17.06.2015 Views

Effect of low level ozone-enrichment on the quality and ... - chimia

Effect of low level ozone-enrichment on the quality and ... - chimia

Effect of low level ozone-enrichment on the quality and ... - chimia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IOA C<strong>on</strong>ference <strong>and</strong> Exhibiti<strong>on</strong> Valencia, Spain - October 29 – 31, 2007<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>low</str<strong>on</strong>g> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-<str<strong>on</strong>g>enrichment</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>quality</strong> <strong>and</strong> c<strong>on</strong>diti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> citrus fruit under semi-commercial c<strong>on</strong>diti<strong>on</strong>s<br />

Metzger, C. 1 , Barnes, J.D. 1 , Singlet<strong>on</strong>, I. 1 , Andrews, P. 2<br />

1. Institute for Research <strong>on</strong> <strong>the</strong> Envir<strong>on</strong>ment <strong>and</strong> Sustainability, Dev<strong>on</strong>shire Building, Newcastle<br />

University, Newcastle up<strong>on</strong> Tyne, NE1 7RU, Engl<strong>and</strong><br />

2. MMG Global Citrus, Transfessa Road, Paddock Wood, Kent, TN12 6UT, Engl<strong>and</strong>.<br />

Abstract<br />

This study examined <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated commercial storage in a <str<strong>on</strong>g>low</str<strong>on</strong>g> <str<strong>on</strong>g>level</str<strong>on</strong>g> (180-200 ppb)<br />

<str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-enriched atmosphere <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste resulting from Penicillium infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus<br />

products. Experiments c<strong>on</strong>ducted <strong>on</strong> waxed <strong>and</strong> unwaxed fruit <str<strong>on</strong>g>of</str<strong>on</strong>g> three varieties: “Hern<strong>and</strong>ina”<br />

clementines, “Navel” oranges <strong>and</strong> “Ellendale” m<strong>and</strong>arins revealed that after 35 days <str<strong>on</strong>g>of</str<strong>on</strong>g> storage in<br />

an <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-enriched atmosphere at 5°C <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit was significantly reduced (by<br />

7%) . Subsequent experiments focusing <strong>on</strong> fungicide-treated versus wax <strong>and</strong> pesticide-free “Navel<br />

oranges” again revealed <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-treatment to yield a positive effect; treated fruit exhibiting<br />

significantly less (27%) spoilage than equivalent c<strong>on</strong>trols (n<strong>on</strong>-treated produce) after 35 days <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

storage at 5°C;There were no commercially-relevant effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>low</str<strong>on</strong>g>-<str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-<str<strong>on</strong>g>enrichment</str<strong>on</strong>g> <strong>on</strong> fruit<br />

<strong>quality</strong> parameters (juice percentage, soluble solids c<strong>on</strong>tent <strong>and</strong> sugar/acid ratio). The results<br />

clearly dem<strong>on</strong>strate that <str<strong>on</strong>g>low</str<strong>on</strong>g> <str<strong>on</strong>g>level</str<strong>on</strong>g> atmospheric <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-<str<strong>on</strong>g>enrichment</str<strong>on</strong>g> can reduce <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste in<br />

citrus stored in a semi-commercial envir<strong>on</strong>ment.<br />

Key-words: Oz<strong>on</strong>e, postharvest, Penicillium, oranges, clementines, m<strong>and</strong>arins, citrus<br />

Introducti<strong>on</strong><br />

Oz<strong>on</strong>e (<strong>the</strong> triatomic form <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen O 3 ) is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most powerful oxidants in nature (1) . It is<br />

formed when a high-energy input splits molecular oxygen (O 2 ), into singlet oxygen (O), which <strong>the</strong>n<br />

combines with O 2 to form <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>. It is naturally produced by ultraviolet irradiati<strong>on</strong> from <strong>the</strong> sun <strong>and</strong><br />

also during lightning discharges in storms (2) . It can be produced artificially, but cannot be stored<br />

<strong>and</strong> needs to be produced c<strong>on</strong>tinuously. The cor<strong>on</strong>a discharge method is most comm<strong>on</strong>ly used to<br />

produce <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>, this operates by disassociating atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 (using a high voltage electric current)<br />

<strong>and</strong> subsequently producing <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> (3)<br />

In its gaseous form, <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> has several characteristics that make it attractive for its use in <strong>the</strong> fresh<br />

fruit industry: for example, <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> retards <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal spores (4), (5), (6) c<strong>on</strong>trols odours (1) ,<br />

reduces <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ethylene in storage c<strong>on</strong>diti<strong>on</strong>s (7), (8) , improves firmness in some fruits (9), (10) ,<br />

induces resistance to postharvest decay development, <strong>and</strong> rises <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> antioxidants in <strong>the</strong><br />

fruit (11) . Most importantly <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> use does not leave residues <strong>on</strong> <strong>the</strong> fruit (12) which gives it a<br />

significant advantage over c<strong>on</strong>venti<strong>on</strong>ally applied pesticides.<br />

The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to c<strong>on</strong>trol infecti<strong>on</strong>s by P. italicum <strong>and</strong> P. digitatum in citrus<br />

fruit has been tested <strong>on</strong> several occasi<strong>on</strong>s. Oz<strong>on</strong>e has <strong>the</strong> potential to replace or reduce traditi<strong>on</strong>al<br />

fungicide treatments used <strong>on</strong> citrus fruit (such as imazalil), that leave residues <strong>on</strong> <strong>the</strong> fruit. One <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> main c<strong>on</strong>cerns is that <strong>the</strong> widespread use <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides will result <strong>the</strong> proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant<br />

fungal pathogens (13) . Indeed resistance to several fungicides including thiabendazole <strong>and</strong> imazalil<br />

(14), (15) has been observed in fungal populati<strong>on</strong>s. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to inhibit sporulati<strong>on</strong> could<br />

avoid <strong>the</strong> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new resistant pathogens.<br />

In this paper, we describe <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> storage <strong>on</strong> <strong>the</strong> <strong>quality</strong> <strong>and</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus fruit in<br />

a semi-commercial envir<strong>on</strong>ment. We also looked at <strong>the</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to reduce pesticide<br />

residues <str<strong>on</strong>g>level</str<strong>on</strong>g>s <strong>on</strong> fruit surfaces.<br />

5.11 - 1


Material <strong>and</strong> methods<br />

Overview: The experiments were designed to determine <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> storage to reduce<br />

spoilage in different citrus fruit types <strong>and</strong> varieties (Experiment 1 : waxed <strong>and</strong> unwaxed) <strong>and</strong> to<br />

make an initial assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> potential for <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to reduce fungal spoilage in fruit not<br />

subjected to fungicide treatment (Experiment 2).<br />

Experiment 1: 3 varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus were used: Navel oranges, Hern<strong>and</strong>ina<br />

clementines <strong>and</strong> Ellendale m<strong>and</strong>arins. 2 boxes <str<strong>on</strong>g>of</str<strong>on</strong>g> each variety (1 waxed <strong>and</strong> 1 unwaxed) were<br />

used for both <strong>the</strong> treatment (<str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposed) <strong>and</strong> <strong>the</strong> c<strong>on</strong>trol (no <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>). Each box c<strong>on</strong>tained<br />

approximately 15 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> loose fruit. All fruit was treated with imazalil <strong>and</strong> thiabendazole.<br />

Experiment 2: oranges cv. Navel Late without any postharvest treatments were used, <strong>on</strong>e box with<br />

9 nets <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5kg each, <strong>and</strong> <strong>on</strong>e box with 13 nets with 5 oranges each (for both treatment <strong>and</strong><br />

c<strong>on</strong>trol).<br />

In both experiments, <strong>the</strong> fruit was not artificially inoculated with Penicillium <strong>and</strong> we worked with <strong>the</strong><br />

natural <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Penicillium infecti<strong>on</strong> found in most commercial packhouses.<br />

Oz<strong>on</strong>e generating <strong>and</strong> m<strong>on</strong>itoring equipment<br />

A cor<strong>on</strong>a discharge <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> generator (Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>resh Ltd.) was c<strong>on</strong>nected to an UV m<strong>on</strong>itor (Eco<br />

Sensors, INC. Model UV-100) set to maintain a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 180-200 ppb <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>.<br />

Storage c<strong>on</strong>diti<strong>on</strong>s<br />

Both treatment <strong>and</strong> c<strong>on</strong>trol were stored at 5°C <strong>and</strong> 80-90% RH. Both experiments were c<strong>on</strong>ducted<br />

for 35 days.<br />

Variables measured<br />

Rotten fruit count<br />

At <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first experiment, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy <strong>and</strong> rotten fruit (showing evident<br />

Penicillium infecti<strong>on</strong>) was counted in each box <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit. For <strong>the</strong> sec<strong>on</strong>d experiment, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

packs showing infected fruit was counted instead, fol<str<strong>on</strong>g>low</str<strong>on</strong>g>ing industry st<strong>and</strong>ards.<br />

Juice analysis (experiment 1 <strong>on</strong>ly):<br />

A sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-4 fruits, chosen r<strong>and</strong>omly, was taken at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiments. The fruits were<br />

juiced <strong>and</strong> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> juice was calculated, also a digital refractometer (Bellingham &<br />

Stanley Ltd. model DR 103) was used to measure <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble solids. An automatic titrati<strong>on</strong><br />

machine (Metrohm model 719 S Titrino) was used to measure <strong>the</strong> titratable acidity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> juice. The<br />

values obtained were compared against commercial specificati<strong>on</strong>s.<br />

Spore counts (experiment 1 <strong>on</strong>ly):<br />

At <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first experiment <strong>the</strong> 9 most infected fruits (based <strong>on</strong> <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> visible<br />

mycelium per surface), from each batch (c<strong>on</strong>trol <strong>and</strong> treatment) were selected. Three fruits at a<br />

time were used to make a spore suspensi<strong>on</strong> (fruit was shaken for 15 mins in 200 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Tween<br />

soluti<strong>on</strong> 0.01 % w/v). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> spores released from <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit was counted using a<br />

microscope <strong>and</strong> haemocytometer to give number <str<strong>on</strong>g>of</str<strong>on</strong>g> spores per mL <str<strong>on</strong>g>of</str<strong>on</strong>g> Tween soluti<strong>on</strong>.<br />

Residue analysis<br />

For experiment 1, <strong>on</strong>e kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit from both treatment <strong>and</strong> c<strong>on</strong>trol (Waxed Navel Oranges)<br />

was sent for pesticide residue analysis using a commercial laboratory.<br />

Statistical Analysis<br />

5.11 - 2


A Chi squared test was used to compare <strong>the</strong> frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy <strong>and</strong> rotten fruit. C<strong>on</strong>trol <strong>and</strong><br />

treatment were c<strong>on</strong>sidered groups <strong>and</strong> rotten <strong>and</strong> healthy c<strong>on</strong>diti<strong>on</strong>s. The <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> significance<br />

used to reject <strong>the</strong> Ho that <strong>the</strong> grouping did not affect <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> was 5%<br />

Results <strong>and</strong> discussi<strong>on</strong><br />

Experiment 1 (Fruit treated with postharvest fungicides <strong>and</strong> wax)<br />

The net percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit (all types <strong>and</strong> varieties) under c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s (12.7%) was<br />

more than double than under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <str<strong>on</strong>g>enrichment</str<strong>on</strong>g> (6.23%) (Fig.1a) Also, <strong>the</strong>re were less rotten <strong>and</strong><br />

more disease free fruit resulting from <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure (Fig.1b). This difference was statistically<br />

significant when comparing frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten <strong>and</strong> disease free fruits using a CHI squared test.<br />

In general under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>, <strong>the</strong>re was less visible growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mycelium <strong>and</strong> less sporulati<strong>on</strong>; this<br />

fact has also been noted by Palou et al (5) .<br />

A. Net percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit<br />

B. Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten <strong>and</strong> healthy fruits<br />

OZONE<br />

CONTROL<br />

14.00<br />

700<br />

12.00<br />

600<br />

10.00<br />

500<br />

Percentage<br />

8.00<br />

6.00<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Fruits<br />

400<br />

300<br />

4.00<br />

200<br />

2.00<br />

100<br />

0.00<br />

0<br />

ROTTEN<br />

DISEASE FREE<br />

Figure 1. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment 1: a) net percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit <strong>and</strong> b) frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten <strong>and</strong> disease<br />

free fruit found during storage in <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposed <strong>and</strong> c<strong>on</strong>trol (no <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>) fruit.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> storage <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit in different citrus varieties<br />

By varieties (Figure 2), <strong>the</strong> reducti<strong>on</strong> in <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit caused by <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure was<br />

significant in Hern<strong>and</strong>ina (both waxed <strong>and</strong> unwaxed) <strong>and</strong> Ellendale (<strong>on</strong>ly unwaxed). Oz<strong>on</strong>e<br />

exposure did not result in a significant reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit <str<strong>on</strong>g>level</str<strong>on</strong>g>s in Navel (waxed <strong>and</strong> unwaxed)<br />

or waxed Ellendale.<br />

Only two varieties (unwaxed Navel oranges <strong>and</strong> waxed Ellendale m<strong>and</strong>arins) showed slightly<br />

higher percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>; however <strong>the</strong>se differences were not significant.<br />

The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> significant effect <strong>on</strong> Navel oranges could have been due to two separate causes. First,<br />

<strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oranges in a 15 kg box (40-50 units) is <str<strong>on</strong>g>low</str<strong>on</strong>g>er than a box <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>and</strong>arin or clementines<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same weight (100-120 units), making <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample also smaller <strong>and</strong> more difficult to<br />

draw statistically significant c<strong>on</strong>clusi<strong>on</strong>s. In <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> <str<strong>on</strong>g>low</str<strong>on</strong>g>er surface area (in relati<strong>on</strong> to<br />

<strong>the</strong>ir volume) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oranges compared to <strong>the</strong> clementines or m<strong>and</strong>arins means that <strong>the</strong> total area<br />

exposed to <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> is also <str<strong>on</strong>g>low</str<strong>on</strong>g>er.<br />

5.11 - 3


45<br />

40<br />

35<br />

OZONE<br />

CONTROL<br />

% Rotten Fruit<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Navel w axed Navel unw axed Hern<strong>and</strong>ina<br />

w axed *<br />

Hern<strong>and</strong>ina<br />

unw axed *<br />

Ellendale w axed<br />

Ellendale<br />

unw axed*<br />

Figure 2. Ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure to reduce <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit by variety <strong>and</strong> wax coating, <strong>the</strong><br />

asterisk indicates significant difference.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wax coating <strong>on</strong> <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit showed by different varieties<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> was evident <strong>on</strong>ly <strong>on</strong> Ellendale unwaxed fruit as good c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Penicillium was<br />

observed for both waxed <strong>and</strong> unwaxed Hern<strong>and</strong>ina. As <strong>the</strong> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> is <strong>on</strong>ly superficial <strong>and</strong> it<br />

does not kill pathogens developing under <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fruit (12) , <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> waxed m<strong>and</strong>arins could have been because <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced c<strong>on</strong>tact <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mycelia<br />

growing underneath <strong>the</strong> wax coating with <strong>the</strong> gaseous <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> in <strong>the</strong> air. However <strong>the</strong> effect is<br />

variable as wax coating did not make a difference for <strong>the</strong> Hern<strong>and</strong>ina clementines <strong>and</strong> more work<br />

would be necessary to assess <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> waxed <strong>and</strong> unwaxed fruit.<br />

Spore counts<br />

Even when <strong>the</strong> navel oranges did not show a significant difference in <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit, <strong>the</strong><br />

average amount <str<strong>on</strong>g>of</str<strong>on</strong>g> spores (ml) removed from <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> fruit under c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s was<br />

more than double than that observed under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> (Figure 3). This difference was statistically<br />

significant <strong>and</strong> c<strong>on</strong>sistent with previous studies showing <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to reduce sporulati<strong>on</strong><br />

(4), (5) . However, this is <strong>the</strong> first time that this effect has been noticed in citrus at <strong>the</strong> <str<strong>on</strong>g>low</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s we worked with (180-200 ppb). Higher c<strong>on</strong>centrati<strong>on</strong>s can be damaging to humans<br />

if exposed for more than 15 minutes (16) , but are more effective reducing sporulati<strong>on</strong> completely:<br />

Harding (4) used 1.0 ppm <strong>and</strong> Palou et al (5) used 0.3 ppm to achieve a reducti<strong>on</strong> in sporulati<strong>on</strong>. The<br />

mechanism by which <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> can reduce fungal sporulati<strong>on</strong> is not known at present but it would<br />

appear that <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> is able to restrict <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reproductive life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> fungi. O<strong>the</strong>r<br />

work also indicates <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> can restrict sporulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r fungi e.g.Botrytis (17)<br />

The fruits that became rotten under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure could have become infected in <strong>the</strong> field, at<br />

harvest or during postharvest operati<strong>on</strong>s. It can be assumed that <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> both c<strong>on</strong>trol <strong>and</strong><br />

treatment batches to have been infected in <strong>the</strong> field, harvesting or postharvest operati<strong>on</strong>s was <strong>the</strong><br />

same (<strong>the</strong> fruit was part <str<strong>on</strong>g>of</str<strong>on</strong>g> a single batch, harvested <strong>the</strong> same day, from <strong>the</strong> same plot, transported<br />

<strong>and</strong> processed under <strong>the</strong> same c<strong>on</strong>diti<strong>on</strong>s). So <strong>the</strong> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> related reducti<strong>on</strong> observed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rotten fruit is potentially due to <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to ei<strong>the</strong>r restrict fungal growth or <str<strong>on</strong>g>low</str<strong>on</strong>g>er <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spores in <strong>the</strong> storage atmosphere, hence <str<strong>on</strong>g>low</str<strong>on</strong>g>ering <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> re-infecti<strong>on</strong>. Harding (4) , when<br />

using higher (1.0 ppm) c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> reported a suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong>, but he found<br />

that <strong>the</strong>re was no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit obtained.<br />

Studies by o<strong>the</strong>r researchers (9) suggest that <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> improves <strong>the</strong> firmness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> citrus skin (skin<br />

firmness was not measured in <strong>the</strong>se experiments, but <strong>the</strong> fruit exposed to <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>, especially <strong>the</strong><br />

clementines were noticeably firmer to <strong>the</strong> touch). This effect <strong>on</strong> <strong>the</strong> firmness can also explain <strong>the</strong><br />

5.11 - 4


<str<strong>on</strong>g>low</str<strong>on</strong>g>er amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rotten fruit under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>. Fruits with str<strong>on</strong>ger skin could be more difficult to infect<br />

by Penicillium than weakened fruits. O<strong>the</strong>r beneficial effects for <strong>the</strong> fruit include <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g><br />

to destroy ethylene (18) . Reducing ethylene to very <str<strong>on</strong>g>low</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s during citrus fruit storage<br />

results in less decay <strong>and</strong> prol<strong>on</strong>gs shelf life (19) . Crisosto et al (7) <strong>and</strong> Skog <strong>and</strong> Chu (8) reported <strong>the</strong><br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> to reduce ethylene <str<strong>on</strong>g>level</str<strong>on</strong>g>s in fresh produce storage.<br />

350000<br />

300000<br />

OZONE<br />

CONTROL<br />

250000<br />

Spores/ml<br />

200000<br />

150000<br />

100000<br />

50000<br />

Quality parameters<br />

0<br />

-=<br />

Figure 3. Reducti<strong>on</strong> in spore counts (ml)caused by <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure. The error<br />

bar shows <strong>the</strong> st<strong>and</strong>ard error <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mean.<br />

The soluble solid c<strong>on</strong>tent, tritatable acidity <strong>and</strong> juice percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples taken for each<br />

variety were not different in commercial terms. All varieties in both envir<strong>on</strong>ments showed <str<strong>on</strong>g>level</str<strong>on</strong>g>s<br />

above <strong>the</strong> st<strong>and</strong>ards for <strong>the</strong> industry, <strong>and</strong> were not different between c<strong>on</strong>trol <strong>and</strong> treatment. These<br />

results coincide with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Garcia et al (9) which studied <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure <strong>on</strong> <strong>quality</strong><br />

parameters <strong>on</strong> oranges <strong>and</strong> m<strong>and</strong>arins.<br />

Residue analysis<br />

Lower <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide residues were found <strong>on</strong> fruit stored with <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>, <strong>the</strong> reducti<strong>on</strong> was bigger<br />

for imazalil <strong>and</strong> malathi<strong>on</strong> than chlorpyrifos (Figure 4). The <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> residues in both envir<strong>on</strong>ments<br />

were well be<str<strong>on</strong>g>low</str<strong>on</strong>g> <strong>the</strong> MRLs (maximum residue limits). We have repeated this analysis for o<strong>the</strong>r<br />

experiments (data not shown) <strong>and</strong> obtained similar results. These results show that <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> could be<br />

useful in <str<strong>on</strong>g>low</str<strong>on</strong>g>ering <strong>the</strong> residues <str<strong>on</strong>g>of</str<strong>on</strong>g> fungicides <strong>on</strong> citrus fruit; fur<strong>the</strong>r research is needed to check if<br />

this affects <strong>the</strong> Penicillium c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> imazalil, but <strong>the</strong> evidence shown in this study suggests that is<br />

not <strong>the</strong> case. Oz<strong>on</strong>e is known to transform pesticides in aqueous envir<strong>on</strong>ments (3) , but very little<br />

work has been carried out using gaseous <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g><br />

0.8<br />

0.7<br />

OZONE<br />

CONTROL<br />

0.6<br />

0.5<br />

mg/kg<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Chlorpyrifos Imazalil Malathi<strong>on</strong><br />

Figure 4. Residue analysis results for three different pesticides. The fruit used for<br />

<strong>the</strong> analysis was stored under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> for 35 days. This results are from a<br />

single analysis performed by a commercial laboratory.<br />

5.11 - 5


Experiment 2 (Fruit with no postharvest fungicide treatment)<br />

In this experiment, <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> nets c<strong>on</strong>taining rotten fruit was always <str<strong>on</strong>g>low</str<strong>on</strong>g>er under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>. If <strong>the</strong><br />

1.5kg nets <strong>and</strong> <strong>the</strong> 5 fruits nets are taken separately <strong>the</strong> effect is not significant, but <strong>the</strong> overall<br />

effect (27 % less rotten nets under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>) is significant (Figure 5).<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this experiment show that <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> its own can c<strong>on</strong>trol Penicillium to a certain<br />

extent but that it is probably not as effective as traditi<strong>on</strong>al treatments in c<strong>on</strong>trolling Penicillium rot<br />

as a relatively high <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> spoiled fruits were obtained in storage under <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>. For example, if <strong>the</strong><br />

fruit had been imazalil treated we could have expected a much <str<strong>on</strong>g>low</str<strong>on</strong>g>er loss to spoilage. However<br />

this c<strong>on</strong>clusi<strong>on</strong> must be treated carefully as it is possible that <strong>the</strong> fruit used in this experiment had a<br />

high Penicillium loading <strong>and</strong> even imazalil treated fruit may have shown high disease <str<strong>on</strong>g>level</str<strong>on</strong>g>s.<br />

Overall though, <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> could be a powerful tool in combinati<strong>on</strong> with o<strong>the</strong>r residue-free postharvest<br />

treatments in <strong>the</strong> search for alternatives to traditi<strong>on</strong>al fungicides.<br />

12<br />

OZONE<br />

CONTROL<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> nets with rotten fruits<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1.5 kg nets 5 fruit nets Total *<br />

Figure 5. 2 nd experiment results: Number <str<strong>on</strong>g>of</str<strong>on</strong>g> nets showing rotten fruits. The asterisk<br />

shows a significant difference.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

This work shows that <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> storage can <str<strong>on</strong>g>low</str<strong>on</strong>g>er natural <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rot in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus types<br />

caused by Penicillium in commercial storage c<strong>on</strong>diti<strong>on</strong>s potentially by a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mechanisms including: a) <str<strong>on</strong>g>low</str<strong>on</strong>g>ering <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> spores produced in <strong>the</strong> storage envir<strong>on</strong>ment, b)<br />

destroying ethylene <strong>and</strong> c) improving firmness/resistance to disease. There were no effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> in <strong>the</strong> <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> citrus fruit expressed in <str<strong>on</strong>g>level</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble solids, titratable acidity <strong>and</strong> juice<br />

percentage. Also <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> can reduce <strong>the</strong> <str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide residues found <strong>on</strong> fruit. Results indicate<br />

that <strong>the</strong> best use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> is probably in combinati<strong>on</strong> with traditi<strong>on</strong>al treatments to improve overall<br />

loss due to fungal spoilage: this could open <strong>the</strong> door to use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>low</str<strong>on</strong>g>er doses <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides in<br />

c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> storage or as part <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r novel combinati<strong>on</strong> treatments.<br />

5.11 - 6


References<br />

1. Rice, R. G., Farquhar, W., <strong>and</strong> Bollyky, L. J. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> for increasing storage<br />

time for perishable foods. Oz<strong>on</strong>e Sci. Eng., 4: 147-163 (1982)<br />

2. Sus<str<strong>on</strong>g>low</str<strong>on</strong>g>, T.V. Oz<strong>on</strong>e applicati<strong>on</strong>s for postharvest disinfecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> edible horticultural crops. ANS<br />

Publicati<strong>on</strong>, 8133: 1–8 (2004)<br />

3. Karaca, H <strong>and</strong> Velioglu, Y. S. Oz<strong>on</strong>e applicati<strong>on</strong>s in fruit <strong>and</strong> vegetable processing. Food Reviews<br />

Internati<strong>on</strong>al, 23: 91–106 (2007)<br />

4. Harding, P. R., Jr. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> Penicillium mold decay <strong>and</strong> sporulati<strong>on</strong>. Plant Dis. Rep, 52: 245-<br />

247 (1968)<br />

5. Palou, L., Smilanick, J.L., Crisosto, C.H., Mansour, M. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> exposure <strong>on</strong> <strong>the</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> green <strong>and</strong> blue molds <strong>on</strong> cold stored citrus fruit. Plant Dis., 85: 632–638 (2001)<br />

6. Nadas, A., Olmo, M., <strong>and</strong> Garcia, J. M. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Botrytis cinerea <strong>and</strong> strawberry <strong>quality</strong> in <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>enriched<br />

atmospheres. J. Food Sci., 68: 1798-1802 (2003)<br />

7. Crisosto, C. H., Garner, D., Smilanick, J., <strong>and</strong> Z<str<strong>on</strong>g>of</str<strong>on</strong>g>foli, J.P. Ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> “Oxtomcav” <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> generator to<br />

reduce ethylene <str<strong>on</strong>g>level</str<strong>on</strong>g>s in an export c<strong>on</strong>tainer. Central Valley Postharvest Newsletter, 9(2):7-8 (2000)<br />

8. Skog, L. J. <strong>and</strong> Chu, C. L. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> qualities <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits <strong>and</strong> vegetables in cold storage. Can. J.<br />

Plant Sci., 81: 773-778 (2001)<br />

9. García, J. M., Castellano, J. M., Nadas, A., <strong>and</strong> Olías, J. M. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> citrus storage. Pages<br />

237-241 in: Proc. COST 914-COST 915. Workshop: N<strong>on</strong> C<strong>on</strong>venti<strong>on</strong>al Methods for <strong>the</strong> C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Postharvest Disease <strong>and</strong> Microbial Spoilage. October 9-11, Bologna, Italy (1998)<br />

10. Aguayo, E., Escal<strong>on</strong>a, V.H. <strong>and</strong> Artes F. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic exposure to <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> gas <strong>on</strong> physicochemical,<br />

sensorial <strong>and</strong> microbial <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whole <strong>and</strong> sliced tomatoes. Postharvest Biology <strong>and</strong> Technology, 39:<br />

169-177 (2006)<br />

11. Sarig. P., T. Zahvi, T., Zutkhi, Y., Yannai, S., Lisker, N., <strong>and</strong> Ben-Arie, R. Oz<strong>on</strong>e for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> postharvest<br />

decay <str<strong>on</strong>g>of</str<strong>on</strong>g> table grapes caused by Rhizopus stol<strong>on</strong>ifer. Physiol. Molecular Plant Pathol., 48:<br />

403-415 (1996)<br />

12. Palou, L., Smilanick, J.L. <strong>and</strong> Margosan, D.A. Oz<strong>on</strong>e applicati<strong>on</strong>s for sanitati<strong>on</strong> <strong>and</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

postharvest diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh fruits <strong>and</strong> vegetables in: Recent Advances in Alternative Postharvest<br />

Technologies to C<strong>on</strong>trol Fungal Diseases in Fruits & Vegetables Transworld Research Network.<br />

37/661 (2), Fort P.O., Triv<strong>and</strong>rum-695 023, Kerala, India (2006)<br />

13. Palou, L., Smilanick, J.L <strong>and</strong> Crisosto C.H. C<strong>on</strong>servación frigorífica de cítricos en atmósferas<br />

oz<strong>on</strong>izadas: efecto sobre las enfermedades de postcosecha. Levante Agrícola, 372: 321-328 (2004)<br />

14. Holmes, G. J. <strong>and</strong> Eckert, J.W. Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Penicillium digitatum <strong>and</strong> P. italicum to Postharvest Citrus<br />

Fungicides in California. Phytopathology, 89, 716-721.(1999)<br />

15. Smilanick J.L, Mansour, M.F <strong>and</strong> Sorens<strong>on</strong>, D. Pre- <strong>and</strong> Postharvest Treatments to C<strong>on</strong>trol Green<br />

Mold <str<strong>on</strong>g>of</str<strong>on</strong>g> Citrus Fruit During Ethylene Degreening. Plant Dis. 90, 89-96 (2006)<br />

16. Health <strong>and</strong> Safety Executive (United Kingdom). Guidance Note EH 40: Occupati<strong>on</strong>al Exposure Limits (2007)<br />

17. Tzortakis, N., Singlet<strong>on</strong>, J <strong>and</strong> Barnes, J.. Deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>low</str<strong>on</strong>g>-<str<strong>on</strong>g>level</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g>-<str<strong>on</strong>g>enrichment</str<strong>on</strong>g> for <strong>the</strong><br />

preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chilled fresh produce. Postharvest Biology <strong>and</strong> Technology 43(2), 261-270 (2007)<br />

18. Dicks<strong>on</strong>, R. G., Law, S. E., Kays, S. J., <strong>and</strong> Eiteman, M. A. Abatement <str<strong>on</strong>g>of</str<strong>on</strong>g> ethylene by <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> treatment<br />

in c<strong>on</strong>trolled atmosphere storage <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits <strong>and</strong> vegetables. Pages 1-9 in: Proc. Int. Winter Meet. Amer.<br />

Soc. Agric. Engin. December 15-18, Nashville, TN (1992)<br />

19. Smilanick, J.L. Postharvest use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>oz<strong>on</strong>e</str<strong>on</strong>g> <strong>on</strong> citrus fruit. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida IFAS. Packinghouse<br />

Newsletter 199: 1-6 (2003)<br />

5.11 - 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!