10-30 days


<strong>TRIFFID</strong> and PFT competition<br />

NL<br />

tree<br />

BL<br />

tree<br />

C3<br />

C4<br />

Change <strong>in</strong> vegetation carbon<br />

Area <strong>in</strong>crease NPP Litter<br />

Bare Gd<br />

Shrub<br />

Expansion of PFT area: Lotka Volterra


PFT competition<br />

Competition parameters C ij<br />

Def<strong>in</strong>e how PFT ‘i’ affects PFT ‘j’<br />

‘Tree – shrub – grass’ dom<strong>in</strong>ance<br />

hierarchy.<br />

<strong>The</strong>se parameters are difficult to def<strong>in</strong>e…


Groups work<strong>in</strong>g with <strong>TRIFFID</strong><br />

Hadley Centre JCHMR (HADGEM3)<br />

• First implementation of C-cycle C<br />

<strong>in</strong> standard<br />

Hadley Model<br />

Read<strong>in</strong>g – soil moisture parameters<br />

CLASSIC – snow <strong>model</strong>l<strong>in</strong>g, physiology<br />

DGVM <strong>in</strong>tercomparisons – Sitch,<br />

Friedl<strong>in</strong>gste<strong>in</strong>, Cramer.


Results from <strong>TRIFFID</strong><br />

Inter-comparison with other DGVMs <strong>in</strong><br />

IMOGEN: Stephen Sitch<br />

Disaggregation of water and temperature<br />

responses <strong>in</strong> Amazonia: David Galbraith<br />

Acclimation of respiration to <strong>in</strong>creas<strong>in</strong>g<br />

temperature: Owen Atk<strong>in</strong> & Rosie Fisher


.1. DGVM <strong>in</strong>ter comparison<br />

Sitch et al 2007<br />

Compared 5 DGVMs with the same climate<br />

drivers with<strong>in</strong> the IMOGEN framework.<br />

Previous <strong>in</strong>ter-comparisons (C 4 MIP) have used<br />

different GCM-DGVM pairs. This is a direct<br />

comparison<br />

Compare predicted change <strong>in</strong> land carbon over<br />

21 st century.<br />

Separate out the CO 2 and climate response.


Sitch et al. 2007


Conclusions:<br />

<strong>TRIFFID</strong> is much more sensitive to<br />

climate changes than the ‘mean’<br />

<strong>model</strong> response.<br />

Why is this?


2. Interactions between climate drivers us<strong>in</strong>g<br />

MOSES-<strong>TRIFFID</strong><br />

(40% Precip Reduction to 2100)<br />

Slides by David Galbraith<br />

160<br />

Change <strong>in</strong> Amazonian<br />

<strong>Vegetation</strong> Carbon (PgC)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

2020 2040 2060 2080 2100<br />

Year<br />

Precipitation<br />

Precipitation + CO 2<br />

Precipitation + Temperature<br />

Precipitation + VPD<br />

Precipitation + CO2 + VPD + Temperature


Interactions with other climate drivers:<br />

Partition<strong>in</strong>g the ‘dieback’ response<br />

60<br />

40<br />

Which aspect of<br />

temperature is<br />

caus<strong>in</strong>g the dieback?<br />

Variance Expla<strong>in</strong>ed (%)<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

Respiration <strong>in</strong>crease<br />

or photosynthetic<br />

decl<strong>in</strong>e?<br />

-80<br />

-100<br />

MOSES-<strong>TRIFFID</strong> HYLAND LPJ<br />

MODEL<br />

VPD<br />

Soil moisture<br />

CO2<br />

TEMP


3. Acclimation of respiration to temperature.<br />

Atk<strong>in</strong> O, Zaragoza-Castells<br />

J, Fisher R et al. <strong>in</strong> review<br />

100<br />

50<br />

a<br />

c<br />

7 o C<br />

14 o C<br />

21 o C<br />

28 o C<br />

Leaf R mass<br />

(nmol CO 2<br />

g -1 s -1 )<br />

10<br />

5<br />

100<br />

50<br />

b<br />

d<br />

10<br />

5<br />

10 50 100 150<br />

LMA (g m -2 )<br />

1 5 10<br />

Leaf N concentration (%)<br />

Acclimation adjusts the<br />

LMA:R <strong>in</strong>tercept, but not<br />

the slope, so is<br />

predictable from the<br />

exist<strong>in</strong>g rate of<br />

respiration and the<br />

temperature change<br />

from the reference value


Inclusion of temperature<br />

acclimation <strong>in</strong> <strong>JULES</strong><br />

We assume that the ‘reference temperature’ for respiration is 25 o C<br />

18<br />

Respiraton (arbitary units)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Low temperature<br />

ecosystems<br />

No acclimation<br />

+ acclimation<br />

R mT<br />

Tropics &<br />

hot-arid<br />

ecosystems<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Temperature ( o C)


1861 2100<br />

Acclimation of respiration<br />

Acclimation-dependent<br />

change <strong>in</strong> plant R<br />

(% control)<br />

Latitude<br />

Acclimation-dependent<br />

change <strong>in</strong> plant R<br />

(g C m -2 yr -1 )<br />

Control rates of<br />

plant R (no acclimation)<br />

(g C m -2 yr -1 )


Conclusions<br />

Expectation is that<br />

acclimation reduces<br />

respiration with<br />

<strong>in</strong>creas<strong>in</strong>g temperature.<br />

Our net result is no<br />

change <strong>in</strong> carbon balance<br />

as +ve+<br />

acclimation <strong>in</strong><br />

boreal zone cancels out -<br />

ve acclimation <strong>in</strong> tropical<br />

zone

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!