19.06.2015 Views

Vorticity - FEniCS Project

Vorticity - FEniCS Project

Vorticity - FEniCS Project

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Automation of Turbulence<br />

Simulation<br />

Johan Hoffman<br />

jhoffman@nada.kth.se<br />

Royal Institute of Technology KTH<br />

Johan Hoffman – KTH – p.1


Some References<br />

* J.Hoffman, Computation of mean drag for bluff body problems using Adaptive<br />

DNS/LES, SIAM J. Sci. Comput. Vol.27(1), 2005.<br />

* J.Hoffman and C.Johnson, A new approach to Computational Turbulence Modeling, to<br />

appear in Comput. Methods Appl. Mech. Engrg., 2005.<br />

* J.Hoffman, Simulation of turbulent flow past bluff bodies on coarse meshes using<br />

General Galerkin methods: drag crisis and turbulent Euler solutions, to appear in<br />

Springer Journal of Computational Mechanics, 2005.<br />

* J.Hoffman, Efficient computation of mean drag for the subcritical flow past a circular<br />

cylinder using Adaptive DNS/LES, in review (Int. J. of Numerical Methods in Fluids) .<br />

* J.Hoffman, Adaptive simulation of the turbulent flow due to a cylinder rolling along<br />

ground, in review (Comput. Methods Appl. Mech. Engrg.).<br />

* J.Hoffman, Adaptive simulation of the turbulent flow past a sphere,<br />

in review (J. Fluid Mech.).<br />

* J.Hoffman and C.Johnson, Adaptive FEM for Incompressible Turbulent Flow,<br />

Springer, 2006.<br />

Johan Hoffman – KTH – p.2


Automation of Turbulence Simulation<br />

ACMM: Generality in: Method and Implementation<br />

Method: Adaptive stabilized FEM: General Galerkin G2<br />

Implementation: <strong>FEniCS</strong> project<br />

This talk: Test of Method: G2<br />

Turbulence Simulation; characterized by non-generality:<br />

discretization (geometry specific FD, spectral,...)<br />

turbulence modeling (parameters depend on data,<br />

numerics,...; different filters used in RANS/LES,...)<br />

wall modeling using RANS, boundary layer theory,...<br />

Johan Hoffman – KTH – p.3


¡<br />

Målilla 88-95: 24-hr mean:<br />

C<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

−20<br />

−30<br />

0 50 100 150 200 250 300 350<br />

Johan Hoffman – KTH – p.4


¡<br />

Målilla 88-95: weekly mean:<br />

C<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Johan Hoffman – KTH – p.5


¡<br />

Målilla 88-95: monthly mean:<br />

C<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

2 4 6 8 10 12<br />

Johan Hoffman – KTH – p.6


¡<br />

Yearly mean 1860-2003:<br />

C<br />

Johan Hoffman – KTH – p.7


¡<br />

Cube:<br />

, mean<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

2 2.5 3 3.5 4 4.5 5 5.5<br />

cube: xy-plane<br />

cube: xz-plane<br />

Johan Hoffman – KTH – p.8


¡<br />

¢ £<br />

¤<br />

£<br />

<br />

¡<br />

¢<br />

¨©<br />

<br />

<br />

¥§¦<br />

<br />

<br />

¨©<br />

<br />

©<br />

¥ ¦<br />

<br />

Turbulence: Chaotic Dyn. System<br />

Pointwise quantities strongly sensitive to perturbations<br />

and thus unpredictable (to any tolerance of interest)<br />

Mean values in space/time moderately sensitive to<br />

perturbations and thus predictable up to a tolerance<br />

Ex: Weather prediction (Målilla):<br />

24-hr mean temperature unpredictable (<br />

monthly mean temperature predictable (<br />

C)<br />

C)<br />

Ex: Bluff body flow (experiments/computations):<br />

pointwise drag<br />

mean value drag<br />

unpredictable (<br />

predictable (<br />

)<br />

)<br />

Johan Hoffman – KTH – p.9


§<br />

©<br />

©<br />

¢<br />

¤<br />

¤<br />

<br />

<br />

¢<br />

¡£¢<br />

¤<br />

<br />

<br />

¢<br />

¤<br />

¢<br />

¤<br />

<br />

<br />

<br />

<br />

¢<br />

¡£<br />

¤<br />

§<br />

§ ¨<br />

¤<br />

¨ § <br />

§ <br />

<br />

<br />

<br />

<br />

¤<br />

<br />

<br />

<br />

<br />

<br />

¦<br />

<br />

¦<br />

¦<br />

<br />

<br />

¨¥ <br />

¢<br />

"<br />

©<br />

Navier-Stokes Equations (NSE)<br />

¨<br />

¦<br />

¢<br />

<br />

¨ ¢<br />

¥ ¢<br />

¦¢<br />

¨¡£¢<br />

<br />

¨ § ¢<br />

viscosity,<br />

pressure,<br />

velocity,<br />

:<br />

¨¢<br />

<br />

¨¡£¢<br />

<br />

Pointwise existence & uniqueness unknown:<br />

(Clay Institute $1 million Prize Problem)<br />

Existence (but not uniq.) of weak solution (Leray 1934):<br />

¡<br />

¨ <br />

¤<br />

¨<br />

¨¡ ¢<br />

:<br />

¡<br />

¡£<br />

<br />

<br />

¡ ¢<br />

<br />

Find<br />

space-time domain,<br />

:<br />

¨<br />

<br />

¡<br />

!<br />

<br />

¨ <br />

<br />

¨<br />

<br />

¨ ¢<br />

¨<br />

¨ § ¢<br />

¨<br />

¨ § <br />

¨ ¢<br />

§<br />

¨¢<br />

¡ <br />

<br />

<br />

¨<br />

¨¡£¢<br />

Johan Hoffman – KTH – p.10


¡£¢<br />

¤<br />

¨¢<br />

<br />

¡<br />

<br />

<br />

¨¡£¢<br />

<br />

¢<br />

¤<br />

¤£<br />

©<br />

¥ ¢<br />

¦¢<br />

¡<br />

¢ ¥<br />

<br />

¨ ¢<br />

§<br />

©<br />

¨ § ¢<br />

¢<br />

<br />

¢<br />

¤£<br />

<br />

¨<br />

¦<br />

¥<br />

¨<br />

©<br />

¤£<br />

¤<br />

<br />

<br />

<br />

¡<br />

¢<br />

§¦<br />

¤<br />

¤<br />

¢<br />

£<br />

<br />

<br />

¢<br />

¡<br />

¢ <br />

Navier-Stokes Equations (NSE)<br />

:<br />

velocity,<br />

pressure,<br />

viscosity,<br />

Computational turbulence: Mean values computable<br />

(<br />

), point values not computable (<br />

Computational cost (#dofs):<br />

(resolving all scales in Direct Num. Simulation DNS)<br />

).<br />

¨<br />

Limit today:<br />

(many industrial appl.<br />

)<br />

Johan Hoffman – KTH – p.11


¢<br />

¨¡£¢<br />

<br />

¤<br />

¥<br />

¤£<br />

¡<br />

¦<br />

¡<br />

¡<br />

<br />

¨<br />

¦<br />

¦<br />

¡<br />

¢<br />

£§<br />

<br />

¨<br />

¨<br />

¦<br />

¡<br />

£<br />

Analysis & Computation of NSE<br />

Scientific goals today:<br />

Prove exist & uniq of pointwise NSE:<br />

Push limit of DNS (wrt<br />

constraint)<br />

Turbulence modeling: find model for unresolved scales<br />

(filtering of NSE: Reynolds stresses, closure problem)<br />

Alternative scientific goals:<br />

Approximate weak solution<br />

(mean value) output<br />

: weak uniqueness in<br />

: stability of<br />

wrt<br />

¨§<br />

Adaptive algorithm: min #dof :<br />

Johan Hoffman – KTH – p.12


£<br />

¡<br />

¢<br />

<br />

¡ :<br />

¡<br />

¡<br />

¡<br />

¢<br />

¡ <br />

<br />

¨<br />

<br />

¦<br />

¦<br />

¦<br />

¦<br />

<br />

<br />

¤<br />

<br />

<br />

¡<br />

<br />

¢<br />

¨<br />

¨<br />

¤¤<br />

<br />

¨<br />

¨<br />

¦<br />

¦<br />

¦<br />

¦<br />

<br />

¡<br />

¡<br />

¡<br />

¨<br />

¨<br />

<br />

<br />

¦<br />

¦<br />

¦<br />

¤<br />

©<br />

¡<br />

¤¤!<br />

¨¡£<br />

<br />

¥<br />

¨<br />

¨<br />

¦<br />

¦<br />

<br />

¡<br />

¡<br />

¡<br />

¤¤<br />

¦<br />

¨<br />

¦<br />

<br />

¦<br />

¦<br />

<br />

<br />

¦<br />

¤<br />

<br />

¡<br />

Existence of -Weak Solutions<br />

¡ <br />

<br />

¥§¦<br />

¨¡£<br />

¡ <br />

¤<br />

¨¤<br />

¨¡ ¢<br />

¡ <br />

¡ <br />

<br />

¨©<br />

<br />

<br />

¢¡£¢<br />

¤<br />

)<br />

<br />

¥ ¦<br />

¨<br />

¨<br />

¨¡ ¢<br />

(approximate weak solution:<br />

General Galerkin G2<br />

Existence: Construction of<br />

¡ <br />

<br />

<br />

¨¡£<br />

¨<br />

¨<br />

¨<br />

:<br />

¡ <br />

¡ <br />

<br />

<br />

Find<br />

¨<br />

¡ ¤<br />

¦<br />

¤¤<br />

<br />

¤¤<br />

<br />

¤¤ ¦<br />

¨<br />

¨©<br />

¡ <br />

¨<br />

¡£<br />

<br />

<br />

<br />

¨<br />

¡£<br />

©<br />

<br />

<br />

¨<br />

¨<br />

<br />

<br />

¨<br />

¨<br />

¡ <br />

¡ <br />

<br />

¨¡£<br />

¨©<br />

<br />

<br />

¨©<br />

¥<br />

<br />

¤¤<br />

<br />

¤¤<br />

¨<br />

<br />

G2<br />

Johan Hoffman – KTH – p.13


¡£¢<br />

¤<br />

§<br />

¤<br />

¨<br />

¢<br />

<br />

<br />

¤<br />

¤<br />

<br />

¨<br />

<br />

§<br />

¨<br />

¦<br />

<br />

§<br />

¨¢<br />

¦<br />

<br />

¨¥<br />

¢<br />

<br />

"<br />

§<br />

<br />

¦<br />

<br />

¨<br />

¨ § ¢ <br />

©<br />

¡<br />

<br />

<br />

<br />

©<br />

©<br />

<br />

¤<br />

<br />

¤<br />

¥<br />

¤<br />

©<br />

¡<br />

<br />

¨<br />

¦<br />

© ¡<br />

<br />

¥<br />

¤<br />

©<br />

¢<br />

¦<br />

¤<br />

¡ <br />

¡ <br />

<br />

Johan Hoffman – KTH – p.14<br />

Weak Uniqueness: Duality<br />

¡<br />

<br />

¨¡£¢<br />

"<br />

¨¡ ¢<br />

<br />

Output (functional):<br />

¨¡ <br />

<br />

¡ ¢<br />

<br />

¡£ <br />

¥ ¨¡£¢<br />

¡£¦<br />

:<br />

¨ ¢ <br />

¤<br />

Dual NSE: Find<br />

¢<br />

<br />

£ <br />

¨ § <br />

¡<br />

¡ <br />

¡<br />

¢¡ <br />

<br />

¨<br />

¤<br />

¨ <br />

<br />

¨ ¦ <br />

¢<br />

¨ <br />

¢<br />

¡ ¢<br />

<br />

¡ <br />

¥ ¨¡ ¢<br />

¡ ¦<br />

¨ ¢<br />

<br />

¨<br />

<br />

¨ <br />

¤ <br />

¦<br />

¨<br />

¨ § <br />

¨¡£¢<br />

¨ © <br />

<br />

"<br />

© ¡ ¨<br />

¡ ¢<br />

¡ ¦<br />

Weak Uniqueness:<br />

¡<br />

<br />

¡ ¢<br />

¦ ¡ ©<br />

¡ ¦<br />

§ ¡ ¢<br />

¨¡ ¢ <br />

¨¡ ¦<br />

¤<br />

¤<br />

¨¡£¢<br />

¡ ¢<br />

¤<br />

<br />

<br />

¨<br />

¨¡ ¦<br />

¡ ¢<br />

<br />

<br />

¨¤<br />

¨¡ ¢<br />

): stability information lost!<br />

Exact solution (


¡<br />

¡<br />

¨<br />

¦<br />

© ¡<br />

<br />

¥<br />

©<br />

<br />

¦<br />

<br />

<br />

¡<br />

¡<br />

¡<br />

<br />

¤<br />

¨<br />

<br />

¨<br />

<br />

¦<br />

¦<br />

©<br />

¡<br />

¨<br />

¦<br />

<br />

<br />

¡<br />

<br />

© ¡ ¨<br />

Johan Hoffman – KTH – p.15<br />

Weak Uniqueness: Duality<br />

¡ ¢<br />

¡ ¦<br />

Weak Uniqueness:<br />

¨<br />

¨<br />

¨¡£¦<br />

¨¡£¢<br />

¨<br />

<br />

¨<br />

<br />

¥ ¦<br />

¨¡ ¦<br />

¤<br />

¤<br />

¨¡£¢<br />

<br />

and<br />

¡<br />

¡<br />

¡ ¢<br />

<br />

Computability:<br />

¦<br />

¨<br />

¨<br />

¡<br />

¤<br />

© ¡¢£<br />

¨<br />

¡<br />

¦¦<br />

¥<br />

¨ ¦<br />

¤<br />

¨¡£¢<br />

Residual only needs to be small in a weak norm!!!<br />

(for weak uniqueness)<br />

¨¦¥ £<br />

¨<br />

¨¡£¢<br />

vs<br />

¨¦¥ £<br />

¤<br />

¨<br />

¨<br />

¨<br />

¨¡ ¢<br />

Weak uniqueness characterized by stability factor


¢<br />

¤<br />

¡<br />

¡<br />

¡<br />

¢<br />

¡ <br />

<br />

¨<br />

<br />

©<br />

¦<br />

¦<br />

¦<br />

<br />

<br />

£ <br />

¤<br />

¡<br />

<br />

¡<br />

<br />

§<br />

¤<br />

¨<br />

<br />

§<br />

¨<br />

¦<br />

<br />

§<br />

¢ ¨<br />

¦<br />

<br />

¨¥<br />

¢<br />

<br />

"<br />

§<br />

<br />

¦<br />

<br />

¨<br />

¨ § ¢ <br />

©<br />

<br />

¡£¢ <br />

¡ ¢ ¦ §<br />

¤<br />

¡<br />

¡<br />

¡<br />

¨<br />

¨¤<br />

¨<br />

¤<br />

¨<br />

<br />

©<br />

¦<br />

¦<br />

¦<br />

¤<br />

¡<br />

<br />

©<br />

©<br />

¡ <br />

Johan Hoffman – KTH – p.16<br />

G2 for NSE: Adaptive DNS/LES<br />

¨¡ ¢<br />

<br />

NSE:<br />

¡<br />

¨<br />

¨<br />

¡<br />

¡ <br />

¦ §<br />

¡£<br />

<br />

<br />

G2:<br />

(drag, lift,...)<br />

¨¡ ¢ <br />

¤<br />

¨¡ ¢<br />

<br />

Functional output:<br />

¡ <br />

¡ <br />

<br />

¨¡£<br />

<br />

¡ ¢<br />

<br />

¡£ <br />

¥ ¨¡ ¢<br />

¡ ¦<br />

Dual NSE:<br />

¨ ¦ <br />

¢<br />

¨ <br />

¢<br />

¡ ¢<br />

<br />

¡ <br />

¥ ¨¡£¢<br />

¡£¦<br />

¨ ¢<br />

<br />

¨<br />

<br />

¨ <br />

¤ <br />

¦<br />

¨<br />

¨ § <br />

Error identity (using duality and G2):<br />

¡£¢<br />

<br />

¡ ¢<br />

<br />

<br />

¤<br />

¨¡£¢


¤<br />

¨¡£¢<br />

<br />

©<br />

<br />

¡ ¤<br />

¨<br />

¤<br />

¨<br />

¤<br />

¡<br />

£ ¢<br />

¥<br />

¦<br />

¨<br />

¡ ¦<br />

<br />

¡<br />

¥<br />

¢<br />

<br />

¤<br />

£<br />

<br />

¡<br />

¨<br />

¨<br />

¨<br />

¡<br />

¨¡£¢<br />

¦<br />

£ ¢<br />

¨<br />

<br />

¦ ¤<br />

¨<br />

£<br />

¦<br />

©<br />

¡<br />

£§<br />

<br />

¨<br />

¡<br />

<br />

¡ ¢ § ¦<br />

¤<br />

G2 for NSE: Adaptive DNS/LES<br />

Galerkin discretization error + stabilization modeling error<br />

Adaptive algorithm: From coarse mesh<br />

do<br />

(1) compute primal and dual problem on<br />

(2) if<br />

TOL then STOP, else<br />

(3) refine elements<br />

with largest<br />

(4) set<br />

, then goto (1)<br />

Johan Hoffman – KTH – p.17


¡<br />

Bluff Body Benchmark Problems<br />

Drag Coeff.<br />

= normalized mean drag force<br />

circular cylinder Re=3900<br />

dual solution<br />

sphere Re=10 000<br />

dual solution<br />

square cylinder Re=22 000<br />

dual solution<br />

cube Re=40 0000: xy<br />

dual sol. xy<br />

dual sol. xz<br />

cube xz<br />

Johan Hoffman – KTH – p.18


Ref. Mesh wrt<br />

: circular cylinder<br />

Johan Hoffman – KTH – p.19


Ref. Mesh wrt<br />

: sphere<br />

Johan Hoffman – KTH – p.20


Ref. Mesh wrt<br />

: square cylinder<br />

Johan Hoffman – KTH – p.21


Ref. Mesh wrt<br />

: surf mount cube<br />

Johan Hoffman – KTH – p.22


Circular cylinder:<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5<br />

Johan Hoffman – KTH – p.23


Sphere:<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

3.8 4 4.2 4.4 4.6 4.8 5<br />

Johan Hoffman – KTH – p.24


Square cylinder:<br />

2.5<br />

2<br />

1.5<br />

1<br />

4.2 4.4 4.6 4.8 5 5.2<br />

Johan Hoffman – KTH – p.25


Surface mounted cube:<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2.5 3 3.5 4 4.5 5 5.5<br />

Johan Hoffman – KTH – p.26


©<br />

Summary Benchmark Problems<br />

G2 for NSE: No filtering. No Reynolds stresses. G2<br />

automatic “turbulence model”.<br />

Adaptive algorithm captures separation points, and<br />

“correct” (finite limit) dissipation in the turbulent wake.<br />

Mean value output (drag, lift, frequencies, separation<br />

points, pressure coeff,...) computable up to a tolerance<br />

corresponding to experimental accuracy (<br />

1-5%).<br />

About 10-100 times less mesh points needed to<br />

compute drag than in non-adaptive LES.<br />

All computations on a standard PC (2 GHz, 0.5Gb)<br />

Johan Hoffman – KTH – p.27


¡<br />

¢<br />

Ex: Rotating Cylinder<br />

Rotating cylinder, ground moving at free stream speed<br />

Model of rotating cyl on ground: moving coordinate frame<br />

(Wheels of F1 racing car, airplane at take-off or landing,...)<br />

Compare with stationary wheel (simple wind tunnel testing)<br />

velocity xz velocity xy transversal velocities<br />

Johan Hoffman – KTH – p.28


G2: rot vs stat: velocity<br />

Johan Hoffman – KTH – p.29


G2: rot vs stat: pressure<br />

Johan Hoffman – KTH – p.30


G2: rot vs stat: vorticity<br />

Johan Hoffman – KTH – p.31


G2: rot vs stat: vorticity<br />

Johan Hoffman – KTH – p.32


G2: rot vs stat: dual velocity<br />

Johan Hoffman – KTH – p.33


G2: rot vs stat: dual pressure<br />

Johan Hoffman – KTH – p.34


G2: rot vs stat: mesh<br />

Johan Hoffman – KTH – p.35


G2: rot vs stat: mesh<br />

Johan Hoffman – KTH – p.36


G2: rot vs stat: mesh<br />

Johan Hoffman – KTH – p.37


G2: rot vs stat: drag : 1.3 vs 0.8<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

4 4.2 4.4 4.6 4.8 5<br />

Johan Hoffman – KTH – p.38


G2: rot vs stat: forces<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3<br />

Johan Hoffman – KTH – p.39


¤£<br />

Turbulent boundary layers<br />

So far: No slip boundary conditions seems ok for modeling<br />

laminar boundary layers (separation and skin friction)<br />

For high<br />

boundary layer undergoes transition<br />

Extremely expensive to resolve turbulent boundary layer:<br />

We need wall-modeling<br />

Johan Hoffman – KTH – p.40


¥ ¢<br />

¦¢<br />

¨ ¢<br />

§<br />

<br />

©<br />

¢<br />

<br />

¨ <br />

<br />

©<br />

¤<br />

¢<br />

¨ <br />

Turbulent boundary layers<br />

Separation given by:<br />

Retarding flow near the boundary:<br />

Turbulent boundary layer<br />

boundary<br />

delayed separation<br />

higher momentum near the<br />

Johan Hoffman – KTH – p.41


¢<br />

¤<br />

¤<br />

£<br />

¨<br />

<br />

<br />

¢<br />

<br />

<br />

<br />

¤<br />

¤<br />

<br />

¡<br />

<br />

<br />

¢<br />

¨<br />

¨<br />

¨<br />

¤¤<br />

¤¤<br />

¨<br />

¦<br />

¦<br />

¦<br />

¦<br />

§<br />

¢<br />

<br />

<br />

Friction boundary condition<br />

Slip with friction boundary condition [Maxwell, Navier,....]<br />

: no slip b.c.<br />

¡<br />

¤<br />

: slip b.c.,<br />

;<br />

Friction coefficient<br />

[LES + Boundary Layer theory: Layton, John, Illiescu,....]<br />

¨¦¥<br />

<br />

¥¢<br />

¢<br />

(skin friction<br />

©<br />

¥£¢<br />

Simple wall model:<br />

)<br />

(<br />

§¨<br />

,<br />

§¨<br />

;<br />

§¨<br />

¡<br />

¤<br />

¡<br />

¤<br />

£ <br />

©<br />

¨<br />

©<br />

<br />

£©<br />

¨<br />

¨<br />

¡ ¤<br />

¦<br />

¤¤<br />

<br />

¤¤<br />

<br />

<br />

<br />

¨©<br />

¡ <br />

¨<br />

<br />

small)<br />

(with<br />

Johan Hoffman – KTH – p.42


¡<br />

drag crisis;<br />

:<br />

Johan Hoffman – KTH – p.43


¡<br />

¡<br />

drag crisis;<br />

:<br />

Johan Hoffman – KTH – p.44


¡<br />

¡<br />

drag crisis:<br />

;<br />

Johan Hoffman – KTH – p.45


¡<br />

drag crisis;<br />

:<br />

Johan Hoffman – KTH – p.46


¦<br />

¢<br />

£<br />

¦<br />

¡<br />

¦<br />

<br />

¢<br />

<br />

<br />

¥¦<br />

¤<br />

¢<br />

EG2 and Turbulent Euler solutions<br />

;<br />

(<br />

)<br />

Euler/G2 + slip b.c. (EG2)<br />

EG2: no empirical parameters; only<br />

(very general...)<br />

What happens in the limit? The potential solution (<br />

)?<br />

Johan Hoffman – KTH – p.47


¡<br />

Velocity & pressure: t=1.0:<br />

Johan Hoffman – KTH – p.48


¡<br />

Velocity & pressure: t=1.25:<br />

Johan Hoffman – KTH – p.49


¡<br />

Velocity & pressure: t=1.5:<br />

Johan Hoffman – KTH – p.50


¡<br />

Velocity & pressure: t=1.75:<br />

Johan Hoffman – KTH – p.51


¡<br />

Velocity & pressure: t=2.0:<br />

Johan Hoffman – KTH – p.52


¡<br />

Velocity & pressure: t=2.25:<br />

Johan Hoffman – KTH – p.53


¡<br />

Velocity & pressure: t=2.5:<br />

Johan Hoffman – KTH – p.54


¡<br />

Velocity & pressure: t=2.75:<br />

Johan Hoffman – KTH – p.55


¡<br />

Velocity & pressure: t=3.0:<br />

Johan Hoffman – KTH – p.56


¡<br />

Velocity & pressure: t=4.5:<br />

Johan Hoffman – KTH – p.57


¡<br />

Velocity & pressure: t=5.0:<br />

Johan Hoffman – KTH – p.58


¡<br />

Velocity & pressure: t=5.5:<br />

Johan Hoffman – KTH – p.59


¡<br />

Velocity & pressure: t=5.75:<br />

Johan Hoffman – KTH – p.60


¡<br />

Velocity & pressure: t=11.0:<br />

Johan Hoffman – KTH – p.61


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.0:<br />

Johan Hoffman – KTH – p.62


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.25:<br />

Johan Hoffman – KTH – p.63


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.5:<br />

Johan Hoffman – KTH – p.64


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.75:<br />

Johan Hoffman – KTH – p.65


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.25:<br />

Johan Hoffman – KTH – p.67


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.5:<br />

Johan Hoffman – KTH – p.68


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.75:<br />

Johan Hoffman – KTH – p.69


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.0:<br />

Johan Hoffman – KTH – p.70


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.25:<br />

Johan Hoffman – KTH – p.71


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.5:<br />

Johan Hoffman – KTH – p.72


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.75:<br />

Johan Hoffman – KTH – p.73


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.0:<br />

Johan Hoffman – KTH – p.74


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.25:<br />

Johan Hoffman – KTH – p.75


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.5:<br />

Johan Hoffman – KTH – p.76


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.75:<br />

Johan Hoffman – KTH – p.77


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.0:<br />

Johan Hoffman – KTH – p.78


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.25:<br />

Johan Hoffman – KTH – p.79


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.5:<br />

Johan Hoffman – KTH – p.80


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=1.75:<br />

Johan Hoffman – KTH – p.81


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.0:<br />

Johan Hoffman – KTH – p.82


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.25:<br />

Johan Hoffman – KTH – p.83


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.5:<br />

Johan Hoffman – KTH – p.84


¡<br />

¡<br />

<strong>Vorticity</strong>:<br />

,<br />

,<br />

: t=2.75:<br />

Johan Hoffman – KTH – p.85


Oscillating EG2 solution:<br />

2.1<br />

2<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1 2 3 4 5 6 7<br />

Johan Hoffman – KTH – p.86


Oscillating EG2 solution<br />

Note: there is only one separation point (in each section)<br />

Johan Hoffman – KTH – p.87


Guadalupe, Canaries:<br />

Note: only one separation point (consistent with EG2)<br />

Johan Hoffman – KTH – p.88


¡<br />

¢<br />

£<br />

<br />

¡<br />

¡<br />

¢<br />

£<br />

©<br />

<br />

EG2 and Turbulent Euler solutions<br />

No experimental results for cylinder at<br />

Therefore not much is known about this flow regime.<br />

For geophysical flow (<br />

) we observe “von<br />

Karman vortex shedding”; but with separation in one<br />

point only (no wake!) consistent with the EG2 solution.<br />

EG2: no empirical parameters (only parameter is<br />

)<br />

“In a reasonable theory there are no dimensionless<br />

numbers whose values are only empirically determinable.”<br />

(Einstein)<br />

Johan Hoffman – KTH – p.89


¡<br />

<br />

© ¡ ¨<br />

¦<br />

¦<br />

¦<br />

<br />

£<br />

Summary: NSE & G2<br />

Approximate weak solutions: existence by G2<br />

Weak uniqueness: duality: computation of<br />

Computational method: G2 (Adaptive DNS/LES)<br />

Adaptivity<br />

Generality<br />

Quantitative error control<br />

very low computational cost<br />

quick & easy to adjust to new problem<br />

reliable results<br />

No filtering<br />

no Reynolds stresses<br />

Turbulent boundary layer by simple friction b.c.<br />

EG2: parameter-free model of high<br />

flow<br />

Johan Hoffman – KTH – p.90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!