19.06.2015 Views

Reynolds average Navier-Stokes equation

Reynolds average Navier-Stokes equation

Reynolds average Navier-Stokes equation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lecture material – Environmental Hydraulic Simulation Page 66<br />

2.2.1.2.2 REYNOLDS AVERAGED NAVIER-STOKES EQUATIONS<br />

By hand of a time-averaging of the NS <strong>equation</strong>s and the continuity <strong>equation</strong> for incompressible<br />

fluids, the basic <strong>equation</strong>s for the <strong>average</strong>d turbulent flow will be derived in the following. The flow<br />

field can then be described only with help of the mean values.<br />

In order to be able to take a time-<strong>average</strong>, the momentary value is decomposed into the parts mean<br />

value and fluctuating value. This is shown graphically in Figure 2-17.<br />

Figure 2-17: Turbulent velocity fluctuation in pipe flow as a function of time, taken from<br />

[Fredsøe, 1990].<br />

The momentary velocity components is u , the time-<strong>average</strong>d value is named u and the fluctuating<br />

velocity has the letter u′ . With help of this definition the decomposition can mathematically be written<br />

as:<br />

u = u + u′<br />

, v = v + v′<br />

, w = w + w′<br />

, p = p + p′<br />

Eq. 2-135<br />

Analogously for the density and the temperature:<br />

ρ = ρ +ρ′ , T = T + T′<br />

, Eq. 2-136<br />

which will however be considered constant in the following.<br />

The chosen averaging method takes the mean values at a fix place in space and <strong>average</strong>d over a time<br />

span that is large enough for the mean values to be independent of it.<br />

t + t<br />

0 1<br />

1<br />

u =<br />

∆ ∫ u dt<br />

Eq. 2-137<br />

t<br />

t<br />

0<br />

The time-<strong>average</strong>d values of the fluctuating values are defined to be zero:<br />

u ′ = 0, v′=<br />

0, w′=<br />

0, p′<br />

= 0<br />

Eq. 2-138


Lecture material – Environmental Hydraulic Simulation Page 67<br />

Firstly the continuity <strong>equation</strong> is <strong>average</strong>d. If we substitute the expressions for the velocities from Eq.<br />

2-135 into the continuity <strong>equation</strong> (see Eq. 2-131) we get:<br />

∂u<br />

∂u′<br />

∂v<br />

∂v′<br />

∂w<br />

∂w′<br />

+ + + + + = 0<br />

∂x<br />

∂x<br />

∂y<br />

∂y<br />

∂z<br />

∂z<br />

Eq. 2-139<br />

The time-<strong>average</strong> of the last <strong>equation</strong> is written as:<br />

∂u<br />

∂u′<br />

∂v<br />

∂v′<br />

∂w<br />

∂w′<br />

+ + + + + = 0<br />

∂x<br />

∂x<br />

∂y<br />

∂y<br />

∂z<br />

∂z<br />

Eq. 2-140<br />

Before we look at the transformation and reduction of Eq. 2-140, a summary of rules for timeaveraging<br />

shall be given:<br />

∂u<br />

∂x<br />

=<br />

1<br />

∆t<br />

to<br />

+ t1<br />

∫<br />

t 0<br />

∂u<br />

dt =<br />

∂x<br />

1<br />

x ∆t<br />

∂<br />

∂<br />

to<br />

+ t1<br />

∫<br />

t0<br />

u dt =<br />

∂u<br />

∂x<br />

Eq. 2-141<br />

∂u′<br />

∂x<br />

=<br />

1<br />

∆t<br />

t o + t1<br />

∫<br />

t0<br />

∂u′<br />

dt =<br />

∂x<br />

∂<br />

∂<br />

1<br />

x ∆t<br />

t o + t1<br />

∫<br />

t0<br />

u′<br />

dt =<br />

0<br />

f<br />

∂f<br />

∂f<br />

= f , f + g = f + g , f ⋅ g = f ⋅ g , = , f ds =<br />

∂s<br />

∂s<br />

∫ ∫<br />

f<br />

ds<br />

Eq. 2-142<br />

but<br />

f<br />

⋅ g ≠<br />

f<br />

⋅ g<br />

The <strong>average</strong>d derivatives of the fluctuations are also zero according to these rules, so that the time<strong>average</strong>d<br />

continuity <strong>equation</strong> is:<br />

∂u<br />

∂v<br />

∂w<br />

+ + = 0<br />

∂x<br />

∂y<br />

∂z<br />

Eq. 2-143<br />

Now the NS <strong>equation</strong>s will be time-<strong>average</strong>d. The averaging will be exemplified for the x-component.<br />

Beforehand a small transformation of the advection term from Eq. 2-131:<br />

∂u<br />

∂u<br />

∂u<br />

∂<br />

u + v + w =<br />

∂x<br />

∂y<br />

∂z<br />

∂x<br />

∂<br />

=<br />

∂x<br />

2<br />

( u ) ∂( uv) ∂( uw)<br />

2<br />

( u ) ∂( uv) ∂( uw)<br />

+<br />

+<br />

∂y<br />

∂y<br />

+<br />

+<br />

∂z<br />

∂z<br />

⎛ ∂u<br />

∂v<br />

∂w<br />

⎞<br />

− u<br />

⎜ + +<br />

x y z<br />

⎟<br />

⎝ ∂ ∂ ∂<br />

<br />

<br />

⎠<br />

= 0<br />

Eq. 2-144


Lecture material – Environmental Hydraulic Simulation Page 68<br />

The expressions for the decomposition of the velocities from Eq. 2-135 are now substituted into the<br />

transformed <strong>Navier</strong>-<strong>Stokes</strong> <strong>equation</strong> (see Eq. 2-131) and a time-<strong>average</strong> is done:<br />

⎧∂<br />

ρ ⎨<br />

⎩<br />

2<br />

( u + u′<br />

) ∂( u + u′<br />

) ∂( u + u′<br />

)( v + v′<br />

) ∂( u + u′<br />

)( w + w′<br />

)<br />

∂t<br />

+<br />

∂x<br />

+<br />

∂y<br />

+<br />

∂z<br />

⎫<br />

⎬<br />

⎭<br />

=<br />

F<br />

<br />

is not subject to<br />

turbulent<br />

fluctuation<br />

∂<br />

−<br />

2<br />

2<br />

2<br />

( p + p′<br />

) ⎛ ∂ ( u + u′<br />

) ∂ ( u + u′<br />

) ∂ ( u + u′<br />

)<br />

∂x<br />

+<br />

x<br />

µ<br />

⎜<br />

⎝<br />

∂x<br />

2<br />

+<br />

∂y<br />

2<br />

+<br />

∂z<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

Eq. 2-145<br />

Application of the rules from Eq. 2-141 and Eq. 2-142 shows that among others the terms<br />

∂( u<br />

iu′<br />

j<br />

) ∂u′<br />

i<br />

∂u′<br />

i<br />

, , from the <strong>equation</strong> above can be reduced and the <strong>equation</strong> can be transformed to:<br />

∂x<br />

∂t<br />

∂x<br />

j<br />

j<br />

⎛ u uu u u uv u v u w uw ⎞<br />

⎜<br />

∂ ∂ ∂ ′ ′ ∂ ∂ ′ ′ ∂ ′ ′ ∂<br />

ρ<br />

⎟<br />

+ + + + + +<br />

t x x y y z z<br />

⎝ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎠<br />

= F<br />

x<br />

∂p<br />

−<br />

∂x<br />

2 2 2<br />

⎛ ∂ u ∂ u ∂ u ⎞<br />

+µ<br />

⎜ + +<br />

2 2 2<br />

x y z<br />

⎟<br />

⎝ ∂ ∂ ∂<br />

<br />

⎠<br />

∆ u<br />

Eq. 2-146<br />

Further small transformations, for example a repeated application of the product rule and the<br />

continuity <strong>equation</strong> to the advection term, lead to a form of the time-<strong>average</strong>d NS <strong>equation</strong>s for all<br />

three directions as:<br />

⎛ ∂u<br />

∂u<br />

∂u<br />

∂u<br />

⎞<br />

ρ<br />

⎜ + u + v + w<br />

⎟ = F<br />

⎝ ∂t<br />

∂x<br />

∂y<br />

∂z<br />

⎠<br />

x<br />

∂p<br />

⎛<br />

⎞<br />

⎜<br />

∂u′<br />

u′<br />

∂u′<br />

v′<br />

∂u′<br />

w′<br />

− +µ ∆ u −ρ<br />

⎟<br />

+ +<br />

∂x<br />

⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

⎛<br />

⎞<br />

⎜<br />

∂v<br />

∂v<br />

∂v<br />

∂v<br />

ρ<br />

⎟<br />

+ u + v + w<br />

= F<br />

⎝ ∂t<br />

∂x<br />

∂y<br />

∂z<br />

⎠<br />

y<br />

∂p<br />

⎛<br />

⎞<br />

⎜<br />

∂u′<br />

v′<br />

∂v′<br />

v′<br />

∂v′<br />

w′<br />

− +µ ∆ v −ρ<br />

⎟<br />

+ +<br />

∂y<br />

⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

Eq. 2-147<br />

⎛ ∂w<br />

∂w<br />

∂w<br />

∂w<br />

⎞<br />

ρ<br />

⎜ + u + v + w<br />

⎟ = F<br />

⎝ ∂t<br />

∂x<br />

∂y<br />

∂z<br />

⎠<br />

z<br />

∂p<br />

⎛<br />

⎞<br />

⎜<br />

∂u′<br />

w′<br />

∂v′<br />

w′<br />

∂w′<br />

w′<br />

− +µ ∆ w −ρ<br />

⎟<br />

+ +<br />

∂z<br />

⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

Or in tensor form:<br />

D ui<br />

∂ p<br />

⎛ ∂ u′<br />

i<br />

u′<br />

⎞<br />

j<br />

ρ = Fi<br />

− + µ ∆ u ⎜ ⎟<br />

i<br />

− ρ<br />

Eq. 2-148<br />

Dt ∂x<br />

⎜<br />

i<br />

x ⎟<br />

⎝<br />

∂<br />

j<br />

⎠<br />

Re ynolds−stress


Lecture material – Environmental Hydraulic Simulation Page 69<br />

From now on the time-<strong>average</strong>d fields will not be overlined anymore. So for example u stands for the<br />

time-<strong>average</strong>d velocity component in direction of the x-axis.<br />

We pay attention to the last two terms of the right side of Eq. 2-148:<br />

µ ∆ u<br />

i<br />

⎛ ⎞<br />

⎜<br />

∂u′<br />

′<br />

iu<br />

j<br />

− ρ ⎟<br />

⎜ ∂x<br />

⎟<br />

⎝<br />

j<br />

⎠<br />

= µ<br />

∂<br />

∂x<br />

j<br />

⎛<br />

⎜<br />

∂u<br />

⎝<br />

∂x<br />

i<br />

j<br />

⎞<br />

⎟ − ρ<br />

⎠<br />

∂<br />

∂x<br />

j<br />

( u′<br />

u′<br />

)<br />

i<br />

j<br />

Eq. 2-149<br />

=<br />

∂<br />

∂x<br />

j<br />

⎛<br />

⎜<br />

∂u<br />

µ<br />

⎝<br />

∂x<br />

i<br />

j<br />

− ρu′<br />

u′<br />

i<br />

j<br />

⎞<br />

⎟<br />

⎠<br />

The expression in the brackets above corresponds to the total shear stress:<br />

∂u<br />

i<br />

τ<br />

ij<br />

= µ − ρ u ′<br />

i<br />

u ′<br />

j<br />

Eq. 2-150<br />

∂x<br />

j<br />

If we compare to the <strong>Navier</strong>-<strong>Stokes</strong> <strong>equation</strong>s Eq. 2-131, it is conspicuous that besides the viscous part<br />

an additional term has been added to the total shear stress. This term results from the time-<strong>average</strong> and<br />

is generally the dominant part of the total shear stress. Since the term only appears due to the <strong>Reynolds</strong><br />

<strong>average</strong>, it is called <strong>Reynolds</strong> stress or apparent turbulent shear stress. As stated in the introduction to<br />

the RANS approach, to lead to the closure of the <strong>equation</strong> system, an approximation for the <strong>Reynolds</strong><br />

stresses has to be done, which sets in relation the apparent shear stresses with the velocity field of the<br />

<strong>average</strong> flow.<br />

With the approach of the eddy viscosity principle after Boussinesq 1877, the general time-<strong>average</strong>d<br />

NS <strong>equation</strong>s, also called <strong>Reynolds</strong> <strong>equation</strong>s, can thus be written in tensor form as:<br />

⎛ Dui<br />

ρ ⎜<br />

⎝ Dt<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

F<br />

i<br />

−<br />

∂p<br />

∂x<br />

i<br />

+<br />

∂<br />

∂x<br />

j<br />

τ<br />

ij<br />

Eq. 2-151<br />

with<br />

τ<br />

ij<br />

∂u<br />

= µ<br />

∂x<br />

i<br />

j<br />

⎛<br />

+ ρ ⎜ν<br />

T<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

∂u<br />

⎝ ∂x<br />

i<br />

j<br />

∂u<br />

j<br />

+<br />

∂x<br />

i<br />

⎞<br />

⎟ −<br />

⎠<br />

2<br />

3<br />

⎞<br />

k δ ⎟<br />

ij<br />

⎟<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!