Polymer surface modification by plasmas and photons

Polymer surface modification by plasmas and photons Polymer surface modification by plasmas and photons

lic.vnu.edu.vn
from lic.vnu.edu.vn More from this publisher
18.11.2012 Views

Polymer surface modification by plasmas and photons Chan C.-M., Ko T.-M., Hiraoka H. Department of Chemical Engineering, Hong Kong Univ. of Sci. and Technol., Clear Water Bay, Kowloon, Hong Kong; Department of Chemistry, Hong Kong Univ. of Sci. and Technol., Clear Water Bay, Kowloon, Hong Kong Abstract: Polymers have been applied successfully in fields such as adhesion, biomaterials, protective coatings, friction and wear, composites, microelectronic devices, and thin-film technology. In general, special surface properties with regard to chemical composition, hydrophilicity, roughness, crystallinity, conductivity, lubricity, and cross-linking density are required for the success of these applications. Polymers very often do not possess the surface properties needed for these applications. However, they have excellent bulk physical and chemical properties, are inexpensive, and are easy to process. For these reasons, surface modification techniques which can transform these inexpensive materials into highly valuable finished products have become an important part of the plastics and many other industries. In recent years, many advances have been made in developing surface treatments to alter the chemical and physical properties of polymer surfaces without affecting bulk properties. Common surface modification techniques include treatments by flame, corona, plasmas, photons, electron beams, ion beams, X-rays, and γ-rays. Plasma treatment is probably the most versatile surface treatment technique. Different types of gases such as argon, oxygen, nitrogen, fluorine, carbon dioxide, and water can produce the unique surface properties required by various applications. For example, oxygen-plasma treatment can increase the surface energy of polymers, whereas fluorine-plasma treatment can decrease the surface energy and improve the chemical inertness. Cross-linking at a polymer surface can be introduced by an inert-gas plasma. Modification by plasma treatment is usually confined to the top several hundred ångstro̊ms and does not affect the bulk properties. The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of operation. Thin polymer films with unique chemical and physical properties are produced by plasma polymerization. This technology is still in its infancy, and the plasma chemical process is not fully understood. The films are prepared by vapor phase deposition and can be formed on practically any substrate with good adhesion between the film and the substrate. These films, which are usually highly cross-linked and pinhole-free, have very good barrier properties. Such films find great potential in biomaterial applications and in the microelectronics industry. Very high-power microwave-driven mercury lamps are available, and they are used in UV-hardening of photoresist patterns for image stabilization at high temperatures. Other applications of UV irradiation include surface photo-oxidation, increase of hydrophilicity, and photocuring of paintings. Pulsed UV-lasers are used in surface modification in many areas. Pulsed UV-laser irradiation can produce submicron periodic linear and dot patterns on polymer surfaces without photomask. These interference patterns can be used to increase surface roughness of inert polymers for improved adhesion. These images can also be transferred to silicon surfaces by reactive ion etching. Pulsed laser beams can be applied to inert polymer surfaces for increased hydrophilicity and wettability. Polymer surfaces treated by pulsed UV-laser irradiation can be positively or negatively charged to enhance chemical reactivity and processability. Pulsed UV-laser exposures with high fluence give rise to

<strong>Polymer</strong> <strong>surface</strong> <strong>modification</strong> <strong>by</strong> <strong>plasmas</strong> <strong>and</strong> <strong>photons</strong><br />

Chan C.-M., Ko T.-M., Hiraoka H.<br />

Department of Chemical Engineering, Hong Kong Univ. of Sci. <strong>and</strong> Technol., Clear Water Bay, Kowloon,<br />

Hong Kong; Department of Chemistry, Hong Kong Univ. of Sci. <strong>and</strong> Technol., Clear Water Bay, Kowloon,<br />

Hong Kong<br />

Abstract: <strong>Polymer</strong>s have been applied successfully in fields such as adhesion, biomaterials, protective<br />

coatings, friction <strong>and</strong> wear, composites, microelectronic devices, <strong>and</strong> thin-film technology. In general,<br />

special <strong>surface</strong> properties with regard to chemical composition, hydrophilicity, roughness, crystallinity,<br />

conductivity, lubricity, <strong>and</strong> cross-linking density are required for the success of these applications. <strong>Polymer</strong>s<br />

very often do not possess the <strong>surface</strong> properties needed for these applications. However, they have excellent<br />

bulk physical <strong>and</strong> chemical properties, are inexpensive, <strong>and</strong> are easy to process. For these reasons, <strong>surface</strong><br />

<strong>modification</strong> techniques which can transform these inexpensive materials into highly valuable finished<br />

products have become an important part of the plastics <strong>and</strong> many other industries. In recent years, many<br />

advances have been made in developing <strong>surface</strong> treatments to alter the chemical <strong>and</strong> physical properties of<br />

polymer <strong>surface</strong>s without affecting bulk properties. Common <strong>surface</strong> <strong>modification</strong> techniques include<br />

treatments <strong>by</strong> flame, corona, <strong>plasmas</strong>, <strong>photons</strong>, electron beams, ion beams, X-rays, <strong>and</strong> γ-rays. Plasma<br />

treatment is probably the most versatile <strong>surface</strong> treatment technique. Different types of gases such as argon,<br />

oxygen, nitrogen, fluorine, carbon dioxide, <strong>and</strong> water can produce the unique <strong>surface</strong> properties required <strong>by</strong><br />

various applications. For example, oxygen-plasma treatment can increase the <strong>surface</strong> energy of polymers,<br />

whereas fluorine-plasma treatment can decrease the <strong>surface</strong> energy <strong>and</strong> improve the chemical inertness.<br />

Cross-linking at a polymer <strong>surface</strong> can be introduced <strong>by</strong> an inert-gas plasma. Modification <strong>by</strong> plasma<br />

treatment is usually confined to the top several hundred ångstro̊ms <strong>and</strong> does not affect the bulk properties.<br />

The main disadvantage of this technique is that it requires a vacuum system, which increases the cost of<br />

operation. Thin polymer films with unique chemical <strong>and</strong> physical properties are produced <strong>by</strong> plasma<br />

polymerization. This technology is still in its infancy, <strong>and</strong> the plasma chemical process is not fully<br />

understood. The films are prepared <strong>by</strong> vapor phase deposition <strong>and</strong> can be formed on practically any<br />

substrate with good adhesion between the film <strong>and</strong> the substrate. These films, which are usually highly<br />

cross-linked <strong>and</strong> pinhole-free, have very good barrier properties. Such films find great potential in<br />

biomaterial applications <strong>and</strong> in the microelectronics industry. Very high-power microwave-driven mercury<br />

lamps are available, <strong>and</strong> they are used in UV-hardening of photoresist patterns for image stabilization at<br />

high temperatures. Other applications of UV irradiation include <strong>surface</strong> photo-oxidation, increase of<br />

hydrophilicity, <strong>and</strong> photocuring of paintings. Pulsed UV-lasers are used in <strong>surface</strong> <strong>modification</strong> in many<br />

areas. Pulsed UV-laser irradiation can produce submicron periodic linear <strong>and</strong> dot patterns on polymer<br />

<strong>surface</strong>s without photomask. These interference patterns can be used to increase <strong>surface</strong> roughness of inert<br />

polymers for improved adhesion. These images can also be transferred to silicon <strong>surface</strong>s <strong>by</strong> reactive ion<br />

etching. Pulsed laser beams can be applied to inert polymer <strong>surface</strong>s for increased hydrophilicity <strong>and</strong><br />

wettability. <strong>Polymer</strong> <strong>surface</strong>s treated <strong>by</strong> pulsed UV-laser irradiation can be positively or negatively charged<br />

to enhance chemical reactivity <strong>and</strong> processability. Pulsed UV-laser exposures with high fluence give rise to


photoablation with a clean wall profile. There are many other practical applications of laser photoablation,<br />

including via-hole fabrication, <strong>and</strong> diamond-film deposition. The present review discusses all these current<br />

applications, especially in the biomedical <strong>and</strong> microelectronics areas.<br />

Index Keywords: Biomaterials; Crosslinking; Laser ablation; Microelectronics; Oxygen; Photons; Plasma<br />

applications; <strong>Polymer</strong>ization; Surface treatment; Thin films; Ultraviolet radiation; Vapor deposition; Oxygen<br />

plasma treatment; Plasma polymerization; Plasma treatment; Pulsed ultraviolet laser irradiation; Plastic films<br />

Year: 1996<br />

Source title: Surface Science Reports<br />

Volume: 24<br />

Issue: 2-Jan<br />

Page : 1-54<br />

Cited <strong>by</strong>: 368<br />

Link: Scorpus Link<br />

Correspondence Address: Chan, C.-M.; Department of Chemical Engineering, Hong Kong Univ. of Sci. <strong>and</strong><br />

Technol., Clear Water Bay, Kowloon, Hong Kong<br />

Document Type: Article<br />

Source: Scopus<br />

Authors with affiliations:<br />

1. Chan, C.-M., Department of Chemical Engineering, Hong Kong Univ. of Sci. <strong>and</strong> Technol., Clear Water Bay, Kowloon, Hong<br />

2.<br />

3.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

15.<br />

16.<br />

Kong<br />

Ko, T.-M., Department of Chemical Engineering, Hong Kong Univ. of Sci. <strong>and</strong> Technol., Clear Water Bay, Kowloon, Hong<br />

Kong<br />

Hiraoka, H., Department of Chemistry, Hong Kong Univ. of Sci. <strong>and</strong> Technol., Clear Water Bay, Kowloon, Hong Kong<br />

References:<br />

Corn, S., Vora, K.P., Strobel, M., Lyons, C.S., (1991) J. Adhes. Sci. Technol., 5, p. 239<br />

Inoue, H., Matsumoto, A., Matsukawa, K., Ueda, A., Nagai, S., (1990) J. Appl. Polym. Sci., 41, p. 1815<br />

Fakes, D.W., Davies, M.C., Brown, A., Newton, J.M., (1988) Surf. Interf. Sci., 13, p. 233<br />

Foerch, R., McIntyre, N.S., Sodhi, R.N.S., Hunter, D.H., (1990) J. Appl. Polym. Sci., 40, p. 1903<br />

Inagaki, N., Tasaka, S., Kawai, H., Kimura, Y., (1990) J. Adhes. Sci. Technol., 4, p. 99<br />

Yasuda, H., Marsh, H.C., Br<strong>and</strong>t, S., Reilley, C.N., (1977) J. Polym. Sci. Polym. Chem. Ed., 15, p. 991<br />

Foerch, R., McIntyre, N.S., Hunter, D.H., (1990) J. Polym. Sci. A, 28, p. 803<br />

Reneker, D.H., Bolz, L.H., (1976) J. Macromol. Sci.-Chem. A, 10, p. 599<br />

Clark, D.T., Feast, W.J., Musgrave, W.K.R., Ritchie, I., (1975) J. Polym. Sci. Polym. Chem. Ed., 13, p. 857<br />

Lub, J., Van Vroonhoven, F.C.B.M., Bruninx, E., Benninghoven, A., (1989) <strong>Polymer</strong>, 30, p. 35<br />

Nakayama, Y., Takahagi, T., Soeda, F., Hatada, K., Nagaoka, S., Suzuki, J., Ishitani, A., (1988) J. Polym. Sci. A, 26, p. 559<br />

Occhiello, E., Morra, M., Morini, G., Garbassi, F., Johnson, D., (1991) J. Appl. Polym. Sci., 42, p. 2045<br />

Morra, M., Occhiello, E., Garbassi, F., (1989) J. Coll. Interf. Sci., 132, p. 504<br />

Chappel, P.J.C., Brown, J.R., George, G.A., Willis, H.A., (1991) Surf. Interf. Anal., 17, p. 143<br />

Sowell, R.R., Delollis, N.J., Gregory, H.J., Montoya, O., (1972) J. Adhes., 4, p. 15<br />

Loh, I.H., Klausner, M., Baddour, R.F., Cohen, R.E., (1987) Polym. Eng. Sci., 27, p. 861


17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

29.<br />

30.<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

37.<br />

38.<br />

39.<br />

40.<br />

41.<br />

42.<br />

43.<br />

44.<br />

45.<br />

46.<br />

47.<br />

48.<br />

49.<br />

50.<br />

51.<br />

52.<br />

53.<br />

54.<br />

55.<br />

56.<br />

Brinen, J.S., Greenhouse, S., Pinatti, L., (1991) Surf. Interf. Anal., 17, p. 63<br />

Occhiello, E., Garbassi, F., (1988) <strong>Polymer</strong>, 29, p. 2277<br />

Evans, J.R.G., Bulpett, R., Ghezel, M., (1987) J. Adhes. Sci. Technol., 1, p. 291<br />

Munro, H.S., McBriar, D.I., (1988) J. Coat. Technol., 60, p. 41<br />

Collins, G.C.S., Lowe, A.C., Nicholas, D., (1973) Eur. Polym. J., 9, p. 1173<br />

Clark, D.T., Button, D.R., (1987) J. Polym. Sci. A, 25, p. 2643<br />

Inagaki, N., Tasaka, S., Kawai, H., (1989) J. Adhes. Sci. Technol., 3, p. 637<br />

Morra, M., Occhiello, E., Garbassi, F., (1990) Surf. Interf. Anal., 16, p. 412<br />

Clark, D.T., Dilks, A., (1978) J. Polym. Sci. Polym. Chem. Ed., 16, p. 911<br />

Pratt, K.J., Williams, S.K., Jarrell, B.E., (1989) J. Biomed. Mater. Res., 23, p. 1131<br />

Katnani, A.D., Knoll, A., Mycek, M.A., (1989) J. Adhes. Sci. Technol., 3, p. 441<br />

Lub, J., Vroonhoven, F.C.B.M., Benninghoven, A., (1989) J. Polym. Sci. A, 27, p. 4035<br />

Niehuis, E., Van Velzen, P.N.T., Lub, J., Heller, T., Benninghoven, A., (1989) Surf. Interf. Anal., 14, p. 135<br />

Morra, M., Occhiello, E., Marola, R., Garbassi, F., Humphrey, P., Johnson, D., (1990) J. Coll. Interf. Sci., 137, p. 11<br />

Clark, D.T., Dilks, A., (1979) J. Polym. Sci. Polym. Chem. Ed., 17, p. 957<br />

Iriyama, Y., Yasuda, H., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 97<br />

Momose, Y., Takada, T., Okazaki, S., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 49<br />

Hollahan, J.R., Stafford, B.B., Falb, R.D., Payne, S.T., (1969) J. Appl. Polym. Sci., 13, p. 807<br />

Marchant, R.E., Chou, C.J., Khoo, C., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 125<br />

Yasuda, T., Okuno, T., Yoshida, K., (1988) J. Polym. Sci. Polym. Phys., 26, p. 1781<br />

Giroux, T.A., Cooper, S.L., (1991) J. Appl. Polym. Sci., 43, p. 145<br />

Brennan, W.J., Feast, W.J., Munro, H.S., Walker, S.A., (1991) <strong>Polymer</strong>, 32, p. 1527<br />

Asfardjani, K., Segui, Y., Aurelle, Y., Abidine, N., (1991) J. Appl. Polym. Sci., 43, p. 271<br />

Yagi, T., Pavlath, A.E., Pittman, A.G., (1982) J. Appl. Polym. Sci., 27, p. 4019<br />

Strobel, M., Corn, S., Lyons, C.S., Korba, G.A., (1985) J. Polym. Sci. Polym. Chem. Ed., 23, p. 1325<br />

Matienzo, L.J., Emmi, F., Egitto, F.D., Van Hart, D.C., Vukanovic, V., Takacs, G.A., (1988) J. Vac. Sci. Technol. A, 6, p.<br />

950<br />

Grant, J.L., Dunn, D.S., McClure, D.J., (1988) J. Vac. Sci. Technol. A, 6, p. 2213<br />

Lai, J.Y., Chou, C.C., (1989) J. Appl. Polym. Sci., 37, p. 1465<br />

Tanigawa, S., Ishikawa, M., Nakamae, K., (1991) J. Adhes. Sci. Technol., 5, p. 543<br />

Foerch, R., Izawa, J., Spears, G., (1991) J. Adhes. Sci. Technol., 5, p. 549<br />

Hsieh, Y.-L., Timm, D.A., Wu, M., (1989) J. Appl. Polym. Sci., 38, p. 1719<br />

Yasuda, H., Lamaze, C.E., Sakaoku, K., (1973) J. Appl. Polym. Sci., 17, p. 137<br />

Egitto, F.D., (1990) Pure Appl. Chem., 62, p. 1699<br />

Schonhorn, H., Hansen, R.H., (1967) J. Appl. Polym. Sci., 11, p. 1461<br />

Clark, D.T., Dilks, A., (1977) J. Appl. Polym. Sci. Polym. Sci., 15, p. 2321<br />

Hirotsu, T., Ohnishi, S., (1980) J. Adhes., 11, p. 57<br />

D'Agostino, R., Cramarossa, F., Colaprico, V., D'Ettole, R., (1983) J. Appl. Phys., 54, p. 1284<br />

Wertheimer, M.R., Schreiber, H.P., (1981) J. Appl. Polym. Sci., 26, p. 2087<br />

Moshonov, A., Avny, Y., (1980) J. Appl. Polym. Sci., 25, p. 771<br />

Inagaki, N., Itami, M., Katsuura, K., (1982) Int. J. Adhes. Adhesives, 2, p. 169


57.<br />

58.<br />

59.<br />

60.<br />

61.<br />

62.<br />

63.<br />

64.<br />

65.<br />

66.<br />

67.<br />

68.<br />

69.<br />

70.<br />

71.<br />

72.<br />

73.<br />

74.<br />

75.<br />

76.<br />

77.<br />

78.<br />

79.<br />

80.<br />

81.<br />

82.<br />

83.<br />

84.<br />

85.<br />

86.<br />

87.<br />

88.<br />

89.<br />

90.<br />

91.<br />

92.<br />

93.<br />

94.<br />

95.<br />

96.<br />

Chen, K.S., Inagaki, N., Katsuura, K., (1982) J. Appl. Polym. Sci., 27, p. 4655<br />

Inagaki, N., Ohnishi, Y., Chen, K.S., (1983) J. Appl. Polym. Sci., 28, p. 3629<br />

Cho, D.L., Yasuda, H., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 139<br />

Ho, C.-P., Yasuda, H., (1990) J. Appl. Polym. Sci., 39, p. 1541<br />

Urrutia, M.S., Schreiber, H.P., Wertheimer, M.R., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 305<br />

Ho, C.-P., Yasuda, H., (1988) J. Bio Mater. Res., 22, p. 919<br />

Ertel, S.I., Ratner, B.D., Horbett, T.A., (1990) J. Bio Mater. Res., 24, p. 1637<br />

Yen, Y.-S., Iriyama, Y., Matsuzawa, Y., Hanson, S.R., Yasuda, H., (1988) J. Bio Mater. Res., 22, p. 795<br />

Clark, D.T., Shuttleworth, D., (1980) J. Polym. Sci. Polym. Chem. Ed., 18, p. 27<br />

Clark, D.T., Shuttleworth, D., (1979) J. Polym. Sci. Polym. Chem. Ed., 17, p. 1317<br />

Cho, D.L., Claesson, P.M., Col<strong>and</strong>er, C.-G., Johansson, K., (1990) J. Appl. Polym. Sci., 41, p. 1373<br />

Nakajima, K., Bell, A.T., Shen, M., Millard, M.M., (1979) J. Appl. Polym. Sci., 23, p. 2627<br />

Yasuda, H., Hsu, T.S., Br<strong>and</strong>t, E.S., Reilley, C.N., (1978) J. Polym. Sci. Polym. Chem. Ed., 16, p. 415<br />

Wang, D., Chen, J., (1991) J. Appl. Polym. Sci., 42, p. 233<br />

Laoharojanph<strong>and</strong>, P., Lin, J.T., Stoffer, J.O., (1990) J. Appl. Polym. Sci., 40, p. 369<br />

Hasirci, N., (1987) J. Appl. Polym. Sci., 34, p. 1135<br />

Inagaki, N., Kondo, S., Hirata, M., Urushibata, H., (1985) J. Appl. Polym. Sci., 30, p. 3385<br />

Morita, S., Hattori, S., (1985) Pure Appl. Chem., 57, p. 1277<br />

Yasuda, H., (1985) Plasma <strong>Polymer</strong>ization, , Academic Press, New York<br />

Shen, M., Bell, A.T., (1979) Plasma <strong>Polymer</strong>ization, ACS Symp. Ser., 108<br />

Thompson, L.F., Mayhan, K.G., (1972) J. Appl. Polym. Sci., 16, p. 2317<br />

Thompson, L.F., Mayhan, K.G., (1972) J. Appl. Polym. Sci., 16, p. 2291<br />

Yasuda, H., Hirotsu, T., (1978) J. Polym. Sci. Polym. Chem. Ed., 16, p. 313<br />

Yasuda, H., Hirotsu, T., (1978) J. Polym. Sci. Polym. Chem. Ed., 16, p. 2587<br />

Ohkubo, J., Inagaki, N., (1990) J. Appl. Polym. Sci., 41, p. 349<br />

Morita, S., Bell, A.T., Shen, M., (1979) J. Polym. Sci. Chem. Ed., 17, p. 2775<br />

Donohoe, K.G., Wydeven, T., (1979) J. Appl. Polym. Sci., 23, p. 2591<br />

Yasuda, H., Hirotsu, T., (1977) J. Appl. Polym., 21, p. 3167<br />

Yasuda, H., Hirotsu, T., (1977) J. Appl. Polym., 21, p. 3139<br />

Bradley, A., Czuha M., Jr., (1975) Anal. Chem., 47, p. 1838<br />

Epaillard, F., Broose, J.C., Legeary, G., (1989) J. Appl. Polym. Sci., 38, p. 887<br />

Simionescu, B.C., Leanca, M., Loan, S., Simionescu, C.I., (1981) Polym. Bull., 4, p. 415<br />

Knickmeyer, W.W., Peace, B.W., Mayhan, K.G., (1974) J. Appl. Polym. Sci., 18, p. 301<br />

Yasuda, T., Yoshida, K., Okuno, T., Yasuda, H., (1988) J. Polym. Sci. B, 26, p. 2061<br />

Yasuda, H.K., Yeh, Y.S., Fusselman, S., (1990) Pure Appl. Chem., 63, p. 1689<br />

D'Agostino, R., Cramarossa, F., Fracassi, F., (1990) Plasma Deposition, Treatment, <strong>and</strong> Etching of <strong>Polymer</strong>s, pp. 95-162. ,<br />

Ed. R. d'Agostino Academic Press, New York<br />

Hansen, R.H., Schonhorn, H., (1966) J. Polym. Sci. B, 4, p. 203<br />

Schonhorn, H., Hansen, R.H., (1967) J. Appl. Polym. Sci., 11, p. 1461<br />

Sheu, M.S., Hoffman, A.S., Feijen, J., (1992) J. Adhes. Sci. Technol., 6, p. 995<br />

Terlingen, J.G.A., Feijen, J., Huffman, A.S., (1993) J. Coll. Interf. Sci., 155, p. 55


97.<br />

98.<br />

99.<br />

100.<br />

101.<br />

102.<br />

103.<br />

104.<br />

105.<br />

106.<br />

107.<br />

108.<br />

109.<br />

110.<br />

111.<br />

112.<br />

113.<br />

114.<br />

115.<br />

116.<br />

117.<br />

118.<br />

119.<br />

120.<br />

121.<br />

122.<br />

123.<br />

124.<br />

125.<br />

126.<br />

127.<br />

128.<br />

129.<br />

130.<br />

131.<br />

132.<br />

Vargo, T.G., Gardella J.A., Jr., Salvati L., Jr., (1989) J. Polym. Sci. A, 27, p. 1267<br />

Lee, J.H., Park, J.W., Lee, H.B., (1991) Biomaterials, 12, p. 443<br />

Hettlich, H.-J., Otterbach, F., Mittermayer, Ch., Kaufmann, R., Klee, D., (1991) Biomaterials, 12, p. 521<br />

Ishikawa, Y., Sasakawa, S., Takase, M., Iriyama, Y., Osada, Y., (1985) Makromol. Chem. Rapid Commun., 6, p. 495<br />

Ko, T.-M., Cooper, S.L., (1993) J. Appl. Polym. Sci., 47, p. 1601<br />

Ko, T.-M., Lin, J.-C., Cooper, S.L., (1993) J. Coll. Interf. Sci., 156, p. 207<br />

Ko, T.-M., Lin, J.-C., Cooper, S.L., (1993) Biomaterials, 14, p. 657<br />

Ko, T.-M., Cooper, S.L., (1994) Frontiers of <strong>Polymer</strong>s <strong>and</strong> Advanced Materials, p. 439. , Ed. P.N. Prasad Plenum, New<br />

York<br />

Petrat, F.M., Wolany, D., Schwede, B.C., Wiedmann, L., Benninghoven, A., (1994) Surf. Interf. Sci., 21, p. 274<br />

Chan, C.-M., (1994) <strong>Polymer</strong> Surface Modification <strong>and</strong> Characterization, , Hanser, New York<br />

Lub, J., Van Vroonhoven, F.C.B.M., Bruninx, E., Benninghoven, A., (1989) <strong>Polymer</strong>, 30, p. 40<br />

Sipehia, R., Chawla, A.S., (1982) Biomater. Med. Devices Artificial Organs, 10, p. 229<br />

Sipehia, R., Chawla, A.S., Chang, T.M.S., (1986) Biomaterials, 7, p. 471<br />

Hoffman, A.S., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 251<br />

Sipehia, R., Chawla, A.S., Daka, J., Chang, T.M.S., (1988) J. Bio. Mater. Res., 22, p. 417<br />

Kawakami, M., Koya, H., Gondo, S., (1988) Biotechnol. Bioeng., 32, p. 369<br />

Tran, C.N.B., Walt, D.R., (1989) J. Coll. Interf. Sci., 132, p. 373<br />

Ko, T.-M., (1991) Surface Characterization <strong>and</strong> Platelet Adhesion Studies of Plasma Treated Polyethylene, , PhD<br />

Dissertation, University of Wisconsin-Madison<br />

Strobel, M., Corn, S., Lyons, C.S., Korba, G.A., (1987) J. Polym. Sci. A, 25, p. 1295<br />

Strobel, M., Thomas, P.A., Lyons, C.S., (1987) J. Polym. Sci. A, 25, p. 3343<br />

Coburn, J.W., Kay, E., (1979) IBM J. Res. Dev., 23, p. 33<br />

D'Agostino, R., Cramarossa, F., De Benedictis, S., (1982) Plasma Chem. Plasma Processing, 2, p. 213<br />

Occhiello, E., Garbassi, F., Coburn, J.W., (1989) J. Phys. D, 22, p. 983<br />

Demura, M., Takekawa, T., Asakura, T., Nishikawa, A., (1992) Biomaterials, 13, p. 276<br />

Sterrett, T.L., Sachdeva, R., Jerabek, P., (1992) J. Mater. Sci. Mater. Med., 3, p. 402<br />

Yao, Y., Liu, X., Zhu, Y., (1993) J. Adhes. Sci. Technol., 7, p. 63<br />

Gerenser, L.J., (1993) J. Adhes. Sci. Technol., 7, p. 10<br />

Ho, C.-P., Yasuda, H., (1988) J. Bio. Mater. Res., 22, p. 919<br />

Yamagishi, F.G., Granger, D.D., Schmitz, A.E., Miller, L.J., (1981) Thin Solid Films, 84, p. 427<br />

Yamagishi, F.G., (1991) Thin Solid Films, 202, p. 39<br />

Kiaei, D., Safranj, A., Chen, J.P., Johnston, A.B., Zavala, F., Deelder, A., Castelino, J.B., Hoffman, A.S., (1992) Rad. Phys.<br />

Chem., 39, p. 463<br />

Kiaei, D., Hoffman, A.S., Horbett, T.A., (1992) J. Bio. Sci. Polym. Ed., 4, p. 35<br />

Garfinkle, A.M., Hoffman, A.S., Ratner, B.D., Reynolds, L.O., Hanson, S.R., (1984) Trans. Am. Soc. Artificial Internal<br />

Organs, 30, p. 432<br />

Yeh, Y.-S., Iriyama, Y., Matsuzawa, Y., Hanson, S.R., Yasuda, H., (1988) J. Biomed. Mater. Res., 22, p. 795<br />

Van Der Laan, J.S., Lopez, G.P., Van Wachem, P.B., Nieuwenhuis, P., Ratner, B.D., Bleichrodt, R.P., Schakenraad, J.M.,<br />

(1991) Int. J. Artificial Organs, 14, p. 661<br />

Yeh, Y.-S., Yasuda, H., (1986) J. Polym. Sci. A, 24, p. 3233


133.<br />

134.<br />

135.<br />

136.<br />

137.<br />

138.<br />

139.<br />

140.<br />

141.<br />

142.<br />

143.<br />

144.<br />

145.<br />

146.<br />

147.<br />

148.<br />

149.<br />

150.<br />

151.<br />

152.<br />

153.<br />

154.<br />

155.<br />

156.<br />

157.<br />

158.<br />

159.<br />

160.<br />

161.<br />

162.<br />

163.<br />

164.<br />

165.<br />

166.<br />

167.<br />

168.<br />

169.<br />

Hasirci, N., (1987) J. Appl. Polym. Sci., 34, p. 1135<br />

Hasirci, N., (1987) J. Appl. Polym. Sci., 34, p. 2457<br />

Vargo, T.G., Gardella J.A., Jr., (1988) Polym. Prep., 2, p. 303<br />

Ishikawa, Y., Sasakawa, S., Takase, M., Iriyama, Y., Osada, Y., (1985) Makromol. Chem. Rapid Commun., 6, p. 495<br />

Bieg, K.W., Wischmann, K.B., (1980) Sol. Energy Mater., 3, p. 301<br />

Inagaki, N., Hirao, H., (1987) J. Polym. Sci. A, 25, p. 1803<br />

Thompson, L.F., Smolinsky, G., (1972) J. Appl. Polym. Sci., 16, p. 1179<br />

Gombotz, W.R., Hoffman, A.S., (1988) J. Appl. Polym. Sci. Appl. Polym. Symp., 42, p. 285<br />

Muratsugu, M., Kurosawa, S., Kamo, N., (1991) J. Coll. Interf. Sci., 147, p. 378<br />

Mutlu, M., Mutlu, S., Rosenberg, M.F., Kane, J., Jones, M.N., Vadgama, P., (1991) J. Mater. Chem., 1, p. 447<br />

Inagaki, N., Hashimoto, Y., (1986) J. Polym. Sci. C, 24, p. 447<br />

Inagaki, N., Hashimoto, Y., (1984) Polym. Bull., 12, p. 437<br />

Osada, Y., Yamada, K., (1987) Thin Solid Films, 151, p. 71<br />

Suhr, H., Etspüler, A., Feurer, E., Oehr, C., (1988) Plasma Chem. Plasma Processing, 8, p. 9<br />

Liepins, R., Campbell, M., Clements, J.S., Hammond, J., Fries, R.J., (1981) J. Vac. Sci. Technol., 18, p. 1218<br />

Dautartas, M.F., Bowden, B.F., Evans, J.F., (1987) J. Electroanal. Chem. Interf. Electrochem., 219, p. 71<br />

Munro, H.S., Eaves, J.G., (1987) Polym. Commun., 28, p. 339<br />

Clark, D.T., Dilks, A., Shuttleworth, D., (1978) <strong>Polymer</strong> Surfaces, p. 185. , Eds. D.T. Clark <strong>and</strong> W.J. Feast Wiley, New<br />

York<br />

Yasuda, H., Hirotsu, T., Olf, H.G., (1977) J. Appl. Polym. Sci., 21, p. 3179<br />

Pitts, J., Culert, J., (1964) Photochemistry, pp. 686-722. , Wiley, New York<br />

Birch, A.D., Matthews, J.C., (1983) Microelectron. Manuf. Test, 6, p. 20<br />

Ury, M.G., Matthews, J.C., Wood, C.H., (1983) Optical Microlithography, 344, p. 241. , Ed. H.L. Stover, Proc. SPIE<br />

(1994) Announcement of Dielectric Barrier Discharge Excimer Lamps, , UER20-172, UER20-222, UER20-308 <strong>by</strong> Ushio<br />

Electric, Tokyo, Japan<br />

Geuskens, G., Baeyens-Volant, D., Delaunois, G., Lu-Vinh, Q., Piret, W., David, C., (1978) J. Eur. Polym., 14, p. 291<br />

Hiraoka, H., Welsh L.W., Jr., (1984) Proc. 10th Int. Conf. on Electron, <strong>and</strong> Ion Beam Science & Technology, 2-83, pp.<br />

171-178. , The Electrochem. Soc., Washington, DC<br />

Hiraoka, H., (1989) Photochemistry on Solid Surfaces, pp. 448-468. , Eds. M. Anpo <strong>and</strong> T. Matsuura Elsevier, Amsterdam<br />

Hiraoka, H., Pacansky, J., (1981) J. Electrochem. Soc., 128, p. 2645<br />

(1981) J. Vac. Sci. Technol., 19, p. 1132<br />

Knop, A., Scheib, W., (1979) Chemistry <strong>and</strong> Applications of Phenolic Resins, , Springer, New York<br />

Spiertz, E., Vollenbroek, F., (1984) Microcircuit Eng., 68, p. 1<br />

Ma, W.H.-L., US Patent No. 4,187,331<br />

Submicron Lithography, Ed. P.D. Blais, Proc. SPIE 333 (1983) 20Hiraoka, H., Krishnaswamy, J., Collins, G., (1987)<br />

172nd Meeting of the Electrochem. Soc., , Oct. 19<br />

Hiraoka, H., (1987) Microcircuit Eng., 6, p. 407<br />

Griffing, B.F., West, P.R., (1983) Proc. SPIE, 394, p. 33<br />

Strom, D.R., (1986) Semicond. Int., , May<br />

Hatzakis, M., Canavello, B., Shaw, J., (1980) Microcircuit Eng. Proc., Amsterdam, pp. 439-452<br />

Moritz, H., Paal, G., US Patent No. 4,104,070 (1978)Ailing, E., Stauffer, C., (1985) Proc. SPIE, 539, p. 194


170.<br />

171.<br />

172.<br />

173.<br />

174.<br />

175.<br />

176.<br />

177.<br />

178.<br />

179.<br />

180.<br />

181.<br />

182.<br />

183.<br />

184.<br />

185.<br />

186.<br />

187.<br />

188.<br />

189.<br />

190.<br />

191.<br />

192.<br />

193.<br />

194.<br />

195.<br />

196.<br />

197.<br />

198.<br />

199.<br />

200.<br />

Vollenbroek, F.A., Spiertz, E.J., Kroon, H.J.J., (1983) Polym. Eng. Sci., 23, p. 925<br />

MacDonald, S.A., Ito, H., Hiraoka, H., Willson, G.G., (1985) Technical Papers on Photopolymers, Principles, Processes<br />

<strong>and</strong> Materials, Reg. Tech. Conf., Mid-hudson Sec., p. 177. , Plastic Eng., New York<br />

Rol<strong>and</strong>, B., Lombaerts, R., Jakus, C., Coopmans, F., (1987) Proc. SPIE, 771, p. 69<br />

Hiraoka, H., Patlach, A., Wade, C., (1989) J. Vac. Sci. Technol. B, 7, p. 1760<br />

McColgin, W.C., Daly, R.C., Jech J., Jr., Brust, T.B., (1988) Proc. SPIE, 920, p. 260<br />

Shaw, J.M., Hatzakis, M., Babich, E.D., Paraszczak, J.R., Witman, D.F., Stewart, K.J., (1989) J. Vac. Sci. Technol. B, 7, p.<br />

1709<br />

Baik, K.-H., Goethals, A.M., Ronse, K., Van Den Hove, L., (1994) J. Photopolym. Sci. Technol., 7, p. 517<br />

Hiraoka, H., (1987) Proc. SPIE, 771, p. 174<br />

Hiraoka, H., (1987) Microelectron. Eng., 6, p. 407<br />

Ito, H., Willson, C.G., Frechet, J.M.J., (1982) A Sensitive Deep UV Resist System, SPE Regional Tech. Conf., , Ellenville,<br />

NY, Nov<br />

Huit, A., MacDonald, S.A., Willson, C.G., (1985) Macromolecules, 18, p. 1804<br />

Bolle, M., Lazare, S., (1993) J. Appl. Phys., 73, p. 3516. , papers cited herein<br />

Hiraoka, H., Sendova, M., (1994) Appl. Phys. Lett., 65, p. 563<br />

(1993) Jpn. J. Appl. Phys., 32, p. 6182<br />

(1994) Mater. Manuf. Processes, 9, p. 467<br />

Young, J.F., Preston, J.S., Van Uriel, H.M., Sipe, J.E., (1983) Phys. Rev. B, 27, p. 1155<br />

Hiraoka, H., Sendova, M., unpublished result<br />

this micrograph was taken from an area of 2X4 cm2Hiraoka, H., Sendova, M., Lee, C.H., (1994) Jpn. J. Appl. Phys., 33, p.<br />

7135<br />

Kumagai, H., Ezaki, M., Toyoda, K., Obara, M., (1993) J. Appl. Phys., 73, p. 1971<br />

Hiraoka, H., Lazare, S., Cros, A., Gustiniani, R., (1991) Mater. Res. Soc. Symp. Proc., 227, p. 329<br />

Niino, H., Yabe, A., (1992) Appl. Phys. Lett., 60, p. 2697<br />

Okoshi, M., Murahara, M., Toyoda, K., (1992) J. Mater. Res., 7, p. 1912<br />

Niino, H., Yabe, A., (1993) Appl. Phys. Lett., 63, p. 3527<br />

Lätsch, S., Hiraoka, H., Bargon, J., (1994) Mater. Res. Soc. Symp. Proc., 312, p. 239<br />

Hiraoka, H., (1989) Photochemistry in Solid Surfaces, , Eds. M. Anpo <strong>and</strong> T. Matsuura Elsevier, Amsterdam<br />

Chuang, T.J., Hiraoka, H., Mödi, A., (1988) Appl. Phys. A, 45, p. 277<br />

Fukumura, H., Mibuka, N., Eura, S., Masuhara, H., (1991) Appl. Phys. A, 53, p. 255<br />

Srinivasan, R., (1994) Microchemistry, p. 137. , Eds. H. Masuhara, F.C. De Schryver, N. Kitamura <strong>and</strong> N. Tamai North-<br />

Holl<strong>and</strong>, Amsterdam<br />

Niino, H., Yabe, A., Nagano, S., Miki, T., (1989) Appl. Phys. Lett., 54, p. 2159<br />

Niino, H., Nakano, M., Nagano, S., Yabe, A., Miki, T., (1989) Appl. Phys. Lett., 55, p. 510<br />

Bachmann, F., (1990) European Materials Research Society 1990 Strasbourg Spring Meeting, , E-IV-1, May 29 - June 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!