29.06.2015 Views

ML13135_rev0 - LANSDALE Semiconductor Inc.

ML13135_rev0 - LANSDALE Semiconductor Inc.

ML13135_rev0 - LANSDALE Semiconductor Inc.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ML13135</strong><br />

FM Communications<br />

Receiver; Dual Conversion<br />

Narrowband FM Receiver<br />

Legacy Device: Motorola MC13135<br />

The <strong>ML13135</strong> is the second generation of single chip, dual conversion<br />

FM communications receivers developed by Motorola. Major<br />

improvements in signal handling, RSSI and first oscillator operation<br />

have been made. In addition, recovered audio distortion and audio<br />

drive have improved. These receivers offer low noise, high gain and<br />

stability over a wide operating voltage range, and Lansdale is pleased<br />

to continue to offer them.<br />

The <strong>ML13135</strong> includes a Colpitts oscillator, VCO tuning diode, low<br />

noise first and second mixer and LO, high gain limiting IF, and RSSI.<br />

The <strong>ML13135</strong> is designed for use with an LC quadrature detector and<br />

has an uncommitted op amp that can be used either for an RSSI buffer<br />

or as a data comparator.<br />

This device can be used as a stand–alone VHF receiver or as the<br />

lower IF of a triple conversion system. Applications include cordless<br />

telephones, short range data links, walkie–talkies, low cost land<br />

mobile, amateur radio receivers, baby monitors and scanners.<br />

OPERATING FEATURES<br />

24<br />

1<br />

24<br />

1<br />

P DIP 24 = LP<br />

PLASTIC PACKAGE<br />

CASE 724<br />

SO 24 = -6P<br />

CASE 751E<br />

(SO–24L)<br />

CROSS REFERENCE/ORDERING INFORMATION<br />

PACKAGE<br />

MOTOROLA<br />

<strong>LANSDALE</strong><br />

P DIP 24 MC13135P <strong>ML13135</strong>LP<br />

SO 24 MC13135DW <strong>ML13135</strong>-6P<br />

Note: Lansdale lead free (Pb) product, as it<br />

becomes available, will be identified by a part<br />

number prefix change from ML to MLE.<br />

• Complete Dual Conversion FM Receiver – Antenna to Audio Output<br />

• Input Frequency Range – 200 MHz<br />

• Voltage Buffered RSSI with 70 dB of Usable Range<br />

• Low Voltage Operation – 2.0 to 6.0 Vdc (2 Cell NiCad Supply)<br />

• Low Current Drain – 3.5 mA Typ<br />

• Low Impedance Audio Output < 25 Ω<br />

• VHF Colpitts First LO for Crystal or VCO Operation<br />

• Isolated Tuning Diode<br />

• Buffered First LO Output to Drive CMOS PLL Synthesizer<br />

• Operating Temperature Range TA = –40° to +85°C<br />

1st LO Base<br />

1st LO Emitter<br />

1st LO Out<br />

VCC1<br />

2nd LO Emitter<br />

2nd LO Base<br />

PIN CONNECTIONS<br />

1st LO<br />

Varicap<br />

1 24<br />

2<br />

23<br />

3<br />

22<br />

VCC1<br />

4<br />

21<br />

5 2nd LO<br />

20<br />

VCC2<br />

6<br />

19<br />

Varicap C<br />

Varicap A<br />

1st Mixer In 1<br />

1st Mixer In 2<br />

1st Mixer Out<br />

VCC2<br />

2nd Mixer Out<br />

VEE<br />

7<br />

8<br />

AF<br />

18<br />

17<br />

2nd Mixer In<br />

Audio Out<br />

Limiter In<br />

Decouple 1<br />

9<br />

10<br />

Limiter<br />

Demod<br />

16<br />

15<br />

Op Amp Out<br />

Op Amp In –<br />

Decouple 2<br />

11<br />

14<br />

Op Amp In +<br />

RSSI<br />

12<br />

13<br />

Quad Coil<br />

The device contains 142 active transistors.<br />

Page 1 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

MAXIMUM RATINGS<br />

Rating Pin Symbol Value Unit<br />

Power Supply Voltage 4, 19 VCC (max) 6.5 Vdc<br />

RF Input Voltage 22 RFin 1.0 Vrms<br />

Junction Temperature – TJ +150 °C<br />

Storage Temperature Range – Tstg – 65 to +150 °C<br />

RECOMMENDED OPERATING CONDITIONS<br />

Rating Pin Symbol Value Unit<br />

Power Supply Voltage 4, 19 VCC 2.0 to 6.0 Vdc<br />

Maximum 1st IF – fIF1 21 MHz<br />

Maximum 2nd IF – fIF2 3.0 MHz<br />

Ambient Temperature Range – TA – 40 to + 85 °C<br />

ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = 4.0 Vdc, fo = 49.7 MHz, fMOD = 1.0 kHz, Deviation = ±3.0 kHz, f1stLO = 39 MHz, f2nd<br />

LO = 10.245 MHz, IF1 = 10.7 MHz, IF2 = 455 kHz, unless otherwise noted. All measurements performed in the test circuit of Figure 1.)<br />

Characteristic Condition Symbol Min Typ Max Unit<br />

Total Drain Current No Input Signal ICC – 4.0 6.0 mAdc<br />

Sensitivity (Input for 12 dB SINAD) Matched Input VSIN – 1.0 – µVrms<br />

Recovered Audio VRF = 1.0 mV AFO 170 220 300 mVrms<br />

1st Mixer Conversion Gain VRF = – 40 dBm MXgain1 – 12 – dB<br />

2nd Mixer Conversion Gain VRF = – 40 dBm MXgain2 – 13 – dB<br />

First LO Buffered Output – VLO – 100 – mVrms<br />

Total Harmonic Distortion VRF = – 30 dBm THD – 1.2 3.0 %<br />

Demodulator Bandwidth – BW – 50 – kHz<br />

RSSI Dynamic Range – RSSI – 70 – dB<br />

First Mixer 3rd Order Intercept TOIMix1 dBm<br />

(Input) Matched – –17 –<br />

Unmatched – –11 –<br />

Second Mixer 3rd Order Matched TOIMix2 dBm<br />

Intercept (RF Input) Input – – 27 –<br />

First LO Buffer Output Resistance – RLO – – – Ω<br />

First Mixer Parallel Input Resistance – R – 722 – Ω<br />

First Mixer Parallel Input Capacitance – C – 3.3 – pF<br />

First Mixer Output Impedance – ZO – 330 – Ω<br />

Second Mixer Input Impedance – ZI – 4.0 – kΩ<br />

Second Mixer Output Impedance – ZO – 1.8 – kΩ<br />

Detector Output Impedance – ZO – 25 – Ω<br />

Page 2 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

TEST CIRCUIT INFORMATION<br />

The recovered audio measurements for the <strong>ML13135</strong> are<br />

made with an LC quadrature detector. The typical recovered<br />

audio will depend on the external circuit; either the Q of the<br />

quad coil, or the RC matching network for the ceramic discriminator.<br />

See Figures 10 and 11 for additional information.<br />

Since adding a matching circuit to the RF input increases the<br />

signal level to the mixer, the third order intercept (TOI) point<br />

is better with an unmatched input (50 Ω from Pin 21 to Pin<br />

22). Typical values for both have been included in the<br />

Electrical Characterization Table. TOI measurements were<br />

taken at the pins with a high impedance probe/spectrum analyzer<br />

system. The first mixer input impedance was measured at<br />

the pin with a network analyzer.<br />

Figure 1a. <strong>ML13135</strong> Test Circuit<br />

VCC<br />

0.1<br />

1.0 k<br />

0.1<br />

0.84 µH<br />

39.0<br />

MHz<br />

Xtal<br />

5.0 k<br />

120 p<br />

0.01<br />

20 p<br />

5.0 p<br />

50 p<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

1st LO<br />

VCC1<br />

2nd LO<br />

Varicap<br />

VCC2<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

0.001<br />

0.2 µH<br />

0.01<br />

Ceramic<br />

Filter<br />

10.7 MHz<br />

Figure 1.<br />

62 pF<br />

180 p<br />

RF<br />

Input<br />

10.245<br />

MHz Xtal<br />

Ceramic<br />

Filter<br />

455 kHz<br />

0.1<br />

0.1<br />

0.1<br />

7<br />

8<br />

9<br />

10<br />

11<br />

Limiter<br />

Demod<br />

AF<br />

18<br />

17<br />

16<br />

15<br />

8.2 k<br />

0.1<br />

0.1<br />

360<br />

39 k<br />

12<br />

14<br />

0.1<br />

13<br />

39 k<br />

455 kHz<br />

Quad<br />

Coil<br />

Page 3 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

Figure 2. Supply Current versus Supply Voltage<br />

6.0<br />

1400<br />

Figure 3. RSSI Output versus RF Input<br />

I C C , SUPPLY CURRENT (mA )<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

RFin = 49.7 MHz<br />

fMOD = 1.0 kHz<br />

fDEV = ± 3.0 kHz<br />

RSSI OUTPUT (mVdc, Pin 12)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

VCC = 4.0 V<br />

RFin = 49.67 MHz<br />

fMOD = 1.0 kHz<br />

fDEV = ± 3.0 kHz<br />

0<br />

0<br />

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0<br />

VCC, SUPPLY VOLTAGE (V)<br />

200<br />

–140<br />

–120 –100 – 80 – 60 – 40 – 20<br />

RF INPUT (dBm)<br />

C P , EQUIVALENT PARALLEL CAPACITANCE (pF )<br />

25<br />

20<br />

15<br />

10<br />

5.0<br />

0<br />

0.5<br />

Figure 4. Varactor Capacitance, Resistance<br />

versus Bias Voltage<br />

CP, f = 150 MHz<br />

CP, f = 50 MHz<br />

RP, f = 50 MHz<br />

RP, f = 150 MHz<br />

0<br />

1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

VB, VARACTOR BIAS VOLTAGE, VPin24 to VPin 23 (Vdc)<br />

10<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

R P , EQUIVALENT PARALLEL RESISTANCE (k Ω )<br />

f, FREQUENCY (MHz)<br />

48.0<br />

47.5<br />

47.0<br />

46.5<br />

46.0<br />

45.5<br />

45.0<br />

1.0<br />

Figure 5. Oscillator Frequency<br />

versus Varactor Bias<br />

500 p<br />

27 p<br />

5.0 p<br />

1<br />

2<br />

1st LO<br />

Varicap<br />

2.0 3.0 4.0 5.0 6.0<br />

VB, VARACTOR BIAS VOLTAGE (Vdc)<br />

24<br />

23<br />

0.61 µH<br />

500 p<br />

1.0 MΩ 0.2 µF<br />

V B<br />

POWER (dBm)<br />

Figure 6. Signal Levels versus RF Input<br />

30<br />

10<br />

Second Mixer Output<br />

–10<br />

–30<br />

First Mixer Output<br />

First Mixer Input<br />

–50<br />

Second Mixer Input<br />

– 70<br />

–100 – 90 – 80 – 70 – 60 – 50 – 40 – 30 – 20<br />

RFin, RF INPUT (dBm)<br />

S+N, N, AND AMR (dB)<br />

10<br />

0<br />

–10<br />

– 20<br />

– 30<br />

– 40<br />

– 50<br />

– 60<br />

– 70<br />

–130<br />

Figure 7. Signal + Noise, Noise, and<br />

AM Rejection versus Input Power<br />

VCC = 4.0 Vdc<br />

RFin = 49.67 MHz<br />

fMOD = 1.0 kHz<br />

fDEV = ± 3.0 kHz<br />

–110 – 90 – 70 – 50 – 30<br />

RFin, RF INPUT (dBm)<br />

S + N<br />

S + N 30% AM<br />

N<br />

Page 4 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

50<br />

Figure 8. Op Amp Gain and Phase<br />

versus Frequency<br />

80<br />

Figure 9. First Mixer Third Order Intermodulation<br />

(Unmatched Input)<br />

20<br />

A V , GAIN (dB )<br />

30<br />

10<br />

0<br />

–10<br />

– 30<br />

Gain<br />

Phase<br />

120<br />

160<br />

200<br />

240<br />

,φ EXCESS PHASE (DEGREES)<br />

MIXER OUTPUT (dB)<br />

0<br />

– 20<br />

– 40<br />

– 60<br />

– 80<br />

Desired Products<br />

3rd Order<br />

Intermod<br />

Products<br />

– 50<br />

10 k<br />

100 k 1.0 M 10 M<br />

f, FREQUENCY (Hz)<br />

280<br />

–100<br />

–100<br />

– 80 – 60 – 40 – 20 0<br />

RF INPUT (dBm)<br />

pp<br />

)<br />

RA, RECOVERED AUDIO (mV<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

±1.0<br />

13<br />

Figure 10. Recovered Audio versus<br />

Deviation for <strong>ML13135</strong><br />

R<br />

VCC<br />

455 kHz<br />

Quad Coil<br />

Toko 7MC–8128Z<br />

fDEV, DEVIATION (kHz)<br />

R = 68 kΩ<br />

R = 47 kΩ<br />

R = 39 kΩ<br />

± 3.0 ± 5.0 ± 7.0 ± 9.0<br />

TOTAL HARMONIC DISTORTION (%)<br />

THD,<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

13<br />

R<br />

Figure 11. Distortion versus<br />

Deviation for <strong>ML13135</strong><br />

VCC<br />

455 kHz<br />

Quad Coil<br />

Toko 7MC–8128Z<br />

2.0<br />

R = 39 kΩ<br />

1.0<br />

±1.0 ± 3.0 ± 5.0 ± 7.0 ± 9.0<br />

fDEV, DEVIATION (kHz)<br />

R = 68 kΩ<br />

R = 47 kΩ<br />

Page 5 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

CIRCUIT DESCRIPTION<br />

The <strong>ML13135</strong> is a complete dual conversion receiver. This<br />

includes two local oscillators, two mixers, a limiting IF amplifier<br />

and detector, and an op amp. It will provide a voltage<br />

buffered RSSI with 70 dB of usable range, isolated tuning<br />

diode and buffered LO output for PLL operation, and a separate<br />

VCC pin for the first mixer and LO. Improvements have<br />

been made in the temperature performance of both the recovered<br />

audio and the RSSI.<br />

VCC<br />

Two separate V CC lines enable the first LO and mixer to<br />

continue running while the rest of the circuit is powered down.<br />

They also isolate the RF from the rest of the internal circuit.<br />

Local Oscillators<br />

The local oscillators are grounded collector Colpitts, which<br />

can be easily crystal–controlled or VCO controlled with the<br />

on–board varactor and external PLL. The first LO transistor is<br />

internally biased, but the emitter is pinned–out and IQ can be<br />

increased for high frequency or VCO operation. The collector<br />

is not pinned out, so for crystal operation, the LO is generally<br />

limited to 3rd overtone crystal frequencies; typically around 60<br />

MHz. For higher frequency operation, the LO can be provided<br />

externally as shown in Figure 16.<br />

Buffer<br />

An amplifier on the 1st LO output converts the single–ended<br />

LO output to a differential signal to drive the mixer. Capacitive<br />

coupling between the LO and the amplifier minimizes the<br />

effects of the change in oscillator current on the mixer.<br />

Buffered LO output is pinned–out at Pin 3 for use with a PLL,<br />

with a typical output voltage of 320 mVpp at VCC= 4.0 V and<br />

with a 5.1 k resistor from Pin 3 to ground. As seen in Figure<br />

14, the buffered LO output varies with the supply voltage and<br />

a smaller external resistor may be needed for low voltage operation.<br />

The LO buffer operates up to 60 MHz, typically. Above<br />

60 MHz, the output at Pin 3 rolls off at approximately 6.0 dB<br />

per octave. Since most PLLs require about 200 mVpp drive, an<br />

external amplifier may be required.<br />

Mixers<br />

The first and second mixer are of similar design. Both are<br />

double balanced to suppress the LO and input frequencies to<br />

give only the sum and difference frequencies out. This configuration<br />

typically provides 40 to 60 dB of LO suppression. New<br />

design techniques provide improved mixer linearity and third<br />

order intercept without increased noise. The gain on the output<br />

of the 1st mixer starts to roll off at about 20 MHz, so this<br />

receiver could be used with a 21 MHz first IF. It is designed<br />

for use with a ceramic filter, with an output impedance of 330<br />

Ω. A series resistor can be used to raise the impedance for use<br />

with a crystal filter, which typically has an input impedance of<br />

4.0 kΩ. The second mixer input impedance is approximately<br />

4.0 kΩ; it requires an external 360 Ω parallel resistor for use<br />

with a standard ceramic filter.<br />

Limiting IF Amplifier and Detector<br />

The limiter has approximately 110 dB of gain, which starts<br />

rolling off at 2.0 MHz. Although not designed for wideband<br />

operation, the bandwidth of the audio frequency amplifier has<br />

been widened to 50 kHz, which gives less phase shift and<br />

enables the receiver to run at higher data rates. However, care<br />

should be taken not to exceed the bandwidth allowed by local<br />

regulations.<br />

The <strong>ML13135</strong> is designed for use with an LC quadrature<br />

detector, and does not have sufficient drive to be used with a<br />

ceramic discriminator. The discriminators and the external<br />

matching circuit will affect the distortion and recovered audio.<br />

RSSI/Op Amp<br />

The Received Signal Strength Indicator (RSSI) on the<br />

<strong>ML13135</strong> has about 70 dB of range. The resistor needed to<br />

translate the RSSI current to a voltage output has been included<br />

on the internal circuit, which gives it a tighter tolerance. A<br />

temperature compensated reference current also improves the<br />

RSSI accuracy over temperature. On the <strong>ML13135</strong>, the op amp<br />

is not connected internally and can be used for the RSSI or as<br />

a data slicer (see Figure 17c).<br />

600<br />

Figure 14. Buffered LO Output Voltage<br />

versus Supply Voltage<br />

500<br />

RPin3 = 3.0 kΩ<br />

O UTPUT (mV p p<br />

)<br />

400<br />

300<br />

RPin3 = 5.1 kΩ<br />

200<br />

100<br />

2.5 3.0 3.5 4.0 4.5 5.0 5.5<br />

VCC, SUPPLY VOLTAGE (Vdc)<br />

Page 6 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

Figure 15. PLL Controlled Narrowband FM Receiver at 46/49 MHz<br />

VCC<br />

<strong>ML13135</strong><br />

0.1<br />

OSC<br />

Out<br />

OSC<br />

In<br />

VDD Fin1<br />

D0 PD1<br />

D1 PD2<br />

D2 LD<br />

D3<br />

VSS Fin2<br />

ML145168<br />

0.1<br />

2.7 k<br />

47 k<br />

1.0<br />

3.0 p<br />

100 k<br />

0.01<br />

0.68 µH<br />

0.1<br />

10.245<br />

MHz Xtal<br />

Ceramic<br />

Filter<br />

455 kHz<br />

0.1<br />

500 p<br />

120 p<br />

500 p<br />

27 p<br />

5.0 p<br />

5.1 k<br />

0.1<br />

50 p<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

1st LO<br />

VCC1<br />

2nd LO<br />

Limiter<br />

Varicap<br />

VCC2<br />

AF<br />

Demod<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

0.001<br />

0.01<br />

1.0 k<br />

0.1<br />

0.15<br />

0.2 µH<br />

Ceramic<br />

Filter<br />

10.7 MHz<br />

360<br />

10 k<br />

62 pF<br />

150 pF<br />

RF<br />

Input<br />

Recovered<br />

Audio<br />

RSSI<br />

Output<br />

12<br />

14<br />

0.1<br />

13<br />

68 k<br />

455 kHz<br />

Quad Coil<br />

Figure 16. 144 MHz Single Channel Application Circuit<br />

1st LO External Oscillator Circuit<br />

Preamp for <strong>ML13135</strong> at 144.455 MHz<br />

0.82 µ<br />

1.0 k<br />

15 k<br />

100 p<br />

5.6 k<br />

X1<br />

68 p<br />

43 p<br />

L1<br />

VCC<br />

Q1<br />

+<br />

1.0 µF<br />

15 p<br />

1000p<br />

fosc =<br />

133.755 MHz<br />

470 Q1 – MPS5179<br />

X1 – 44.585 MHz 3rd Overtone<br />

Series Resonant Crystal<br />

L1 – 0.078 µH Inductor<br />

(Coilcraft Part # 146–02J08)<br />

RF Input<br />

3300 p<br />

470 p<br />

12 p<br />

L2<br />

5.1 k<br />

3300 p<br />

15 k<br />

1.0 µ<br />

L3<br />

Q1<br />

VCC<br />

470<br />

39 p<br />

+<br />

1.0 µF<br />

12 p<br />

To Mixer<br />

Q1 – MPS5179<br />

L2 – 0.05 µH<br />

L3 – 0.07 µH<br />

Page 7 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

Legacy Applications Information<br />

Figure 17a. Single Channel Narrowband FM Receiver at 49.7 MHz<br />

Buffered LO<br />

Output<br />

+<br />

1.0<br />

VCC<br />

1.0 k<br />

1.0 µH<br />

0.01<br />

0.1<br />

2200 p<br />

27 p<br />

39 MHz<br />

Xtal 5.0 p<br />

120 p<br />

5.1 k<br />

50 p<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

1st LO<br />

VCC1<br />

2nd LO<br />

<strong>ML13135</strong><br />

24<br />

Varicap<br />

23<br />

22<br />

21<br />

20<br />

VCC2<br />

19<br />

0.001<br />

0.01<br />

0.2 µH<br />

Ceramic<br />

Filter<br />

10.7 MHz<br />

Figure 17.<br />

62 pF<br />

150 p<br />

RF Input<br />

50 Ω Source<br />

10.245 MHz<br />

Xtal<br />

Ceramic<br />

Filter<br />

455 kHz<br />

0.1 0.1<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

Limiter<br />

Demod<br />

18<br />

AF<br />

17<br />

16<br />

15<br />

14<br />

1.0 k<br />

0.1<br />

0.15<br />

360<br />

10 k<br />

Recovered<br />

Audio<br />

RSSI<br />

Output<br />

0.1<br />

13<br />

39 k<br />

455 kHz<br />

Quad Coil<br />

Figure 17b. PC Board Component View<br />

5.1k<br />

3<br />

120p<br />

2200p<br />

27p<br />

5p<br />

0.1<br />

10.245 MHz<br />

XT<br />

4<br />

CF<br />

5<br />

50p<br />

455 KHz<br />

39 MHz<br />

XT<br />

1.0 k<br />

2<br />

MC13135<br />

.001<br />

0.01<br />

10.7 MHz<br />

CF<br />

0.1<br />

7<br />

1<br />

62p<br />

150p<br />

360<br />

1.0k<br />

10k<br />

1.0<br />

+<br />

0.15<br />

NOTES: 1. 0.2 µH tunable (unshielded) inductor<br />

2. 39 MHz Series mode resonant<br />

3rd Overtone Crystal<br />

3. 1.5 µH tunable (shielded) inductor<br />

4. 10.245 MHz Fundamental mode crystal,<br />

32 pF load<br />

5. 455 kHz ceramic filter, muRata CFU 455B<br />

or equivalent<br />

6. Quadrature coil, Toko 7MC–8128Z (7mm)<br />

or Toko RMC–2A6597HM (10mm)<br />

7. 10.7 MHz ceramic filter, muRata SFE10.7MJ–A<br />

or equivalent<br />

0.01<br />

0.1 0.1<br />

0.1<br />

0.22<br />

10<br />

+<br />

+4.7<br />

39K<br />

51K<br />

10k<br />

MC34119<br />

+10<br />

Figure 17c. Optional Data Slicer Circuit<br />

(Using Internal Op Amp)<br />

0.1<br />

6<br />

VCC<br />

Vin<br />

(Pin 17)<br />

20 k 20 k<br />

15<br />

14<br />

0.001 10 k<br />

16<br />

10 k<br />

FSK Data<br />

Output<br />

1.0 M<br />

Page 8 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

Legacy Applications Information<br />

Figure 18. PC Board Solder Side View<br />

RF IN<br />

L.O.<br />

A UDIO<br />

V CC<br />

GROUN D<br />

3 .25 ″<br />

SPEAKER<br />

VCC2<br />

RSSI<br />

MC13135<br />

MC13136<br />

3.375″<br />

(Circuit Side View)<br />

Figure 19. PC Board Component View<br />

5.1k<br />

3<br />

120p<br />

2200p<br />

27p<br />

5p<br />

0.1<br />

10.245 MHz<br />

XT<br />

4<br />

CF<br />

5<br />

50p<br />

455 KHz<br />

39 MHz<br />

XT<br />

1.0 k<br />

2<br />

MC13136<br />

.001<br />

0.01<br />

10.7 MHz<br />

CF<br />

0.1<br />

7<br />

1<br />

62p<br />

360<br />

10k<br />

150p<br />

1.0k<br />

1.0<br />

+<br />

0.15<br />

NOTES: 1. 0.2 µH tunable (unshielded) inductor<br />

2. 39 MHz Series mode resonant<br />

3rd Overtone Crystal<br />

3. 1.5 µH tunable (shielded) inductor<br />

4. 10.245 MHz Fundamental mode crystal,<br />

32 pF load<br />

5. 455 kHz ceramic filter, muRata CFU 455B<br />

or equivalent<br />

6. Ceramic discriminator, muRata CDB455C34<br />

or equivalent<br />

7. 10.7 MHz ceramic filter, muRata SFE10.7MJ–A<br />

or equivalent<br />

0.01<br />

0.1 0.1<br />

0.1<br />

270p<br />

0.22<br />

10<br />

+<br />

+4.7<br />

2.7k<br />

10k<br />

6<br />

51K<br />

MC34119<br />

+10<br />

0.1<br />

Page 9 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

18<br />

Schematic<br />

<strong>ML13135</strong> Internal<br />

Figure 21.<br />

V C C 1 V C C 2<br />

4.0 k<br />

4.0 k<br />

6.0 k<br />

8.0 k<br />

15 k<br />

7<br />

6<br />

5<br />

12 k<br />

1.6 k<br />

1<br />

3<br />

1.0 k<br />

21<br />

2<br />

100<br />

1.0 k<br />

22<br />

5.0 p<br />

20<br />

V E E<br />

V E E<br />

F irst LO<br />

First Mixer<br />

Second LO<br />

Second Mixe r<br />

V C C 2<br />

16<br />

V C C 2<br />

15<br />

14<br />

Figure 21.<br />

12<br />

100 k<br />

V E E<br />

V E E<br />

Op Amp<br />

13<br />

V C C 2<br />

V C C 2<br />

Bias<br />

5.0 p<br />

9<br />

17<br />

52 k<br />

50 k<br />

2.0 k<br />

10<br />

11<br />

V E E<br />

V E E<br />

L imiting IF Amplifier<br />

Detector and Audio Amplifie r<br />

142 active transistors.<br />

device contains<br />

This<br />

Page 10 of 11 www.lansdale.com<br />

Issue 0


<strong>ML13135</strong><br />

<strong>LANSDALE</strong> <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

OUTLINE DIMENSIONS<br />

P DIP 24 = LP<br />

PLASTIC PACKAGE<br />

(<strong>ML13135</strong>LP)<br />

CASE 724–03<br />

ISSUE D<br />

–A–<br />

24<br />

13<br />

1 12<br />

–B–<br />

NOTES:<br />

1. CHAMFERED CONTOUR OPTIONAL.<br />

2. DIMENSION L TO CENTER OF LEADS WHEN<br />

FORMED PARALLEL.<br />

3. DIMENSIONING AND TOLERANCING PER ANSI<br />

Y14.5M, 1982.<br />

4. CONTROLLING DIMENSION: INCH.<br />

–T–<br />

SEATING<br />

PLANE<br />

G<br />

E<br />

F<br />

D 24 PL<br />

N<br />

K<br />

C<br />

0.25 (0.010) M T A<br />

M<br />

L<br />

J 24 PL<br />

NOTE 1<br />

M<br />

0.25 (0.010) M T B<br />

M<br />

DIM<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

J<br />

K<br />

L<br />

M<br />

N<br />

INCHES<br />

MIN MAX<br />

1.230 1.265<br />

0.250 0.270<br />

0.145 0.175<br />

0.015 0.020<br />

0.050 BSC<br />

0.040 0.060<br />

0.100 BSC<br />

0.007 0.012<br />

0.110 0.140<br />

0.300 BSC<br />

0°<br />

0.020<br />

15°<br />

0.040<br />

MILLIMETERS<br />

MIN MAX<br />

31.25 32.13<br />

6.35 6.85<br />

3.69 4.44<br />

0.38 0.51<br />

1.27 BSC<br />

1.02 1.52<br />

2.54 BSC<br />

0.18 0.30<br />

2.80 3.55<br />

7.62 BSC<br />

0°<br />

0.51<br />

15°<br />

1.01<br />

–T–<br />

SEATING<br />

PLANE<br />

–A–<br />

24 13<br />

1 12<br />

D 24 PL<br />

0.010 (0.25) M T A S B S<br />

G 22 PL<br />

–B–<br />

C<br />

K<br />

SO 24 = -6P<br />

(<strong>ML13135</strong>-6P)<br />

PLASTIC PACKAGE<br />

CASE 751E–04<br />

ISSUE E<br />

P 12 PL<br />

0.010 (0.25) M B<br />

J<br />

F<br />

M<br />

M<br />

R X 45°<br />

NOTES:<br />

1. DIMENSIONING AND TOLERANCING PER ANSI<br />

Y14.5M, 1982.<br />

2. CONTROLLING DIMENSION: MILLIMETER.<br />

3. DIMENSIONS A AND B DO NOT INCLUDE<br />

MOLD PROTRUSION.<br />

4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)<br />

PER SIDE.<br />

5. DIMENSION D DOES NOT INCLUDE DAMBAR<br />

PROTRUSION. ALLOWABLE DAMBAR<br />

PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN<br />

EXCESS OF D DIMENSION AT MAXIMUM<br />

MATERIAL CONDITION.<br />

DIM<br />

A<br />

B<br />

C<br />

D<br />

F<br />

G<br />

J<br />

K<br />

M<br />

P<br />

R<br />

MILLIMETERS<br />

MIN MAX<br />

15.25 15.54<br />

7.40 7.60<br />

2.35 2.65<br />

0.35 0.49<br />

0.41 0.90<br />

1.27 BSC 0.050 BSC<br />

0.32 0.009<br />

0.29 0.005<br />

8° 0°<br />

10.55 0.395<br />

0.75 0.010<br />

0.23<br />

0.13<br />

0°<br />

10.05<br />

0.25<br />

INCHES<br />

MIN MAX<br />

0.601 0.612<br />

0.292 0.299<br />

0.093 0.104<br />

0.014 0.019<br />

0.016 0.035<br />

0.013<br />

0.011<br />

8°<br />

0.415<br />

0.029<br />

Lansdale <strong>Semiconductor</strong> reserves the right to make changes without further notice to any products herein to improve reliability,<br />

function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit<br />

described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which<br />

may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may<br />

vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s<br />

technical experts. Lansdale <strong>Semiconductor</strong> is a registered trademark of Lansdale <strong>Semiconductor</strong>, <strong>Inc</strong>.<br />

Page 11 of 11 www.lansdale.com<br />

Issue 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!