Review Article - international journal of advances in pharmaceutical ...

Review Article - international journal of advances in pharmaceutical ... Review Article - international journal of advances in pharmaceutical ...

ijapronline.org
from ijapronline.org More from this publisher
14.06.2015 Views

Umesh Shiroya., et al. / International Journal of Advances in Pharmaceutical Research IJAPR Available Online through www.ijapronline.org Review Article ISSN: 2230 – 7583 DNA-GYRASE: A POTENTIAL AND EMERGING TARGET FOR FINDING NOVEL ANTI-BACTERIAL AGENTS Umesh Shiroya * , Amit Poshiya, Anand Patel, Ankit Parikh, Sanjay Patel Department of Pharmaceutical Chemistry, L.B.Rao Institute of Pharmaceutical Education and Research, Bethak Road, Khambhat-388620, Gujarat, India Received on 22 – 06 - 2011 Revised on 21 – 07- 2011 Accepted on 12 – 08 – 201 ABSTRACT DNA-gyrase has drawn much attention as selected target for finding potent anti-bacterial agents against multi-drug resistant strains. DNA-gyrase, a typical of type-II topoisomerase, has been known to cause DNA replication, transcription and recombination. DNA-gyrase catalyzes the ATP-dependent introduction of negative supercoils into bacterial DNA as well as the decatenation and unknotting of DNA. The DNA-gyrase enzyme consists of two subunits, A and B, of molecular mass 97 and 90 kDa, respectively, with the active enzyme being an A 2 B 2 complex. The A subunit of DNA gyrase is involved in DNA breakage and reunion while the B subunit catalyzes the hydrolysis of ATP. In view of the existing literature, it is evident that the emergence of bacterial resistance to most of the antibacterials used clinically represents a major challenge in today’s antibiotic research, outweighing the task to develop drugs of higher potency, expanded spectrum of activity, and improved safety profile. Key Words: DNA-gyrase, Type-II Topoisomerase, Multi-drug resistant strains. INTRODUCTION DNA gyrase is an A 2 B 2 holoenzyme that mediates various reactions essential for the bacterial cell, e.g. the introduction of negative superhelical turns into bacterias circular DNA. The increasing use of anti-bacterial agents such as beta-lactams, macrolides, vancomycin or quinolones has resulted in the emergence of multi-drug resistant pathogens, especially gram-positive bacteria. i Widespread emergence of bacterial resistance to present drugs represents a serious problem in treatment of bacterial infections. Modern approaches toward development of new potential inhibitors are based on knowledge of structure and function of proteins specific to bacteria. One of them is DNA gyrase, a characteristic and essential bacterial enzyme whose inactivation leads to bacterial death. 2 * For correspondence Umeshkumar Chaturbhai Shiroya Tel.: +91 9033109108 E-mail: u_shiroya@yahoo.com DNA-gyrase has drawn much attention as selected target for finding potent anti-bacterial agents against multi-drug resistant strains such as methicillinresistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Penicillinresistant Streptococci pneumonia (PRSP). Quinolones (e.g. ciprofloxacin) are the only class of the DNA gyrase inhibitors currently used in clinical practice. They act by inhibiting the GyrA subunit, thus interfering with the DNA cleavage and relegation reactions. The coumarins (e.g. novobiocin) and cyclo-thialidines, natural antibiotics from the Streptomyces organisms, are the most studied inhibitors of the GyrB-subunit. Both classes act as competitive inhibitors of the ATP-binding site on the GyrB subunit, thus inhibiting the ATP-dependent step in the enzyme catalytic cycle. The inhibitory mechanism has also been characterized with radiolabelled benzoyl-cyclothialidine and dihydronovobiocin and by structural analysis. More recently, GyrB inhibitors from various chemical classes have been reported including indazole, pyrazole, benzimidazole, phenol and indolinone. 2 DISCOVERY OF DNA-GYRASE AS AN ANTI- IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 480

Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

IJAPR<br />

Available Onl<strong>in</strong>e through<br />

www.ijapronl<strong>in</strong>e.org<br />

<strong>Review</strong> <strong>Article</strong><br />

ISSN: 2230 – 7583<br />

DNA-GYRASE: A POTENTIAL AND EMERGING TARGET FOR FINDING NOVEL ANTI-BACTERIAL<br />

AGENTS<br />

Umesh Shiroya * , Amit Poshiya, Anand Patel, Ankit Parikh, Sanjay Patel<br />

Department <strong>of</strong> Pharmaceutical Chemistry, L.B.Rao Institute <strong>of</strong> Pharmaceutical Education and Research, Bethak<br />

Road, Khambhat-388620, Gujarat, India<br />

Received on 22 – 06 - 2011 Revised on 21 – 07- 2011 Accepted on 12 – 08 – 201<br />

ABSTRACT<br />

DNA-gyrase has drawn much attention as selected target for f<strong>in</strong>d<strong>in</strong>g potent anti-bacterial agents aga<strong>in</strong>st multi-drug<br />

resistant stra<strong>in</strong>s. DNA-gyrase, a typical <strong>of</strong> type-II topoisomerase, has been known to cause DNA replication,<br />

transcription and recomb<strong>in</strong>ation. DNA-gyrase catalyzes the ATP-dependent <strong>in</strong>troduction <strong>of</strong> negative supercoils <strong>in</strong>to<br />

bacterial DNA as well as the decatenation and unknott<strong>in</strong>g <strong>of</strong> DNA. The DNA-gyrase enzyme consists <strong>of</strong> two<br />

subunits, A and B, <strong>of</strong> molecular mass 97 and 90 kDa, respectively, with the active enzyme be<strong>in</strong>g an A 2 B 2 complex.<br />

The A subunit <strong>of</strong> DNA gyrase is <strong>in</strong>volved <strong>in</strong> DNA breakage and reunion while the B subunit catalyzes the<br />

hydrolysis <strong>of</strong> ATP. In view <strong>of</strong> the exist<strong>in</strong>g literature, it is evident that the emergence <strong>of</strong> bacterial resistance to most<br />

<strong>of</strong> the antibacterials used cl<strong>in</strong>ically represents a major challenge <strong>in</strong> today’s antibiotic research, outweigh<strong>in</strong>g the task<br />

to develop drugs <strong>of</strong> higher potency, expanded spectrum <strong>of</strong> activity, and improved safety pr<strong>of</strong>ile.<br />

Key Words: DNA-gyrase, Type-II Topoisomerase, Multi-drug resistant stra<strong>in</strong>s.<br />

INTRODUCTION<br />

DNA gyrase is an A 2 B 2 holoenzyme that<br />

mediates various reactions essential for the bacterial<br />

cell, e.g. the <strong>in</strong>troduction <strong>of</strong> negative superhelical<br />

turns <strong>in</strong>to bacterias circular DNA. The <strong>in</strong>creas<strong>in</strong>g use<br />

<strong>of</strong> anti-bacterial agents such as beta-lactams,<br />

macrolides, vancomyc<strong>in</strong> or qu<strong>in</strong>olones has resulted <strong>in</strong><br />

the emergence <strong>of</strong> multi-drug resistant pathogens,<br />

especially gram-positive bacteria. i Widespread<br />

emergence <strong>of</strong> bacterial resistance to present drugs<br />

represents a serious problem <strong>in</strong> treatment <strong>of</strong> bacterial<br />

<strong>in</strong>fections. Modern approaches toward development<br />

<strong>of</strong> new potential <strong>in</strong>hibitors are based on knowledge <strong>of</strong><br />

structure and function <strong>of</strong> prote<strong>in</strong>s specific to bacteria.<br />

One <strong>of</strong> them is DNA gyrase, a characteristic and<br />

essential bacterial enzyme whose <strong>in</strong>activation leads<br />

to bacterial death. 2<br />

* For correspondence<br />

Umeshkumar Chaturbhai Shiroya<br />

Tel.: +91 9033109108<br />

E-mail: u_shiroya@yahoo.com<br />

DNA-gyrase has drawn much attention as selected<br />

target for f<strong>in</strong>d<strong>in</strong>g potent anti-bacterial agents aga<strong>in</strong>st<br />

multi-drug resistant stra<strong>in</strong>s such as methicill<strong>in</strong>resistant<br />

Staphylococcus aureus (MRSA),<br />

vancomyc<strong>in</strong>-resistant enterococci (VRE), Penicill<strong>in</strong>resistant<br />

Streptococci pneumonia (PRSP).<br />

Qu<strong>in</strong>olones (e.g. cipr<strong>of</strong>loxac<strong>in</strong>) are the only class <strong>of</strong><br />

the DNA gyrase <strong>in</strong>hibitors currently used <strong>in</strong> cl<strong>in</strong>ical<br />

practice. They act by <strong>in</strong>hibit<strong>in</strong>g the GyrA subunit,<br />

thus <strong>in</strong>terfer<strong>in</strong>g with the DNA cleavage and<br />

relegation reactions. The coumar<strong>in</strong>s (e.g. novobioc<strong>in</strong>)<br />

and cyclo-thialid<strong>in</strong>es, natural antibiotics from the<br />

Streptomyces organisms, are the most studied<br />

<strong>in</strong>hibitors <strong>of</strong> the GyrB-subunit. Both classes act as<br />

competitive <strong>in</strong>hibitors <strong>of</strong> the ATP-b<strong>in</strong>d<strong>in</strong>g site on the<br />

GyrB subunit, thus <strong>in</strong>hibit<strong>in</strong>g the ATP-dependent<br />

step <strong>in</strong> the enzyme catalytic cycle. The <strong>in</strong>hibitory<br />

mechanism has also been characterized with<br />

radiolabelled benzoyl-cyclothialid<strong>in</strong>e and<br />

dihydronovobioc<strong>in</strong> and by structural analysis. More<br />

recently, GyrB <strong>in</strong>hibitors from various chemical<br />

classes have been reported <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>dazole,<br />

pyrazole, benzimidazole, phenol and <strong>in</strong>dol<strong>in</strong>one. 2<br />

DISCOVERY OF DNA-GYRASE AS AN ANTI-<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 480


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

BACTERIAL TARGET<br />

The development <strong>of</strong> chemotherapy dur<strong>in</strong>g<br />

past 60 years constitute one <strong>of</strong> most important<br />

therapeutic <strong>advances</strong> <strong>in</strong> history <strong>of</strong> medic<strong>in</strong>e and<br />

antimicrobial drugs are the greatest contribution <strong>of</strong><br />

present century to therapeutics. Potential therapeutic<br />

targets are be<strong>in</strong>g disclosed with <strong>in</strong>creas<strong>in</strong>g frequency<br />

and the exponential growth will cont<strong>in</strong>ue dur<strong>in</strong>g the<br />

next decades. In this situation there is a need for rapid<br />

and effective target validation and for accelerated<br />

lead discovery procedures. Organic chemists are<br />

<strong>in</strong>creas<strong>in</strong>gly direct<strong>in</strong>g their attention towards<br />

synthetic aspects <strong>of</strong> biomolecules and biologically<br />

active compounds, biosynthesized by plants and<br />

animals.<br />

DNA-gyrase, a typical <strong>of</strong> type-II<br />

topoisomerase, has been known to cause DNA<br />

replication, transcription and recomb<strong>in</strong>ation. DNAgyrase<br />

catalyzes the ATP-dependent <strong>in</strong>troduction <strong>of</strong><br />

negative supercoils <strong>in</strong>to bacterial DNA as well as the<br />

decatenation and unknott<strong>in</strong>g <strong>of</strong> DNA. The DNAgyrase<br />

enzyme consists <strong>of</strong> two subunits, A and B, <strong>of</strong><br />

molecular mass 97 and 90 kDa, respectively, with the<br />

active enzyme be<strong>in</strong>g an A2B2 complex. The A<br />

subunit <strong>of</strong> DNA gyrase is <strong>in</strong>volved <strong>in</strong> DNA breakage<br />

and reunion while the B subunit catalyzes the<br />

hydrolysis <strong>of</strong> ATP. DNA-gyrase is ma<strong>in</strong>ly <strong>in</strong>hibited<br />

by qu<strong>in</strong>olones and coumar<strong>in</strong>s. Some <strong>of</strong> which are<br />

widely used for the treatment <strong>of</strong> bacterial <strong>in</strong>fections<br />

diseases. Qu<strong>in</strong>olones, <strong>in</strong>hibit the DNA breakagereunion<br />

cycle by b<strong>in</strong>d<strong>in</strong>g to the subunit A and by<br />

block<strong>in</strong>g the gyrase-DNA complex while the latter<br />

act on subunit B. In the absence <strong>of</strong> the ATP, DNA<br />

gyrase catalyzes only the relaxation <strong>of</strong> supercoiled<br />

DNA but not the <strong>in</strong>troduction <strong>of</strong> negative supercoils.<br />

Unfortunately multidrug-resistant gram-positive have<br />

started pos<strong>in</strong>g serious issues <strong>in</strong> medical science to<br />

deal with. To overcome the limitations <strong>of</strong> the known<br />

DNA-gyrase <strong>in</strong>hibitor, it has become imperative to<br />

identify new class <strong>of</strong> compounds. 3,4<br />

ANTI-BACTERIAL STUDIES BASED ON<br />

BACTERIAL DNA-GYRASE AS TARGET<br />

ENZYME<br />

A number <strong>of</strong> studies have carried out for<br />

f<strong>in</strong>d<strong>in</strong>g potent anti-bacterial agents target<strong>in</strong>g bacterial<br />

DNA-gyrase. Mitscher L.A. et.al 5 have reported<br />

synthesis and antimicrobial activity <strong>of</strong> the<br />

enantiomers <strong>of</strong> 6-fluoro-7-(1-piperaz<strong>in</strong>yl)-1-(2’-<br />

trans-phenyl-1’-cyclopropyl)-1,4-dihydro-4-<br />

oxoqu<strong>in</strong>ol<strong>in</strong>e-3-carboxylic acid (1) as chiral DNAgyrase<br />

<strong>in</strong>hibitors.<br />

Wentland M.P. et.al 6 have reported<br />

synthesis and bacterial DNA-gyrase <strong>in</strong>hibitory<br />

properties <strong>of</strong> a spirocyclopropyl-qu<strong>in</strong>olone<br />

derivatives (2). Rosen T. et.al 7 have reported<br />

synthesis and DNA-gyrase <strong>in</strong>hibitory activity <strong>of</strong> 3-<br />

dienoyl tetramic acid derivatives (3). Tetramic acids<br />

were recurrent motif among natural products<br />

orig<strong>in</strong>at<strong>in</strong>g from a variety <strong>of</strong> mar<strong>in</strong>e and terrestrial<br />

species such as sponges, cyanobacteria, bacteria and<br />

fungi. The ability <strong>of</strong> various synthetic 3-dienoyl<br />

tetramic acids to <strong>in</strong>hibit bacterial DNA-gyrase was<br />

<strong>in</strong>vestigated. Out <strong>of</strong> 33 compounds with variances <strong>in</strong><br />

the residues at C 5, N and at the term<strong>in</strong>al C=C bond<br />

those derivatives <strong>in</strong>hibited supercoil<strong>in</strong>g by DNAgyrase<br />

isolated from E.coli H560, us<strong>in</strong>g norfloxac<strong>in</strong><br />

as a standard. Kondo H. et.al 8 have reported<br />

synthesis and anti-bacterial activity <strong>of</strong> thiazolo-,<br />

oxazolo- and imidazolo-[3,2-a][1,8]naphthyrid<strong>in</strong>ecarboxylic<br />

acid derivatives (4).<br />

Hubschwerlen C. et.al 9 have reported<br />

design, synthesis and biological activity <strong>of</strong> pyrimido<br />

[1,6-a]benzimidazoles (5) as novel DNA-gyrase<br />

<strong>in</strong>hibitors. J<strong>in</strong>bo Y. et.al 10 have reported synthesis<br />

and anti-bacterial activity <strong>of</strong> tetracyclic pyrid<strong>in</strong>e<br />

carboxylic acid with a thiazolid<strong>in</strong>e r<strong>in</strong>g, 1,2-dihydro-<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 481


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

9,1-(epoxymethano)-7-fluoro-8-(4-methyl-1-<br />

piperaz<strong>in</strong>yl)-5-oxo-5H-thaizolo[3,2-α]qu<strong>in</strong>ol<strong>in</strong>e-4-<br />

carboxylic acid (6) and variants with a nitrogen atom<br />

or carbonyl group <strong>in</strong> place <strong>of</strong> the 10-position oxygen<br />

atom and evaluated aga<strong>in</strong>st gram-positive organisms<br />

and DNA-gyrase <strong>of</strong> E.coli.<br />

Atarashi S. et.al 11 have reported synthesis<br />

and SAR <strong>of</strong> 1-(2-fluorocyclopropyl)-3-pyridone<br />

carboxylic acid anti-bacterial agents (7) and<br />

evaluated for their anti-bacterial activity aga<strong>in</strong>st<br />

gram-positive and gram-negative organisms. Inoue<br />

Y. et.al 12 have reported synthesis and anti-bacterial<br />

activity <strong>of</strong> thiazolopyraz<strong>in</strong>e-<strong>in</strong>corporated tetracyclic<br />

qu<strong>in</strong>olone (8) antibacterials. J<strong>in</strong>bo Y. et.al 13 have<br />

reported new oxidation method for the synthesis <strong>of</strong><br />

4,9b-diaza-8,9b-dihydro-6-fluoro-5-(4-methyl-1-<br />

piperaz<strong>in</strong>yl)-8-oxo-1- thia-1H-cyclopenta[cd]<br />

phenalene-9-carboxylic acid (9), a potent DNAgyrase<br />

<strong>in</strong>hibitor and exhibited anti-bacterial activity<br />

aga<strong>in</strong>st gram-positive and gram-negative bacteria.<br />

New oxidation method <strong>in</strong>volved the conversion <strong>of</strong><br />

am<strong>in</strong>e to the im<strong>in</strong>e with DMSO activated by<br />

trifluoro-acetic anhydride or oxalyl chloride.<br />

Flamm R.K. et.al 14 have reported <strong>in</strong> vitro obta<strong>in</strong>ed from <strong>in</strong>-silico screen<strong>in</strong>g were evaluated<br />

evaluation <strong>of</strong> ABT-719, a novel compound <strong>of</strong> DNAgyrase<br />

<strong>in</strong>hibitors <strong>of</strong> 2-pyridones (10). ABT-719 was<br />

aga<strong>in</strong>st DNA-gyrase. Novel DNA-gyrase <strong>in</strong>hibitors<br />

were obta<strong>in</strong>ed, divided <strong>in</strong>to seven classes.<br />

more active aga<strong>in</strong>st gram-positive, gram-negative and 1) phenols 2) 2-am<strong>in</strong>otriaz<strong>in</strong>es 3) 4-<br />

anaerobic organisms. Barett D. et.al 15 have reported<br />

am<strong>in</strong>opyrimid<strong>in</strong>es 4) 2-am<strong>in</strong>opyrimid<strong>in</strong>es 5)<br />

new synthetic route for synthesis <strong>of</strong> pyrido[3,2,1-i,j] Pyrrolo-pyrimid<strong>in</strong>es 6) <strong>in</strong>dazoles and 7) 2-<br />

c<strong>in</strong>nol<strong>in</strong>e r<strong>in</strong>g system (11) <strong>of</strong> potent DNA-gyrase hydroxymethyl-<strong>in</strong>doles.<br />

<strong>in</strong>hibitors. Ohemeng K.A. et.al 16 have reported When the <strong>in</strong>-silico screen<strong>in</strong>g was performed, the<br />

synthesis and <strong>in</strong>hibitory activity aga<strong>in</strong>st DNA-gyrase <strong>in</strong>itial data set conta<strong>in</strong><strong>in</strong>g 3,50,000 compounds could be<br />

<strong>of</strong> a series <strong>of</strong> diphenic acid mono-hydroxamides (12). reduced to 3000 molecules. Test<strong>in</strong>g these 3000 selected<br />

Molecular diphenic acid monohydroxamides compounds <strong>in</strong> the DNA gyrase assay provided 150 hits<br />

<strong>in</strong>dicated that they b<strong>in</strong>d to the DNA-DNA gyrase clustered <strong>in</strong> 14 classes.<br />

complex <strong>in</strong> similar fashion as qu<strong>in</strong>olone series. Ma Seven classes could be validated as true, novel<br />

Z. et.al 17 have synthesized a series <strong>of</strong> 4H-4- DNA gyrase <strong>in</strong>hibitors that act by<br />

oxoqu<strong>in</strong>oliz<strong>in</strong>e derivatives (13) with structural b<strong>in</strong>d<strong>in</strong>g to the ATP b<strong>in</strong>d<strong>in</strong>g site located on subunit B.<br />

modification at C-8 position and evaluated for their LUDI method was used to dock<br />

antimicrobial activity aga<strong>in</strong>st gram-positive, gramnegative<br />

small needle type molecules <strong>in</strong>to the b<strong>in</strong>d<strong>in</strong>g<br />

and anaerobic organisms. Peixoto C. et.al 18 site. Only those molecules were accepted as valid hits that<br />

have synthesized a series <strong>of</strong> novel isothiochroman <strong>in</strong>-silico formed both critical H-bond. LUDI search<br />

2,2-dioxide and 1,2-benzoxath<strong>in</strong> 2,2-dioxide resulted <strong>in</strong> a list <strong>of</strong> 200 molecules that were<br />

compounds (14) and evaluated for their DNA-gyrase tested for their DNA-gyrase<br />

<strong>in</strong>hibitory activity. Boehm H. et.al 19 have reported <strong>in</strong>hibitory activity. The CATALYST search<br />

comb<strong>in</strong>ed approach <strong>of</strong> an <strong>in</strong> silico screen<strong>in</strong>g for required the precise topological<br />

potential low molecular weight <strong>in</strong>hibitors, a biased def<strong>in</strong>ition <strong>of</strong> essential ligand enzyme <strong>in</strong>teractions,<br />

highthroughput DNA-gyrase screen, validation <strong>of</strong> the i.e., H-bond donors/acceptors,<br />

screen<strong>in</strong>g hits by biophysical methods and a 3D van der-Waals <strong>in</strong>teractions, and excluded volumes.<br />

guided optimization process. Selected compounds The precise positions and types<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 482


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

<strong>of</strong> these key <strong>in</strong>ter-actions were def<strong>in</strong>ed <strong>in</strong> the cyclothialid<strong>in</strong>e-DNA gyrase X-ray<br />

structure us<strong>in</strong>g molecular model<strong>in</strong>g program MOLOC.<br />

Li Q. et.al 20 have reported synthesis and evaluation <strong>of</strong> 2-pyridones (15) as bacterial topoisomerase<br />

<strong>in</strong>hibitors. They have synthesized pyrido-pyrimid<strong>in</strong>es, qu<strong>in</strong>oliz<strong>in</strong>e and <strong>of</strong>loxac<strong>in</strong> bioisosteres from qu<strong>in</strong>olones,<br />

naphthridones and evaluated <strong>in</strong> vivo and <strong>in</strong> vitro. Gray J.L. et.al 21 have reported synthesis and biological activity <strong>of</strong><br />

qu<strong>in</strong>olones without the usual 6-fluor<strong>in</strong>e substituent as potent anti bacterial agents. A series <strong>of</strong> non-fluor<strong>in</strong>ated<br />

analogues <strong>of</strong> lev<strong>of</strong>loxac<strong>in</strong> (16) were synthesized and evaluated for its anti-bacterial activity.<br />

Kerns R.J. et.al 22 have reported the<br />

synthesis <strong>of</strong> symmetric and asymmetric piperaz<strong>in</strong>yl<br />

l<strong>in</strong>ked dimers <strong>of</strong> the fluoroqu<strong>in</strong>olones and evaluated<br />

for its anti-bacterial activity aga<strong>in</strong>st drug resistant<br />

stra<strong>in</strong>s <strong>of</strong> S.aureus, <strong>in</strong>clud<strong>in</strong>g stra<strong>in</strong>s possess<strong>in</strong>g<br />

resistant due to the NorA multidrug efflux pump and<br />

a mutation <strong>in</strong> the qu<strong>in</strong>olone resistant determ<strong>in</strong><strong>in</strong>g<br />

region <strong>of</strong> topoisomerase-IV. Gordeev M.F. et.al 23<br />

have synthesized and evaluated antimicrobial<br />

compounds <strong>in</strong>corporat<strong>in</strong>g oxazolid<strong>in</strong>one and<br />

qu<strong>in</strong>olone pharmacophore substructures. Selected<br />

compounds showed an improved potency over<br />

l<strong>in</strong>ezolid aga<strong>in</strong>st gram-positive and gram-negative<br />

pathogens and cipr<strong>of</strong>loxac<strong>in</strong> resistant S.aureus and<br />

enteroccous faecium stra<strong>in</strong>s. The Mechanism <strong>of</strong><br />

action for novel oxazolid<strong>in</strong>one-qu<strong>in</strong>olone hybrid<br />

antimicrobials was consistent with a comb<strong>in</strong>ation <strong>of</strong><br />

prote<strong>in</strong> synthesis and gyrase-A/ topoisomerase-IV<br />

<strong>in</strong>hibition. Foroumadi A. et.al 24 have synthesized a<br />

series <strong>of</strong> N-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-<br />

yl] piperaz<strong>in</strong>yl qu<strong>in</strong>olones (17). Hu X.E. et.al 25 have<br />

reported design and synthesis <strong>of</strong> novel qu<strong>in</strong>olone<br />

anti-bacterial agents bear<strong>in</strong>g (3S)-am<strong>in</strong>o-(4R)-<br />

ethylpiperid<strong>in</strong>es side-cha<strong>in</strong>s (18).<br />

Kuramoto Y. et.al 26 have reported novel<br />

anti-bacterial 8-chloroqu<strong>in</strong>olone with a distorted<br />

orientation <strong>of</strong> the N 1 -(5-am<strong>in</strong>o-2,4-difluorophenyl)<br />

group. They designed m-am<strong>in</strong>ophenyl groups as<br />

novel N-1 substituents <strong>of</strong> naphthyridones and<br />

qu<strong>in</strong>olones (19a and 19b). Tanitame A. et.al 27 have<br />

reported synthesis and antibacterial activity <strong>of</strong> novel<br />

and potent DNA gyrase <strong>in</strong>hibitors with azole r<strong>in</strong>g.<br />

The 4-piperidyl moiety and pyrazole r<strong>in</strong>g <strong>in</strong> 1-(3-<br />

chloro phenyl)-5-(4-phenoxyphenyl)-3-(4-<br />

piperidyl)pyrazole were transformed to other groups<br />

such as pyrazole, oxazole, and imidazole derivatives<br />

(20a and 20b) and <strong>in</strong>-vitro antibacterial activity <strong>of</strong><br />

synthesized compounds was evaluated aga<strong>in</strong>st DNA<br />

gyrase, topoisomerase-IV and qu<strong>in</strong>olone resistant<br />

cl<strong>in</strong>ical isolates and coumar<strong>in</strong> resistant laboratory<br />

isolates <strong>of</strong> gram positive bacteria with MIC values<br />

equivalent to those aga<strong>in</strong>st susceptible stra<strong>in</strong>s.<br />

Tanitame A. et.al 28 have designed and synthesized a<br />

series <strong>of</strong> novel <strong>in</strong>dazole derivatives (21a and 21b) as<br />

DNA gyrase <strong>in</strong>hibitors. The selected compounds<br />

were exhibited potent anti-bacterial activity aga<strong>in</strong>st<br />

gram-positive bacteria <strong>in</strong>clud<strong>in</strong>g multidrug resistant<br />

stra<strong>in</strong>s, Methicill<strong>in</strong> resistant S.aureus and<br />

Vancomyc<strong>in</strong> resistant Enterococcus. They have also<br />

studied structure -activity relationship. X-ray studies<br />

<strong>of</strong> <strong>in</strong>dazole analogues with a 24-kDa fragment <strong>of</strong><br />

DNA-gyrase B (PDB code: 1EI1) from S.aureus<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 483


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

revealed that 1) the <strong>in</strong>dazole scaffold forms<br />

postulated H-bond network with Asp-73 and a water<br />

molecule. 2) the ‘X’ moiety stacked on the Glu-50-<br />

Arg-76 salt bridge and ‘Y’ moiety was H-bonded to<br />

Arg-136. 3) The benzyloxy side cha<strong>in</strong> <strong>in</strong>teracts<br />

vander-waals <strong>in</strong>teraction with the lipophillic area<br />

around Ile-94. They also performed molecular<br />

dynamic simulations for 1ns at 298 K us<strong>in</strong>g the<br />

s<strong>of</strong>tware InsightII/Discover 95.0 with cvff field with<br />

each structure along the trajectory path be<strong>in</strong>g energym<strong>in</strong>imized.<br />

Tanitame A. et.al 29 have designed and<br />

synthesized novel 5-v<strong>in</strong>yl pyrazole analogues (22) by<br />

the decreas<strong>in</strong>g the lipophilicity <strong>of</strong> the parent<br />

compound, 3-[(3-methoxycarbonyl) cyclohexyl<br />

am<strong>in</strong>omethyl] <strong>in</strong>dazole derivatives while keep<strong>in</strong>g the<br />

vander-walls <strong>in</strong>teraction with the lipophilic area <strong>of</strong><br />

DNA gyrase-B. The selected compounds showed<br />

good anti-bacterial activity aga<strong>in</strong>st staphylococci and<br />

enterococci <strong>in</strong>clud<strong>in</strong>g multi drug resistant stra<strong>in</strong>s.<br />

Tran T. P. et.al 30 have reported the synthesis and<br />

structure –activity relationship <strong>of</strong> 3-<br />

hydroxyqu<strong>in</strong>azol<strong>in</strong>e-2,4-dione (23).<br />

Angehrn P. et.al 31 have reported new antibacterial<br />

agents derived from the DNA-gyrase<br />

<strong>in</strong>hibitor cyclothialid<strong>in</strong>e (24). From variety <strong>of</strong><br />

analogues, they have identified pharmacophoric core.<br />

Based on m<strong>in</strong>imal structure requirements, they have<br />

synthesized novel DNA-gyrase <strong>in</strong>hibitors <strong>of</strong><br />

subclasses like bicyclic lactones <strong>of</strong> different r<strong>in</strong>g<br />

sizes, seco-derivatives lack<strong>in</strong>g the lactone r<strong>in</strong>g.<br />

Tanitame A. et.al 32 have reported synthesis and antibacterial<br />

activity <strong>of</strong> pyrazole derivatives (25), as<br />

novel potent DNA-gyrase <strong>in</strong>hibitors and evaluated<br />

aga<strong>in</strong>st DNA-gyrase and Topoisomerase-IV.<br />

Schechner M. et.al 33 have reported functionality<br />

maps <strong>of</strong> the ATP b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> DNA-Gyrase-B and<br />

generation <strong>of</strong> a consensus model <strong>of</strong> ligand<br />

b<strong>in</strong>d<strong>in</strong>g. Multiple copy-simultaneous search<br />

method was used to construct functionality maps<br />

for functional groups b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the ATP b<strong>in</strong>d<strong>in</strong>g<br />

site <strong>of</strong> DNA-gyraseB. Calculations were done for<br />

three different conformations <strong>of</strong> the 24k-Da<br />

subdoma<strong>in</strong> <strong>of</strong> DNA-gyraseB. A cont<strong>in</strong>uum dielectric<br />

model to <strong>in</strong>clude solvent effects was used to calculate<br />

the b<strong>in</strong>d<strong>in</strong>g free energy for every functional groups.<br />

The aff<strong>in</strong>ities for DNA-gyrase-B were measured and<br />

clustered us<strong>in</strong>g procedure based on vander-waals<br />

contacts. The results gave consensus maps that<br />

<strong>in</strong>dicate those functional groups b<strong>in</strong>d<strong>in</strong>g sites that<br />

were <strong>in</strong> sensitive to the specific prote<strong>in</strong> conformation.<br />

The maps also demonstrate that functional groups<br />

other than those found <strong>in</strong> the known ligands may b<strong>in</strong>d<br />

competitively <strong>in</strong> the b<strong>in</strong>d<strong>in</strong>g sites <strong>of</strong> known ligands.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 484


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

O<br />

R<br />

O<br />

R 1<br />

N<br />

N<br />

H<br />

O<br />

21a<br />

HN<br />

N<br />

N<br />

H<br />

21b<br />

O R 2<br />

HN<br />

N<br />

NH<br />

22<br />

O<br />

O<br />

R 1<br />

R 3<br />

R 2 N O<br />

N<br />

F<br />

OH<br />

O<br />

23<br />

R 3<br />

S<br />

O<br />

R 2<br />

R 1 O<br />

24<br />

HN<br />

R 4<br />

O<br />

R 5<br />

R 1<br />

R 2 N<br />

N<br />

25<br />

NH<br />

Tanitame A. et.al 34 have reported the<br />

synthesis and anti-bacterial activity <strong>of</strong> a novel series<br />

<strong>of</strong> 5-[(E)-2-arylv<strong>in</strong>yl]pyrazole <strong>in</strong> 1-(3-chlorophenyl)-<br />

3-(4-piperdyl)-5-[(E)-2-(5-chloro-1H-<strong>in</strong>dol-3-<br />

yl)v<strong>in</strong>yl]pyrazole (26). Oblak M. et.al 35 have<br />

described fragment-based design <strong>of</strong> potent DNA<br />

gyrase <strong>in</strong>hibitors, us<strong>in</strong>g the tools <strong>of</strong> virtual screen<strong>in</strong>g<br />

and NMR spectroscopy. They identified b<strong>in</strong>d<strong>in</strong>g <strong>of</strong><br />

two low molecular weight fragments [2-am<strong>in</strong>o<br />

benzimidazole and <strong>in</strong>dol<strong>in</strong>-2-one] to the 24-kDa N-<br />

term<strong>in</strong>al fragment <strong>of</strong> DNA gyrase-B by 15 N HSQC<br />

NMR spectroscopy <strong>of</strong> isotopically labeled prote<strong>in</strong>.<br />

They have also done <strong>in</strong> silico optimization <strong>of</strong> <strong>in</strong>dol<strong>in</strong>-<br />

2-one that <strong>in</strong>hibited the DNA gyrase supercoil<strong>in</strong>g<br />

activity led to the discovery <strong>of</strong> potent DNA-gyrase<br />

<strong>in</strong>hibitors. Foroumadi A. et.al 36 have synthesized<br />

and evaluated a series <strong>of</strong> N-[2-(5-bromothiophen-2-<br />

R 1 4-PhCH 2 O-Ph, 4-CH 3 O-Ph,<br />

4-PhO-Ph, 2-Naphthyl<br />

R 2 H, CH 3 , 3-Cl-Ph, PhCH 2<br />

yl)-2-oxoethyl] and N-[2-(5-bromothiophen-2-yl)-2-<br />

oxoim<strong>in</strong>oethyl] derivatives <strong>of</strong> piperaz<strong>in</strong>yl qu<strong>in</strong>olones<br />

(27) as DNA gyrase <strong>in</strong>hibitors for its anti-bacterial<br />

activity. Hansen T.M. et.al 37 have reported synthesis<br />

and antibacterial activity <strong>of</strong> 5-methoxy and 5-<br />

hydroxy-6-fluoro-1,8-naphthyridone-3-carboxylic<br />

acid derivatives (28).Selected compounds were<br />

evaluated for cell-free bacterial prote<strong>in</strong> synthesis<br />

<strong>in</strong>hibition and whole cell antibacterial activity. Fecik<br />

R.A. et.al 38 have reported synthesis <strong>of</strong> 10-fluoro-6-<br />

methyl-6,7-dihydro-9-piperaz<strong>in</strong>yl-2Hbenzo[α]qu<strong>in</strong>oliz<strong>in</strong>-20-one-3-carboxylic<br />

acid (29) as<br />

chiral DNA gyrase <strong>in</strong>hibitors. Foroumadi A. et.al 39<br />

have synthesized N-(phenethyl) piperaz<strong>in</strong>yl<br />

qu<strong>in</strong>olone derivatives (30) that bear a methoxyim<strong>in</strong>o<br />

substituent and evaluated for its anti-bacterial activity<br />

aga<strong>in</strong>st gram-positive and gram-negative organisms.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 485


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

Grover G. et.al 40 have synthesized a series<br />

<strong>of</strong> novel nalidixic acid derivatives hav<strong>in</strong>g<br />

qu<strong>in</strong>azolones moiety (31) and screened for its antibacterial<br />

and antifungal activity. Wiles J.A. et.al 41<br />

have reported synthesis and biological activity <strong>of</strong><br />

isothiazolo pyrid<strong>in</strong>es (32), as a new class <strong>of</strong> antibacterial<br />

agents. Tran T.P. et.al 42 have reported<br />

synthesis and structure-activity relationship <strong>of</strong> 3-<br />

am<strong>in</strong>oqu<strong>in</strong>azol<strong>in</strong>ediones (33), a new class <strong>of</strong> bacterial<br />

type-2 topoisomerase <strong>in</strong>hibitors (DNA gyrase and<br />

topoisomerase-IV) and evaluated for their antibacterial<br />

activity. Dang Z. et.al 43 have reported the<br />

design and synthesis <strong>of</strong> novel fluoroqu<strong>in</strong>olone antibacterial<br />

agents (34) hav<strong>in</strong>g substituted piperid<strong>in</strong>e<br />

r<strong>in</strong>g, which bear an oxime substituent and substituted<br />

am<strong>in</strong>o group <strong>in</strong> the piperid<strong>in</strong>e r<strong>in</strong>g at the C-7<br />

position. Lubbers T. et.al 44 have reported design and<br />

synthesis <strong>of</strong> a series <strong>of</strong> novel 2,3-dihydroiso<strong>in</strong>dol-1-<br />

ones derivatives structurally related to cyclothialid<strong>in</strong>e<br />

with DNA-gyrase <strong>in</strong>hibitory activity aga<strong>in</strong>st grampositive<br />

bacterial stra<strong>in</strong>s, start<strong>in</strong>g from a biased<br />

needle screen<strong>in</strong>g hit. Foroumadi A. et.al 45 have<br />

synthesized a series <strong>of</strong> lev<strong>of</strong>loxac<strong>in</strong> analogues<br />

carry<strong>in</strong>g a 2-aryl-2-oxoethyl or 2-aryl-2-<br />

oxyim<strong>in</strong>oethyl moiety attached to the piperaz<strong>in</strong>e r<strong>in</strong>g<br />

(35) at C-10 position. Ostrov D.A. et.al 46 have<br />

identified novel targets for drug <strong>in</strong>teraction that differ<br />

from exist<strong>in</strong>g drug b<strong>in</strong>d<strong>in</strong>g structural pockets <strong>in</strong><br />

DNA-gyrase. They have selected novel DNA-gyrase<br />

<strong>in</strong>hibitors by high-throughput molecular dock<strong>in</strong>g by<br />

us<strong>in</strong>g DOCK version 5.1.0 and PDB prote<strong>in</strong> structure<br />

1AB4, 1KIJ and 2SPH. The small molecules were<br />

molecularly docked onto two sites <strong>of</strong> E.coli DNAgyrase<br />

target<strong>in</strong>g (1) a previously unexploredstructural<br />

pocket formed at the dimer <strong>in</strong>terface <strong>of</strong><br />

subunit A and (2) a small region <strong>of</strong> ATP b<strong>in</strong>d<strong>in</strong>g<br />

pocket on subunit B. This approach identified several<br />

small-molecules that <strong>in</strong>hibited DNA supercoil<strong>in</strong>g<br />

activity <strong>of</strong> DNA-gyrase <strong>of</strong> E.coli.<br />

Gradisar H. et.al 47 have determ<strong>in</strong>ed<br />

catech<strong>in</strong>s <strong>in</strong>hibit bacterial DNA-gyrase by b<strong>in</strong>d<strong>in</strong>g to<br />

the ATP b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> the gyraseB subunit. Specific<br />

b<strong>in</strong>d<strong>in</strong>g to the N-term<strong>in</strong>al 24-kDa fragment <strong>of</strong> gyrase-<br />

B subunit <strong>of</strong> PDB code: 1AJ6, was determ<strong>in</strong>ed by<br />

fluorescence spectroscopy and confirmed us<strong>in</strong>g<br />

heteronuclear 2D-NMR spectroscopy <strong>of</strong> the EGCG-<br />

15 N-labeled gyrase-B fragment complex. Four<br />

hydroxyl groups <strong>of</strong> catech<strong>in</strong>s showed hydrogen<br />

bond<strong>in</strong>g with Gly77, Thr165 and Asp73. Liu X.<br />

et.al 48 have synthesized a series <strong>of</strong> novel 1-(5-<br />

substituted-3-substituted 4,5-dihydropyrazole-1-<br />

yl)ethanone oxime ester derivatives. Hutch<strong>in</strong>gs<br />

K.M. et.al 49 have reported synthesis and antibacterial<br />

activity <strong>of</strong> a novel series <strong>of</strong> 3-am<strong>in</strong>oqu<strong>in</strong>azol<strong>in</strong>ediones<br />

(36). The C-7 side-cha<strong>in</strong> SAR aga<strong>in</strong>st grampositive<br />

and gram-negative organisms was reported.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 486


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

O<br />

HN<br />

S<br />

O<br />

32<br />

N<br />

F<br />

N<br />

R 3<br />

R 4<br />

R 5<br />

R 6<br />

33<br />

O<br />

N<br />

N<br />

R 1<br />

H<br />

N<br />

R2<br />

O<br />

F<br />

N N<br />

HN<br />

R 1 NOR 2<br />

34<br />

O<br />

N<br />

OH<br />

O<br />

X<br />

R<br />

N<br />

N<br />

O<br />

F<br />

N<br />

O<br />

O<br />

OH<br />

35<br />

X H, 4-Br, 4-Cl, 4-F, 4-CH 3 O,<br />

2,4-Cl 2 , 4-CH 3<br />

R O, NOH, NO, Benzyl<br />

Liu X. et.al 50 have synthesized a new series<br />

<strong>of</strong> 2-(1-(2-substituted –phenyl)-5-methyl-oxazol-4-<br />

yl)-3-(2-substituted-phenyl)-4,5-dihydro-1H-pyrazol-<br />

5-yl)substituted- 1,2,3,4-tetrahydroqu<strong>in</strong>ol<strong>in</strong>e<br />

derivatives (37). Ramesh E. et.al 51 have synthesized<br />

novel five tetrahydroqu<strong>in</strong>ol<strong>in</strong>e annulated<br />

heterocycles, which has been accomplished by<br />

<strong>in</strong>tramolecular im<strong>in</strong>o and bis-im<strong>in</strong>o Diels-alder<br />

reaction. These compounds were evaluated for its anti<br />

bacterial activity aga<strong>in</strong>st six different stra<strong>in</strong>s, 1)<br />

S.aureus 2) E.coli 3) P.aerug<strong>in</strong>osa 4) K.pneumonia<br />

5) S.typhimurium 6) B.subtillis, us<strong>in</strong>g Disc diffusion<br />

assay. Starr J. T. et.al 52 have reported synthesis <strong>of</strong> a<br />

series <strong>of</strong> 5-(2-pyrimid<strong>in</strong>yl)-imidazo[1,2-a] pyrid<strong>in</strong>es<br />

(38) target<strong>in</strong>g the doma<strong>in</strong>s <strong>of</strong> DNA-gyrase and<br />

topoisomerase-IV. Selected compounds were<br />

efficacious <strong>in</strong> mouse sepsis and lung <strong>in</strong>fection<br />

models.<br />

Siti R.M. et.al 53 have synthesized two<br />

region isomeric citrate-functionalized cipr<strong>of</strong>loxac<strong>in</strong><br />

conjugates (39). Cellular uptake mechanisms were<br />

<strong>in</strong>vestigated us<strong>in</strong>g wild-type and ompF deletion<br />

stra<strong>in</strong>s <strong>of</strong> E.coli K-12. Chai Y. et.al 54 have<br />

synthesized a series <strong>of</strong> novel 7-(4-alkoxyim<strong>in</strong>o-3-<br />

am<strong>in</strong>o-3-methyl piperid<strong>in</strong>1-yl) fluoroqu<strong>in</strong>olone<br />

derivatives (40). Khalil A.M. et.al 55 have synthesized<br />

a series <strong>of</strong> novel thiazole and thiophene analogues.<br />

Pokrovkaya V. et.al 56 have designed and synthesized<br />

a series <strong>of</strong> novel hybrid structures conta<strong>in</strong><strong>in</strong>g<br />

fluoroqu<strong>in</strong>olone and am<strong>in</strong>oglycoside antibiotics<br />

l<strong>in</strong>ked via 1,2,3-triazole moiety. Brvar M. et.al 57<br />

have reported <strong>in</strong>-silico discovery <strong>of</strong> 2-am<strong>in</strong>o-4-(2,4-<br />

R 1<br />

F<br />

36<br />

N<br />

O<br />

N<br />

O<br />

NH 2<br />

N<br />

R N N 2<br />

N<br />

O<br />

R 3<br />

37<br />

dihydroxyphenyl) thiazole (41) as novel <strong>in</strong>hibitors <strong>of</strong><br />

DNA-gyrase B. Start<strong>in</strong>g the available structural<br />

<strong>in</strong>formation on cyclothialid<strong>in</strong>e, an <strong>in</strong> silico virtual<br />

screen<strong>in</strong>g campaign was designed comb<strong>in</strong>g molecular<br />

dock<strong>in</strong>g calculations us<strong>in</strong>g Flexx s<strong>of</strong>tware and with<br />

three-dimensional structure based pharmacophore<br />

<strong>in</strong>formation, a novel class <strong>of</strong> thiazoles based<br />

<strong>in</strong>hibitors with low micromolar antigyrase activity<br />

was discovered. In-silico virtual screen<strong>in</strong>g campaign<br />

was designed, tak<strong>in</strong>g <strong>in</strong>to account the available<br />

structural from <strong>in</strong>formation on b<strong>in</strong>d<strong>in</strong>g mode <strong>of</strong><br />

cyclothialid<strong>in</strong>e <strong>in</strong>to ATP-b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> gyrase-B.<br />

The ma<strong>in</strong> objective <strong>of</strong> the virtual screen<strong>in</strong>g was to<br />

screen the available compound databases to identify<br />

novel low-molecular <strong>in</strong>hibitors mimick<strong>in</strong>g the<br />

cyclothialid<strong>in</strong>e molecular recognition pattern. They<br />

searched for potential conformational rigid<br />

replacements <strong>of</strong> the 12-membered lactone r<strong>in</strong>g <strong>in</strong><br />

cyclothialid<strong>in</strong>e that would reta<strong>in</strong> the anti-gyrase B<br />

aff<strong>in</strong>ity. The 3D-structure based pharmacophore<br />

model was constructed us<strong>in</strong>g ligandscout s<strong>of</strong>tware. In<br />

the constructed pharmacophore model, three<br />

pharmacophoric features (two hydroxyl groups <strong>of</strong><br />

resorc<strong>in</strong>ol moiety for H-bond<strong>in</strong>g with Asp-73 and<br />

Val-43 <strong>of</strong> gyraseB subunit.and H-bond between Asn-<br />

46 and oxygen <strong>of</strong> the lactone r<strong>in</strong>g) were used.<br />

Hossion A.M.L. et.al 58 have reported design and<br />

synthesis <strong>of</strong> a series <strong>of</strong> novel quercet<strong>in</strong><br />

diacylglycosides by steglich esterification on the<br />

basis <strong>of</strong> MRSA stra<strong>in</strong>s <strong>in</strong>hibit<strong>in</strong>g natural compound<br />

kaemferol diacylrhmnoside.<br />

R 1<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 487


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

Ronk<strong>in</strong> S.M. et.al 59 have reported design<br />

and synthesis <strong>of</strong> novel series <strong>of</strong> substituted 5-(1Hpyrazol-3-yl)<br />

thiazole (42) as <strong>in</strong>hibitors <strong>of</strong> bacterial<br />

gyrase. Structure-guided optimization lead to<br />

greater enzymatic potency and moderate<br />

antibacterial potency aga<strong>in</strong>st E.coli and S.aureus<br />

gyrase-B subunit. Crystallographic data showed that<br />

pyrazole moiety <strong>of</strong> substituted thiazole analogues<br />

hav<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g <strong>in</strong>teraction with Asp-81 and<br />

conserved water molecule <strong>in</strong> S.aureus gyrase-B (PDB<br />

code: 3G75). Gouda M.A. et.al 60 have synthesized a<br />

series <strong>of</strong> novel thiazole and pyrazole derivatives<br />

based on 4,5,6,7-tetrahydrobenzothiophene moiety.<br />

Bondock S.et.al 61 have synthesized a series <strong>of</strong> novel<br />

thiazole, thiophene and pyrazole derivatives<br />

conta<strong>in</strong><strong>in</strong>g benzothiazole moiety. Vijesh A.M. et.al 62<br />

have synthesized a series <strong>of</strong> novel 2,4-disubstituted<br />

thiazole derivatives conta<strong>in</strong><strong>in</strong>g substituted pyrazole<br />

moiety. Thomas S. et.al 63 has reported design and<br />

synthesis <strong>of</strong> 2-qu<strong>in</strong>olones as anti bacterials and antioxidants.<br />

They have synthesized lead molecules <strong>of</strong><br />

the 2-qu<strong>in</strong>olone skeleton (43) for b<strong>in</strong>d<strong>in</strong>g to the<br />

bacterial DNA-gyrase subunit A. Dock<strong>in</strong>g<br />

simulations and QSAR analysis were performed<br />

us<strong>in</strong>g molegro virtual docker and sarchitech<br />

s<strong>of</strong>twares. Based on these, they have synthesized lead<br />

molecules us<strong>in</strong>g Conrad limpach synthesis.<br />

CONCLUSION<br />

In view <strong>of</strong> the exist<strong>in</strong>g literature, it is evident that the<br />

emergence <strong>of</strong> bacterial resistance to most <strong>of</strong> the<br />

antibacterials used cl<strong>in</strong>ically represents a major<br />

challenge <strong>in</strong> today’s antibiotic research, outweigh<strong>in</strong>g<br />

the task to develop drugs <strong>of</strong> higher potency,<br />

expanded spectrum <strong>of</strong> activity, and improved safety<br />

pr<strong>of</strong>ile. Thus, DNA-gyrase has drawn much attention<br />

as selected target for f<strong>in</strong>d<strong>in</strong>g potent anti-bacterial<br />

agents aga<strong>in</strong>st multi-drug resistant stra<strong>in</strong>s.<br />

REFERENCES<br />

1. Tanitame, A. ; Oyamada, Y. ; Ofuji, K. ; Suzuki, K. ; Ito, H. ; Kawasaki, M. ; Wachi, M. ; Yamagishi, J. ; Potent<br />

DNA gyrase <strong>in</strong>hibitors ; novel 5-v<strong>in</strong>ylpyrazole analogues with gram positive antibacterial activity ;<br />

Bioorg.med.chem.lett ; 2004 ; 12 ; 2863-2866.<br />

2. Gradisar, H. ; Pristovsek, P. ; Plaper, A. ; Jerala, R. ; Green tea catech<strong>in</strong>s <strong>in</strong>hibit bacterial DNA Gyrase by<br />

<strong>in</strong>teraction with its ATP b<strong>in</strong>d<strong>in</strong>g site ; J.med.chem ; 2007 ; 50 ; 264-271.<br />

3. Liu, X. ; Zhou, A. ; Song, B. ; Zhu, H.V. ; Bai, L. ; Bhandury, P.S. ; Pan, C.; Synthesis-structure and<br />

antibacterial activity <strong>of</strong> new 2-(1-(2-substituted-phenyl)-5-methyl oxazol-4yl )-3-( 2-substituted- phenyl )-4,5-<br />

dihydro -1H-pyrazole- 5-yl )-7-substituted-1,2,3,4- tetrahydro-isoqu<strong>in</strong>ol<strong>in</strong>e derivatives ; Bioorg.med.chem ; 2009 ;<br />

17 ; 1207-1213.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 488


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

4. Brvar, M. ; Perdih, A. ; Oblak, M. ; Masic, L.P. ; Solmajer, T. ; In-silico discovery <strong>of</strong> 2-am<strong>in</strong>o-4-(2,4-<br />

dihydroxyphenyl) thiazoles as novel <strong>in</strong>hibitors <strong>of</strong> DNA gyrase-B ; Bioorg.med.chem.lett ; 2010 ; 20 ; 958-962.<br />

5. Mitscher, L.A. ; Sharma, P.N. ; Chu, D.T.W. ; Shen, L. ; Pernet, A.G. ; Synthesis and antimicrobial activity <strong>of</strong><br />

the enantiomers <strong>of</strong> 6-fluoro-7-(1-piperaz<strong>in</strong>yl)-1-(2’-trans -phenyl-1’ cyclopropyl)-1,4-dihydro-4-oxoqu<strong>in</strong>olone-3-<br />

carboxylic acid. ; J.med.chem. ; 1986 ; 29 ; 2044-2047.<br />

6. Wentland, M.P. ; Perni, R.B. ; Dorff, P.H. ; Rake, J.B. ; Synthesis and bacterial DNA-gyrase <strong>in</strong>hibitory properties<br />

<strong>of</strong> a Spirocyclopropyl qu<strong>in</strong>olones derivatives. ; J.med.chem ; 1988 ; 31 ; 1694-1697.<br />

7 . Rosen, T. ; Fernandes P.B. ; Marovich, M.A. ; Shen, L. ; Mao, J. ; Pernet, A.G. ; Synthesis and DNA gyrase<br />

<strong>in</strong>hibitory activity <strong>of</strong> 3-dienoyl tetramic acid derivatives. ; J.med.chem ; 1989 ; 32 ; 1062-1069.<br />

8. Kondo, H. ; Taguchi, M. ; Inoue, Y. ; Sakamoto, F.; Tsukamoto, G. ; Synthesis and antibacterial activity <strong>of</strong><br />

thiazolo, oxazolo and imidazolo [3,2-a][1,8] naphthyrid<strong>in</strong>e carboxylic acid ; J.med.chem ; 1990 ; 33 ; 2012-2015.<br />

9. Hubschwerlen, C. ; Pfileger, P. ; Speckl<strong>in</strong>, J.L. ; Gubernator, K. ; Gmunder, H. ; Angehrn, P. ; Kompis, I. ;<br />

Pyrimido[1,6-a] benzimidazoles : A new class <strong>of</strong> DNA-gyrase <strong>in</strong>hibitors. ; J.Med.chem ; 1992 ; 35 ; 1385-1392.<br />

10. J<strong>in</strong>bo, Y. ; Taguchi, M. ; Inoue, Y. ; Kondo, H. ; Miyasaka, T. ; Tsujishita, H. ; Sakamoto, F. ; Tsukamoto,<br />

G. ; Synthesis and antibacterial activity <strong>of</strong> a new series <strong>of</strong> tetracyclic pyrid<strong>in</strong>e carboxylic acid ; J.med.chem. ; 1993 ;<br />

36 ; 3148-3153.<br />

11. Atarashi, S. ; Yoshida, A. ; Imamura, M. ; Kimura, Y. ; Hayakawa, I. ; Fluorocyclopropyl qu<strong>in</strong>olones :<br />

Synthesis and structure activity relationships <strong>of</strong> 1-(2-fluorocyclopropyl )-3-pyridone carboxylic acid<br />

antibacterial agents ; J.med.chem. ; 1993 ; 36 ; 3444-3448.<br />

12. Inoue, Y. ; Kondo, H. ; Taguchi, M. ; J<strong>in</strong>bo, Y. ; Sakamoto, F. ; Tsukamoto, G. ; Synthesis and antibacterial<br />

activity <strong>of</strong> thiazolopyraz<strong>in</strong>e–<strong>in</strong>corporated tetracyclic qu<strong>in</strong>olone derivatives. ; J.med.chem. ; 1994 ; 37 ; 586-592.<br />

13. J<strong>in</strong>bo, Y. ; Kondo, H. ; Taguchi, M. ; Sakamoto, F. ; Tsukamoto, G. ; Synthesis <strong>of</strong> new DNA Gyrase<br />

<strong>in</strong>hibitors : Application <strong>of</strong> the DMSO oxidation to the conversion <strong>of</strong> the am<strong>in</strong>e <strong>in</strong>to the im<strong>in</strong>e ; J.org.chem ; 1994 ;<br />

59 ; 6057-6062.<br />

14. Flamm, R.K. ; Vojtko, C. ; Chu, D.T.W. ; Beyer, J. ; Li, Q. ; Hensey, D. ; Ramer, N. ; Clement, J.J. ; Tanaka,<br />

S.K. ; In vitro evaluation <strong>of</strong> ABT-719, a novel DNA-gyrase <strong>in</strong>hibitor. ; Antimicrobial agents and chemotherapy ;<br />

1995 ; 964-970.<br />

15. Barrett, D. ; Sasaki, H. ; Murata, M. ; Terasawa, T. ; Sakane, K. ; A Concise Practical synthesis <strong>of</strong> the<br />

pyrido[3,2,1-I,j] c<strong>in</strong>nol<strong>in</strong>e R<strong>in</strong>g system <strong>of</strong> potent DNA Gyrase <strong>in</strong>hibitors ; J.org.chem ; 1995 ; 60 ; 3928-3930.<br />

16. Ohemeng, K.A. ; Podlogar, B.L. ; Nguyen, V.N. ; Bernste<strong>in</strong>, J.I. ; Krause, H.M. ; Hilliard, J.J. ; Barrett, J.F. ;<br />

DNA-gyrase <strong>in</strong>hibitory and antimicrobial activities <strong>of</strong> some diphenic acid monohydroxamides. ; J.med.chem. ; 1997<br />

; 40 ; 3292-3296.<br />

17. Ma, Z. ; Chu, D.T.W. ; Cooper, C.S. ; Li, Q. ; Fung, A.K.L. ; Wang, S. ; Shen, L.L. ; Flamm, R.K. ; Nilius,<br />

A.M. ; Alder, J.D. ; Meulbroek, J.A. ; Or, Y.S. ; Synthesis and Antimicrobial activity <strong>of</strong> 4H-4-Oxoqu<strong>in</strong>oliz<strong>in</strong>e<br />

derivatives: consequences <strong>of</strong> structural modification as the C-8 position ; J.med.chem. ; 1999 ; 42 ; 4202-4213.<br />

18. Peixoto, C. ; Laur<strong>in</strong>, P. ; Klich, M. ; Dupuis-hamel<strong>in</strong>, C. ; Mauvais, P. ; Lassaigne, P. ; Bonnefoy, A. ; Musicki,<br />

B. ; Synthesis <strong>of</strong> isothiochroman 2,2-dioxide and 1,2-benzooxathi<strong>in</strong> 2,2-dioxide gyraes-B <strong>in</strong>hibitors ; Tetrahydron<br />

letters ; 2000 ; 41 ; 1741-1745.<br />

19. Boehm, H. ; Boehr<strong>in</strong>ger, M.; Bur, D. ; Gmuender, H. ; Huber, W. ; Klaus, W. ; Kostrewa, D. ; Kuehne, H. ;<br />

Lubbers, T. ; Mueller, F. ; Meunier-keller, N. ; Novel <strong>in</strong>hibitors <strong>of</strong> DNA Gyrase: 3D structure Based biased needle<br />

screen<strong>in</strong>g, Hit validation by biophysical methods and 3D guided optimization. A promis<strong>in</strong>g alternative to random<br />

screen<strong>in</strong>g ; J.med.chem. ; 2000 ; 43 ; 2664-2674.<br />

20. Li, Q. ; Mitscher, L.A. ; Shen, L.L. ; The 2-pyridone antibacterial agents: bacterial topoisomerase <strong>in</strong>hibitors ;<br />

Med.Research <strong>Review</strong> ; 2000 ; 20 ; 231-293.<br />

21. Gray, J.L. ; Almstead, J.K. ; Gallagher, C.P. ; Hu, X.E. ; Taylor, C.J. ; Kim, N.K. ; Tw<strong>in</strong>em, T.L. ; Wallance,<br />

C.D. ; Ledoussal, B. ; Synthesis and Biological test<strong>in</strong>g <strong>of</strong> non-fluor<strong>in</strong>ated analogues <strong>of</strong> Lev<strong>of</strong>loxac<strong>in</strong>. ;<br />

Bioorg.med.chem.lett ; 2003 ; 13 ; 2773-2775.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 489


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

22. Kerns, R.J. ; Rybak,M.J. ; Kaatz, G.W. ; Vaka F. ; Cha, R. ; Grucz, R.G. ; Diwadkar, V.U. ; Ward, T.D. ;<br />

Piperaz<strong>in</strong>yl-l<strong>in</strong>ked fluoroqu<strong>in</strong>olone dimers possess<strong>in</strong>g potent antibacterial activity aga<strong>in</strong>st drug-resistant stra<strong>in</strong>s <strong>of</strong><br />

staphylococcus ; Bioorg.med.chem.lett ; 2003 ; 13 ; 1745-1749.<br />

23. Gordeev, M.F. ; Hackbarth, C. ; Barbachyn, M.R. ; Banitt, L.S. ; Gage, J.R. ; Luenr, G.W. ; Gomez, M. ; Trias,<br />

J. ; Mor<strong>in</strong>, S.E.; Zurenko, G.E. ; Parker, C.N. ; Evans, J.M. ; White, R.J. ; Patel, D.V. ; Novel Oxazolid<strong>in</strong>one-<br />

Qu<strong>in</strong>olones hybrid anti-microbials. ; Bioorg.med.chem.lett ; 2003 ; 13 ; 4213-4216.<br />

24. Foroumadi, A. ; Mansouri, S. ; Kiani, Z. ; Rahmani, A. ; Synthesis and <strong>in</strong>-vitro antibacterial evaluation <strong>of</strong> N-[5-<br />

nitro-2-thienyl-1,3,4-thiadiazole-2-yl] piperaz<strong>in</strong>yl qu<strong>in</strong>olones ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry ; 2003 ;38 ;<br />

851-854.<br />

25. Hu, X.E. ; Kim, N.K. ; Gray, J.L. ; Almstead, J.K. ; Seibel, W.L. ; Ledoussal, B. ; Discovery <strong>of</strong> (3S)-am<strong>in</strong>o-<br />

(4R)-ethylpiperid<strong>in</strong>yl qu<strong>in</strong>olones as potent antibacterial agents with a broad spectrum <strong>of</strong> activity and activity aga<strong>in</strong>st<br />

resistant pathogens. ; J.med.chem. ; 2003 ; 46 ; 3655-3661.<br />

26. Kuramoto, Y. ; Ohshita, Y. ; Yoshida, J. ; Yazaki, A. ; Shiro, M. ; Koike, T. ; A Novel antibacterial 8-<br />

chloroqu<strong>in</strong>olone with distorted orientation <strong>of</strong> the N-(5-am<strong>in</strong>o-2,4-difluorophenyl) group ; J.med.chem. ; 2003 ; 46 ;<br />

1905-1917.<br />

27. Tanitame, A. ; Oyamada, Y. ; Ofuji, K. ; Fujimoto, M. ; Suzuki, K. ; Ueda, T. ; Terauchi, H. ; Nagai, K. ;<br />

Wachi, M. ; Yamagishi, J. ; Synthesis and antibacterial activity <strong>of</strong> novel and potent DNA gyrase <strong>in</strong>hibitors with<br />

azole r<strong>in</strong>g ; Bioorg.med.chem ; 2004 ; 12 ; 5515-5524.<br />

28. Tanitame, A. ; Oyamada,Y. ; Ofuji, K. ; Kyoya, Y. ; Suzuki, K. ; Ito, H. ; Kawasaki, M. ; Nagai, K. ; Wachi, M.<br />

; Yamagishi, J. ; Design,synthesis and structure activity relationship studies <strong>of</strong> novel <strong>in</strong>dazole analogues as DNA<br />

gyrase <strong>in</strong>hibitors with gram-positive antibacterial activity ; Bioorg.med.chem.lett ; 2004 ; 14 ; 2857-2862.<br />

29. Tanitame, A. ; Oyamada, Y. ; Ofuji, K. ; Suzuki, K. ; Ito, H. ; Kawasaki, M. ; Wachi, M. ; Yamagishi, J. ; Potent<br />

DNA gyrase <strong>in</strong>hibitors ; novel 5-v<strong>in</strong>ylpyrazole analogues with gram positive antibacterial activity ;<br />

Bioorg.med.chem.lett ; 2004 ; 12 ; 2863-2866.<br />

30. Tran, T.P. ; Ellsworth, E.L. ; Stier, M.A. ; Domagala, J.M. ; Showalter, H.D.H. ; gracheck, S.J. ; Shapiro,<br />

M.A. ; Joannides, T.E. ; S<strong>in</strong>gh, R. ; Synthesis and structural-activity relationships <strong>of</strong> 3-hydroxy qu<strong>in</strong>azol<strong>in</strong>e-<br />

2,4-dione antibacterial agents ; Bioorg.med.chem.lett ; 2004 ; 14 ; 4405-4409.<br />

31. Angehrn, P. ; Buchmann, S. ; Funk, C. ; Goetschi, E. ; Gmuender, H. ; Hebeisen, P. ; Kostrewa, D. ; L<strong>in</strong>k, H. ;<br />

Lubbers, T. ; Masciadri, R. ; Nielsen, J. ; Re<strong>in</strong>dl, P. ; Rickl<strong>in</strong>, F. ; Theil, F. ;Schmitt-h<strong>of</strong>fmann, A. ; New<br />

antibacterial agents derived from the DNA Gyrase <strong>in</strong>hibitor cyclothialid<strong>in</strong>e, Antibacterial activity <strong>of</strong> selected<br />

derivative <strong>of</strong> cyclothialid<strong>in</strong>e ; J.med.chem ; 2004 ; 47 ; 1487-1513.<br />

32. Tanitame, A. ; Oyamada, Y. ; Ofuji, K. ; Fujimoto, M. ; Fujimoto, K. ; Iwai, N. ; Hiyama, Y. ; Suzuki, K. ; Ito,<br />

H. ; Terauchi, H. ; Kawasaka, M. ; Nagai, K. ; Wachi, M. ;Yamagishi, J. ; Synthesis and antimicrobial activity <strong>of</strong> a<br />

novel series <strong>of</strong> potent DNA Gyrase <strong>in</strong>hibitors : pyrazole derivatives ; J.med.chem ; 2004 ; 47 ; 3693-3696.<br />

33. Schechner, M. ; Sirock<strong>in</strong>, F. ; Stote, R.H. ; Dejaegere, A. ; Functionality maps <strong>of</strong> the ATP b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong><br />

DNA-gyrase-B : Generation <strong>of</strong> a consensus model <strong>of</strong> ligand b<strong>in</strong>d<strong>in</strong>g. ; J.med.chem ; 2004 ; 47 ; 4373-4390.<br />

34. Tanitame, A.; Oyamada, Y.; Terauchi, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J. ; Synthesis and antibacterial<br />

activity <strong>of</strong> a novel series <strong>of</strong> DNA gyrase <strong>in</strong>hibitors : 5-[(E)-2-aryl v<strong>in</strong>yl] pyrazoles ; Bioorg.med.chem.lett ; 2005 ; 15<br />

; 4299-4303.<br />

35. Oblak, M. ; Grdadolnik, S.G. ; Kotnik, M. ; Jerala, R. ; Filipic, M. ; Solmajer, T. ; In-Silico fragment-based<br />

discovery <strong>of</strong> <strong>in</strong>dol<strong>in</strong>-2-one analogues as potent DNA gyrase <strong>in</strong>hibitors ; Bioorg.med.chem.lett ; 2005 ; 15 ; 5207-<br />

5210.<br />

36. Forounadi, A. ; Emami, S. ; Mehni, M. ; Moshafi, M.H. ; Shafiee, A. ; Synthesis and antibacterial activity <strong>of</strong> N-<br />

[2-(5-bromo thiophen-2-yl)-2-oxo ethyl] and N-[(2-5-bromthiophen-2-yl)-2-oxim<strong>in</strong>oethyl] ; Bioorg.med.chem.lett ;<br />

2005 ; 15 ; 4536-4539.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 490


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

37.Hansen, T.M. ; Gu, Y. ; Rehm, T.M. ; Dandliker, P.J. ; Chovan, L.E. ; Bui, M.H. ; Nilius, M. ; Beutel, B.A. ;<br />

Synthesis and antibacterial activity <strong>of</strong> 5-methoxy and 5- hydroxyl-6-fluoro-1,8-naphthyridone-3-carboxylic acid<br />

derivative ; Bioorg.med.chem.<br />

lett ; 2005 ; 15 ; 2716-2719.<br />

38. Fecik, R.A.; Devasthale, P.; Pillai, S. ; Keschavarz-shokri, A. ; Shen, L. ; Mitscher, L.A. ; Chiral DNA-gyrase<br />

<strong>in</strong>hibitors, Prob<strong>in</strong>g the chiral preference <strong>of</strong> active site <strong>of</strong> DNA-gyrase. Synthesis <strong>of</strong> 10-fluoro-6-methyl-6,7-dihydro-<br />

9-piperaz<strong>in</strong>yl-2H-benzo[α] qu<strong>in</strong>oliz<strong>in</strong>-20-one-3-carboxylic acid analogues. ; J.med.chem ; 2005 ; 48 ; 1229-1236.<br />

39. Foroumadi, A. ; Ghodsi, S. ; Najjari, S. ; Emami, S. ; Samadi, N. ; Faramarzi, M.A. ; Beikmohmmadi, L. ;<br />

Shirazi, F.H. ; Shafiee, A. ; Synthesis and antibacterial activity <strong>of</strong> new fluoroqu<strong>in</strong>olones conta<strong>in</strong><strong>in</strong>g a substituted N-<br />

(phenethyl) piperaz<strong>in</strong>e moiety ; Bioorg.med.chem.lett ; 2006 ; 16 ; 3499-3503.<br />

40. Grover, G. ; K<strong>in</strong>i, S.G. ; Synthesis and evaluation <strong>of</strong> new qu<strong>in</strong>azolone derivatives <strong>of</strong> nalidixic acid as potential<br />

anti-bacterial and antifungal agents. ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry ; 2006 ; 41 ; 256-262.<br />

41. Wiles, J.A. ; Hashimoto, A. ; Thanassi, J.A. ; Cheng, J. ; Incarvito, C.D. ; Deshpande, M. ; Pucci, M.J. ;<br />

Bradbury, B.J. ; Synthesis-structure and biological activity <strong>of</strong> isothiazolopyridones, a new class <strong>of</strong> antibacterial<br />

agents ; J.med.chem ; 2006 ; 49 ; 39-42.<br />

42. Tran, T.P. ; Ellsworth, E.L. ; Stier, M.A. ; Domagala, J.M. ; Showalter, H.D.H. ; gracheck, S.J. ; Shapiro, M.A.<br />

; Joannides, T.E. ; S<strong>in</strong>gh, R. ; Sanchez, J.P. ; Watson, B.N. ; Nguyen, D.Q. ; Bird, P. ; Yip, J. ; Sharadendu, A. ; Ha,<br />

C. ; Ramezani, S. ; Wu, X. ; Structure-activity relationships <strong>of</strong> 3-am<strong>in</strong>oqu<strong>in</strong>azol<strong>in</strong>ediones, a new class <strong>of</strong> type-2<br />

topoisomerase <strong>in</strong>hibitors. ; Bioorg.med.chem.lett ; 2007 ; 17 ; 1312-1320.<br />

43. Dang, Z. ; Yang, Y. ; Ruyun, J. ; Zhang, S. ; Synthesis and antibacterial activity <strong>of</strong> novel fluoroqu<strong>in</strong>olones<br />

conta<strong>in</strong><strong>in</strong>g substituted piperid<strong>in</strong>es. ; Bioorg.med.chem.lett ; 2007 ; 17 ; 4523-4526.<br />

44. Lubbers, T. ; Angehrn, P. ; Gmunder, H. ; HErzig, S. ; Design-synthesis and Structure activity relationship<br />

studies <strong>of</strong> new phenolic DNA gyrase <strong>in</strong>hibitors ; Bioorg.med.chem.lett ; 2007 ; 17 ; 4708-4714.<br />

45. Foroumadi, A. ; Emami, S. ; Mansouri, S. ; Javidnia, A. ; Saeid-Adeli, N. ; Shirazi, F.H. ; Shafiee, A. ;<br />

Synthesis and antibacterial activity <strong>of</strong> lev<strong>of</strong>loxac<strong>in</strong> derivatives with certa<strong>in</strong> bulky residues on piperaz<strong>in</strong>e r<strong>in</strong>g ;<br />

European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry ; 2007 ; 47 ; 985-992.<br />

46. Ostrov, D.A. ; Prada, J.A.H. ; Cors<strong>in</strong>o, P.E. ; F<strong>in</strong>ton, K.A. ; Le, N. ; Rowe, T.C. ; Discovery <strong>of</strong> novel DNA<br />

gyrase <strong>in</strong>hibitors by highthoughput virtual screen<strong>in</strong>g. ; Antimicrobial agents and chemotherapy ; 2007 ; 51 ; 3688-<br />

3698.<br />

47. Gradisar, H. ; Pristovsek, P. ; Plaper, A. ; Jerala, R. ; Green tea catech<strong>in</strong>s <strong>in</strong>hibit bacterial DNA Gyrase by<br />

<strong>in</strong>teraction with its ATP b<strong>in</strong>d<strong>in</strong>g site ; J.med.chem ; 2007 ; 50 ; 264-271.<br />

48. Liu, X. ; Cui, P. ; Song, B. ; Bhandury, P.S. ; Zhu, H. ; Wang, S. ; Synthesis-structure and anti-bacterial<br />

activity <strong>of</strong> novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl) ethanone oxime ester derivatives ;<br />

Bioorg.med.chem ; 2008 ; 16 ; 4075-4082.<br />

49. Hutch<strong>in</strong>gs, K.M. ; Tran, T.P. ; Ellsworth, E.L. ; Stier, M.A. ; Showalter, H.D.H. ; Gracheck, S.J. ; Shapiro,<br />

M.A. ; Joannides, T.E. ; S<strong>in</strong>gh, R. ; Sanchez, J.P. ; Watson, B.N. ; Nguyen, D.Q. ; Maiti, S. ; Li, T. ; Thomas, G. ;<br />

Ha, C. ; Huband, M. ; Taylor, J. ; Synthesis and antibacterial activity <strong>of</strong> the C-7 side cha<strong>in</strong> <strong>of</strong> 3-am<strong>in</strong>oqu<strong>in</strong>azol<strong>in</strong>e<br />

diones ; Bioorg.med.chem.lett ; 2008 ; 18 ; 5087-5090.<br />

50. Liu, X. ; Zhou, A. ; Song, B. ; Zhu, H.V. ; Bai, L. ; Bhandury, P.S. ; Pan, C.; Synthesis-structure and<br />

antibacterial activity <strong>of</strong> new 2-(1-(2-substituted-phenyl)-5-methyl oxazol-4yl )-3-( 2-substituted- phenyl )-4,5-<br />

dihydro -1H-pyrazole- 5-yl )-7-substituted-1,2,3,4- tetrahydro-isoqu<strong>in</strong>ol<strong>in</strong>e derivatives ; Bioorg.med.chem ; 2009 ;<br />

17 ; 1207-1213.<br />

51. Ramesh, E. ; Manian, R.D.R.S. ; Raghunathan, R. ; Sa<strong>in</strong>ath, S. ; Raghunathan, M. ; Synthesis and<br />

antibacterial property <strong>of</strong> qu<strong>in</strong>ol<strong>in</strong>es with potent DNA gyrase activity ; Bioorg.med.chem ; 2009 ; 17 ; 660-666.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 491


Umesh Shiroya., et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

52Starr, J.T. ; Sciotti, R.J. ; Hanna, D.L. ; Huband, M.D. ; Mull<strong>in</strong>s, L.M. ; Cai, H, ; Gage, J.W. ; Lockard, M. ;<br />

Rauckhorst, M.R. ; Owen, R.M. ; Lall, M.S. ; Tomilo, M. ; Chen, H. ; Mccurdy, S.P. ; Barbachyn, M.R. ; 5-(2-<br />

pyrimid<strong>in</strong>yl)-imidazo[1,2-a] pyrid<strong>in</strong>es are antibacterial agents target<strong>in</strong>g the ATPase doma<strong>in</strong>s <strong>of</strong> DNA gyrase and<br />

topoisomerase IV ; Bioorg.med.chem.lett ; 2009 ; 19 ; 5302-5306.<br />

53. Md-Saleh, S.R. ; Chilvers, E.C. ; Kerr, K.G. ; Milner, S.J. ; Snell<strong>in</strong>g, S.M. ; Weber, J.P. ; Thomas, G.H. ;<br />

Duhme-klair, A. ; Routledge, A. ; Synthesis <strong>of</strong> citrate-cipr<strong>of</strong>loxac<strong>in</strong> conjugates ; Bioorg.med.chem.lett ; 2009 ; 19 ;<br />

1496-1498.<br />

54. Chai, Y. ; Wan, Z. ; Wang, B. ; Guo, H. ; Liu, M. ; Synthesis and <strong>in</strong>-vitro antibacterial activity <strong>of</strong> 7-(4-<br />

alkoxyim<strong>in</strong>o-3-am<strong>in</strong>o-3-methylpiperid<strong>in</strong>-1-yl) fluoro qu<strong>in</strong>olone derivatives ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al<br />

chemistry ; 2009 ; 44 ; 4063-4069.<br />

55. Khalil, A.M. ; Berghot, M.A. ; Gouda, M.A. ; Synthesis and antibacterial activity <strong>of</strong> some new thiazole and<br />

thiophene derivatives ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry ; 2009 ; 44 ; 4434-4440.<br />

56. Pokrovskaya, V. ; Belakhov, V.; Ha<strong>in</strong>richson, M. ; Yaron, S. ; Baason, T. ; Design-synthesis and evaluation <strong>of</strong><br />

novel fluoroqu<strong>in</strong>olone-am<strong>in</strong>oglycoside hybrid antibiotics, ; J.med.chem ; 2009 ; 52 ; 2243-2254.<br />

57. Brvar, M. ; Perdih, A. ; Oblak, M. ; Masic, L.P. ; Solmajer, T. ; In-silico discovery <strong>of</strong> 2-am<strong>in</strong>o-4-(2,4-<br />

dihydroxyphenyl) thiazoles as novel <strong>in</strong>hibitors <strong>of</strong> DNA gyrase-B ; Bioorg.med.chem.lett ; 2010 ; 20 ; 958-962.<br />

58. Hossion, A.M.L. ; Otsuka, N. ; Kandahary, R.K. ; Tsuchiya, T. ; Oguwa, W. ; Iwado, A. ; Zamami, Y. ; Sasaki,<br />

K. ; Design-synthesis and biological evaluation <strong>of</strong> a novel series <strong>of</strong> quercet<strong>in</strong> diacylglycosides as potent anti-<br />

MRSA and anti-VRE agents ; Bioorg.med.chem.lett ; 2010 ; 20 ; 5349-5352.<br />

59.Ronk<strong>in</strong>, S.M. ; Badia, M. ; Bellon, S. ; Grillot, A. ; Gross, C.H. ; Grossman, T.H. ; Mani, N. ; Parsons, J.D. ;<br />

Stamos, D. ; Trudeau, M. ; Wei, Y. ; Charifson, P.S. ; Discovery <strong>of</strong> pyrazole and thiazoles as novel and<br />

potent <strong>in</strong>hibitors <strong>of</strong> bacterial gyrase ; Bioorg.med.chem.lett ; 2010 ; 20 ; 2828-2831.<br />

60. Gouda, M.A. ; Berghot, M.A. ; El-Ghani, G.E.A. ; Khalil, A.M. ; Synthesis and antimicrobial activities <strong>of</strong><br />

some new thiazole and pyrazole derivatives based on 4,5,6,7-tetra-hydro benzothiophene moiety ; European<br />

<strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry ; 2010 ; 45 ; 1338-1345.<br />

61. Bondock, S. ; Fadaly, W. ; Metwally, M.A. ; Synthesis and antimicrobial activity <strong>of</strong> some new thiazole,<br />

thiophene and pyrazoles conta<strong>in</strong><strong>in</strong>g benzothiazole moiety. ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry, 2010 ; 45 ;<br />

3692-3701.<br />

62. Vijesh, A.M. ; Isloor, A.M, Prabhu, V. Ahmad, S. Malladi, S. Synthesis, characterization and antimicrobial<br />

studies <strong>of</strong> some novel 2,4-disubstituted thaizoles. ; European <strong>journal</strong> <strong>of</strong> medic<strong>in</strong>al chemistry, 2010 ; 1-5.<br />

63. Thomas, S. ; Jayashree, B.S. ; Nayak, Y. ; Design and synthesis <strong>of</strong> 2-qu<strong>in</strong>olones as antioxidants and<br />

antimicrobials. A Rational approach. ; Medic<strong>in</strong>al chemistry research ; 2010 ; 19 ;193-209.<br />

IJAPR / Sept. 2011/ Vol. 2 / Issue. 9 / 480 - 492 492

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!