Rovibrational internal energy excitation and ... - (cnr) - (bari)

Rovibrational internal energy excitation and ... - (cnr) - (bari) Rovibrational internal energy excitation and ... - (cnr) - (bari)

users.ba.cnr.it
from users.ba.cnr.it More from this publisher
27.06.2015 Views

Rovibrational internal energy excitation and dissociation of molecular nitrogen in hypersonic flows Thierry MAGIN, 1 Marco PANESI, 2 Anne BOURDON, 3 Richard JAFFE, 4 and David SCHWENKE 4 Thanks to: Winifred Huo, 4 Galina Chaban, 4 Yen Liu, 4 and Christophe Laux 3 1 Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Belgium 2 Institute for Computational Engineering and Sciences, The University of Texas at Austin 3 EM2C Laboratory, CNRS UPR 288 – Ecole Centrale Paris, France 4 NASA Ames Research Center Symposium in honour of Prof. Mario Capitelli on the occasion of his 70 th birthday Chemical Physics of Low Temperature Plasmas 31 Jan – 1 Feb 2011, University of Bari, Italy Prof. Capitelli’s symposium (U Bari) Rovibrational collisional model 31 Jan – 1 Feb 2011 1 / 18

<strong>Rovibrational</strong> <strong>internal</strong> <strong>energy</strong> <strong>excitation</strong> <strong>and</strong> dissociation<br />

of molecular nitrogen in hypersonic flows<br />

Thierry MAGIN, 1 Marco PANESI, 2 Anne BOURDON, 3<br />

Richard JAFFE, 4 <strong>and</strong> David SCHWENKE 4<br />

Thanks to: Winifred Huo, 4 Galina Chaban, 4 Yen Liu, 4 <strong>and</strong> Christophe Laux 3<br />

1 Aeronautics <strong>and</strong> Aerospace Department, von Karman Institute for Fluid Dynamics, Belgium<br />

2 Institute for Computational Engineering <strong>and</strong> Sciences, The University of Texas at Austin<br />

3 EM2C Laboratory, CNRS UPR 288 – Ecole Centrale Paris, France<br />

4 NASA Ames Research Center<br />

Symposium in honour of Prof. Mario Capitelli on the occasion of his 70 th birthday<br />

Chemical Physics of Low Temperature Plasmas<br />

31 Jan – 1 Feb 2011, University of Bari, Italy<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 1 / 18


Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 2 / 18


Outline<br />

Outline<br />

Introduction<br />

NASA ARC database for N 2 + N system<br />

<strong>Rovibrational</strong> collisional model<br />

1D shock-tube simulations<br />

Full Master equation<br />

Coarse graining model<br />

Conclusion<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 3 / 18


Introduction<br />

Motivation<br />

Motivation: developing high-fidelity nonequilibrium models<br />

⇒ Underst<strong>and</strong>ing thermo-chemical nonequilibrium effects is important<br />

For an accurate prediction of the radiative heat flux for reentries at<br />

v>10km/s (Moon <strong>and</strong> Mars returns)<br />

For a correct interpretation of experimental measurements<br />

In flight<br />

In ground wind-tunnels<br />

Calculated <strong>and</strong> measured intensity N 2 (1+) system<br />

⇒ St<strong>and</strong>ard nonequilibrium models for<br />

hypersonic flows were mainly<br />

developed in the 1980’s (correlation<br />

based)<br />

e.g. dissociation model of Park<br />

Multitemperature model:<br />

T = T r , T v = T e = T ele<br />

Average temperature √ T T v for<br />

fictitious Arrhenius rate coefficient<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 4 / 18


Introduction<br />

Objective<br />

Objective: developing reduced nonequilibrium models for<br />

reentry flows based on microscopic theory <strong>and</strong> applying<br />

them to macroscopic scale<br />

⇒ work at the interface between computational chemistry, experimental<br />

measurements, <strong>and</strong> CFD<br />

Computational methods<br />

Physico−chemical models<br />

Experimental data<br />

N 3 Potential Energy Surface<br />

NASA Ames Research Center<br />

Blast capsule simulation<br />

VKI COOLFluiD / Mutation<br />

Diagnostics in plasma jet<br />

VKI Plasmatron<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 5 / 18


NASA ARC database for N 2 + N system<br />

Internal <strong>energy</strong> <strong>excitation</strong> <strong>and</strong> dissociation derived from<br />

ab initio calculations<br />

Characterization of nonequilibrium air chemistry from first principles<br />

by the chemistry group of NASA Ames Research Center<br />

⇒ Papers AIAA 2008-1208, 2008-1209, 2009-1569, 2010-4517, RTO-VKI LS 2008<br />

The 9390 (v,J) rovibrational <strong>energy</strong> levels for N 2 are split into<br />

Bound levels below the dissociation <strong>energy</strong><br />

Quasi-bound or predissociated levels above the dissociation <strong>energy</strong><br />

but below the centrifugal barrier of the potential<br />

Potential curve of N 2 for J=0,20,40,. . .<br />

⇒ Complementary work at Bari (PHYS4ENTRY) <strong>and</strong> U Minnesota (MURI)<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 6 / 18


NASA ARC database for N 2 + N system<br />

A novel approach for nonequilibrium models...<br />

Computation from first principles at NASA ARC in 2 steps:<br />

1 Quantum chemistry calculations to generate realistic nuclear<br />

interaction potentials<br />

2 Classical trajectory method for the reaction cross-sections<br />

e.g. N 2 + N system:<br />

9390 (v,J) rovibrational <strong>energy</strong><br />

levels for N 2<br />

23 × 10 6 reaction mechanism<br />

N 2(v, J) + N ↔ N + N + N<br />

N 2(v, J) ↔ N + N<br />

N 2(v, J) + N ↔ N 2(v ′ , J ′ ) + N<br />

Experimental data are used only for<br />

validation<br />

⇒ This model has a wide application<br />

range (physics based)<br />

N 3 Potential Energy Surface<br />

NASA Ames Research Center<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 7 / 18


<strong>Rovibrational</strong> collisional model<br />

Master equation<br />

Detailed chemical mechanism coupled with a flow solver<br />

Full master eq. of conservation of mass for the 9390 rovibrational<br />

<strong>energy</strong> levels i = (v, J) for N 2 , <strong>and</strong> for N atoms coupled with eqs. of<br />

conservation of momentum <strong>and</strong> total <strong>energy</strong><br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

ρ i<br />

ρ i u M N2 ω i<br />

d<br />

⎜ρ N<br />

⎟<br />

dt ⎝ρu⎠ + d<br />

⎜ ρ N u<br />

⎟<br />

dx ⎝ρu 2 + p⎠ = ⎜M N ω N<br />

⎟<br />

⎝ 0 ⎠<br />

ρE<br />

ρuH<br />

0<br />

... but computationally too expensive for 3D CFD applications<br />

⇒ reduction of the chemical mechanism by lumping the <strong>energy</strong> levels i:<br />

e.g. vibrational state-to-state models (AIAA 2009-3837, 2010-4335)<br />

d<br />

dt ρ v + d<br />

dx (ρ v u) = M N2 ω v<br />

The <strong>energy</strong> levels are lumped for each v assuming a rotational <strong>energy</strong><br />

population following a Maxwell-Boltzmann distribution at T<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 8 / 18


<strong>Rovibrational</strong> collisional model<br />

Bin model<br />

Coarse graining model<br />

Another lumping scheme is to sort the (v,J) levels by <strong>energy</strong> <strong>and</strong><br />

include in a bin all levels with similar energies<br />

25x10 -19<br />

20x10 -19<br />

Energy [ J ]<br />

15x10 -19<br />

10x10 -19<br />

5x10 -19<br />

0.0<br />

0 2000 4000 6000 8000 10000<br />

Index [ - ]<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 9 / 18


<strong>Rovibrational</strong> collisional model<br />

Bin model<br />

Coarse graining model<br />

The <strong>energy</strong> for level i = (v, J) is constant in bin k <strong>and</strong> equal to the average<br />

<strong>energy</strong><br />

∑<br />

i∈I<br />

Ē k = k<br />

g i E i<br />

,<br />

ḡ k<br />

with the bin degeneracy ḡ k = ∑ i∈I k<br />

g i<br />

The <strong>energy</strong> level populations are assumed to be uniform within a bin<br />

n i<br />

¯n k<br />

= 1 ḡ k<br />

g i ,<br />

i ∈ I k<br />

The initial population of the bins is assumed to follow a Maxwell-Boltzmann<br />

distribution<br />

( )<br />

¯n k<br />

= ḡk −<br />

n N2<br />

¯Q(T int ) exp Ē k<br />

k B T int<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 10 / 18


<strong>Rovibrational</strong> collisional model<br />

Numerical method<br />

Numerical method<br />

The post-shock conditions are obtained from the Rankine-Hugoniot<br />

jump relations<br />

The 1D Euler eqs. for collisional model comprises<br />

Mass conservation eqs. for N<br />

Mass conservation eqs. for the 9390 rovibrational levels of N 2<br />

Momentum conservation eq.<br />

Total <strong>energy</strong> conservation eq.<br />

The backward reaction rate coefficients are based on microreversibility<br />

The conservative form is transformed into an ODE system solved by<br />

LSODE<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 11 / 18


Results<br />

Simulation of <strong>internal</strong> <strong>energy</strong> <strong>excitation</strong> <strong>and</strong> dissociation<br />

processes behind a strong shockwave in N 2 flow<br />

Simulations based on different models:<br />

Full master eq. model<br />

Coarse graining model<br />

Vibrational collisional model<br />

Multitemperature model for the 2-species mixture with simplified<br />

mechanism<br />

Free stream (1), post-shock (2), <strong>and</strong> LTE (3) conditions<br />

1 2 3<br />

T [K] 300 62,546 11,351<br />

p [Pa] 13 10,792 13,363<br />

u [km/s] 10 2.51 0.72<br />

x N 0.028 0.028 1<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 12 / 18


Results<br />

Temperature <strong>and</strong> composition profiles<br />

Temperatures T , T v (v = 1), T int (v = 0, J = 10)<br />

Temperature [K]<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

T full CR: no pred.<br />

T int<br />

T full CR<br />

T int<br />

T vibrational CR<br />

T v<br />

T 2-species Park<br />

Mole fractions [-]<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

N 2 full CR : no predis.<br />

N<br />

N 2 full CR<br />

N<br />

N 2 vibrational CR<br />

N<br />

T v<br />

2.0×10 -6 4.0×10 -6 6.0×10 -6 8.0×10 -6 10×10 -6<br />

10000<br />

0.2<br />

0<br />

2.0×10 -6 4.0×10 -6 6.0×10 -6 8.0×10 -6 10×10 -6<br />

Time [s]<br />

0<br />

Time [s]<br />

Free stream: T 1 = 300 K, p 1 = 13 Pa, u 1 = 10 km/s, x N1 ∼ 2.8%, 10 −5 s ↔ 2.5 cm<br />

⇒ Thermalization <strong>and</strong> dissociation occur after a larger distance for the<br />

full collisional model<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 13 / 18


Results<br />

<strong>Rovibrational</strong> <strong>energy</strong> population of N 2<br />

n(v, J) in function of E(v, J) at t = 2.6 × 10 −6 s (7mm)<br />

A rotational temperature T r (v) is introduced for each vibrational <strong>energy</strong> level v:<br />

PJ max(v)<br />

n(v, J)∆E(v, J)<br />

J=0<br />

=<br />

PJ max(v)<br />

n(v, J)<br />

J=0<br />

PJ max(v)<br />

J=0<br />

“ ”<br />

−∆E(v,J)<br />

g J ∆E(v, J) exp<br />

kTr (v)<br />

“ ”<br />

−∆E(v,J)<br />

kTr (v)<br />

PJ max(v)<br />

g<br />

J=0 J exp<br />

⇒ The assumption of equilibrium between the rotational <strong>and</strong><br />

translational modes is questionable...<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 14 / 18


Results<br />

Coarse graining model for 3D CFD applications<br />

Coarse-graining model: lumping the <strong>energy</strong> levels into bins as a<br />

function of their global <strong>energy</strong><br />

70000<br />

Temperature [K]<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

2<br />

5<br />

10<br />

20<br />

40<br />

100<br />

150<br />

Full CR<br />

10000<br />

0<br />

0<br />

2×10 -6 4×10 -6 6×10 -6 8×10 -6 10×10 -6<br />

Time [s]<br />

Without predissociation reactions<br />

Free stream: T 1 = 300 K, p 1 = 13 Pa, u 1 = 10 km/s, x N1 ∼ 2.8%, 10 −5 s ↔ 2.5 cm<br />

⇒ The uniform distribution allows to describe accurately the <strong>internal</strong><br />

<strong>energy</strong> relaxation <strong>and</strong> dissociation processes for ∼20 bins<br />

A M-B distribution is being investigated for CFD applications<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 15 / 18


Conclusion <strong>and</strong> further development<br />

Conclusion<br />

A 1D rovibrational collisional model was developed to describe the<br />

<strong>internal</strong> <strong>energy</strong> relaxation <strong>and</strong> dissociation processes behind a strong<br />

shockwave in a nitrogen flow<br />

The 9390 rovibrational <strong>energy</strong> levels of the nitrogen molecule of the ab<br />

initio NASA Ames database are taken into account in the master eq.<br />

Thermalization <strong>and</strong> dissociation occur after a larger distance for the full<br />

collisional model than for the multitemperature model <strong>and</strong> vibrational<br />

collisional model (distinct rotational temperatures per vibrational level)<br />

The uniform distribution bin model allows to describe accurately the<br />

<strong>internal</strong> <strong>energy</strong> relaxation <strong>and</strong> dissociation processes based on a<br />

reduced number of eqs.<br />

Further development<br />

Lessons learned will allow to investigate the N 2 (v, J) + N 2 (v ′ , J ′ )<br />

system (AIAA 2010-4517)<br />

A coarse graining model based on a M-B distribution of the levels<br />

within a bin is being developed for CFD applications (AIAA 2010-4332)<br />

A sound Chapman-Enskog method is being derived for<br />

multitemperature models [ESA WG, D. Giordano]<br />

Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 16 / 18


Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 17 / 18


Prof. Capitelli’s symposium (U Bari) <strong>Rovibrational</strong> collisional model 31 Jan – 1 Feb 2011 18 / 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!