09.06.2015 Views

CTDI - ImPACT CT Scanner Evaluation Centre

CTDI - ImPACT CT Scanner Evaluation Centre

CTDI - ImPACT CT Scanner Evaluation Centre

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ImPA<strong>CT</strong></strong><br />

Imaging<br />

Performance<br />

Assessment of <strong>CT</strong><br />

<strong>Scanner</strong>s<br />

A Medical Devices<br />

Agency <strong>Evaluation</strong> Group<br />

<strong>CT</strong> dosimetry and a data base for <strong><strong>CT</strong>DI</strong> values<br />

EFOMP Workshop at ECR 2002<br />

S. Edyvean, <strong>ImPA<strong>CT</strong></strong><br />

St George’s Hospital,<br />

London


<strong>CT</strong> scanner dose distribution<br />

higher<br />

lower<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

2


<strong>CT</strong> scanner dosimetry<br />

• Computed Tomography Dose Index (<strong><strong>CT</strong>DI</strong>)<br />

– <strong><strong>CT</strong>DI</strong> FDA<br />

– <strong><strong>CT</strong>DI</strong> 100<br />

– <strong><strong>CT</strong>DI</strong> w<br />

<strong><strong>CT</strong>DI</strong> 100<br />

=<br />

1<br />

T<br />

+ 50<br />

∫<br />

−50<br />

D(z)dz<br />

<strong><strong>CT</strong>DI</strong> w =1/3<strong><strong>CT</strong>DI</strong> c +2/3<strong><strong>CT</strong>DI</strong> p<br />

c = centre positon, p= periphery position<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

3


<strong>CT</strong> scanner dosimetry<br />

• Monte Carlo Calculations<br />

• NRPB (1991,1993)<br />

• GSF (1991)<br />

• WinDose<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

4


NRPB <strong>CT</strong> organ dose datasets<br />

• NRPB SR250, 1993<br />

• 23 Organ dose data sets generated using MC calculations<br />

→ Effective Dose<br />

• Organ dose and ED expressed relative to <strong><strong>CT</strong>DI</strong> in air<br />

→ n D mGy / mGy, n ED mSv/ mGy<br />

• Numerical phantom<br />

NRPB R248 , 249, 250, SR250<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

5


NRPB <strong>CT</strong> organ dose datasets<br />

• Relevant information from manufacturers<br />

for 27 scanner models<br />

• Condensed to 13 scanner groups<br />

based on scanners with<br />

similar dosimetry characteristics<br />

• Different kVs<br />

23 Monte Carlo<br />

organ dose data sets<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

6


Purpose of <strong>ImPA<strong>CT</strong></strong> survey<br />

• In 1996 80 scanner models with different names<br />

in use in the UK<br />

• NRPB SR250 MC data sets not applicable to ~65% of<br />

scanners in UK<br />

• increasing due to number of newer scanner models<br />

• How to estimate patient doses on these scanners ?<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

7


Three choices<br />

1. Generate new MC datasets<br />

– no relevant expertise<br />

– difficult to acquire accurate information<br />

on ~ 80 scanner models<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

8


Three choices<br />

2. Data set from an ‘average’ scanner<br />

– does not address differences between models<br />

3. Use dose distribution characteristics to<br />

match new scanner models to those<br />

used in NRPB SR250<br />

Then use appropriate MC data set<br />

– Based on assumption that old and<br />

new scanners fell within similar ranges<br />

– method chosen<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

9


<strong>Scanner</strong> Characteristics Survey<br />

• Measurement based approach<br />

– easy to carry out on existing and future scanners<br />

• Standard protocol<br />

– how to do the measurements<br />

– accuracy and tolerances of set up<br />

– data sheets<br />

• 30 centres, 74 scanners<br />

• UK + Holland,France,Spain<br />

x-ray tube<br />

x-ray slice<br />

y-axis<br />

ion chamber<br />

scanner z-axis<br />

tilt<br />

<strong>Scanner</strong> couch<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

detectors<br />

10


<strong>Scanner</strong> models<br />

• 80 models ~ 40 groups<br />

– at first by partial knowledge<br />

– then refined by review of measurement data<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

11


<strong><strong>CT</strong>DI</strong> air<br />

X-ray source<br />

<strong><strong>CT</strong>DI</strong> phantom<br />

Ion<br />

chamber<br />

Perspex<br />

Phantom<br />

Detectors<br />

HVL<br />

Off-axis variation<br />

Aluminium


<strong>ImPA<strong>CT</strong></strong> survey data<br />

• Separated scanners into<br />

– those with NRPB SR250 MC data sets<br />

– newer models without<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

13


<strong>Scanner</strong>s with NRPB SR250 MC data sets<br />

• Survey measurement data versus calculated ED<br />

• Establish which combination of data gave best<br />

correlation<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> ph<br />

HVL<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

14


<strong>Scanner</strong>s with NRPB SR250 MC data sets<br />

• Survey measurement data versus calculated ED<br />

• Establish which combination of data gave best<br />

correlation<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> ph<br />

HVL<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

15


<strong>Scanner</strong>s with NRPB SR250 MC data sets<br />

• Survey measurement data versus calculated ED<br />

• Establish which combination of data gave best<br />

correlation with ED<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> ph<br />

HVL<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

16


<strong><strong>CT</strong>DI</strong> data : phantom factor<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> ph<br />

HVL<br />

Phantom Factor = <strong><strong>CT</strong>DI</strong> w / <strong><strong>CT</strong>DI</strong> air<br />

Gelijns, K.<br />

Patient Dosimetry in Diagnostic Radiology, Chest Examinations<br />

and Computed Tomography, PhD Thesis, Leiden<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

17


‘<strong>ImPA<strong>CT</strong></strong>’ factor<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> ph<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> c ,<strong><strong>CT</strong>DI</strong> p<br />

HVL<br />

• Multi-variate analysis<br />

– for combination which gave best correlation<br />

‘<strong>ImPA<strong>CT</strong></strong>’ Factor<br />

ImF = a. (<strong><strong>CT</strong>DI</strong>c / <strong><strong>CT</strong>DI</strong>air)+ b. (<strong><strong>CT</strong>DI</strong>p / <strong><strong>CT</strong>DI</strong>air)+ constant<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

18


HVL vs normalised ED<br />

12<br />

10<br />

y = 7.6119x + 0.0736<br />

R 2 = 0.9131<br />

8<br />

HVL (mm)<br />

6<br />

4<br />

2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Normalised Effective Dose<br />

( ED / <strong><strong>CT</strong>DI</strong> air )<br />

(mSv/mGy)<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

19


HVL vs normalised ED<br />

12<br />

10<br />

y = 7.6119x + 0.0736<br />

R 2 = 0.9131<br />

8<br />

HVL (mm)<br />

6<br />

4<br />

2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Normalised Effective Dose<br />

( ED / <strong><strong>CT</strong>DI</strong> air )<br />

(mSv/mGy)<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

20


Phantom factor vs normalised ED<br />

Phantom Factor (<strong><strong>CT</strong>DI</strong> w / <strong><strong>CT</strong>DI</strong> air )<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

y = 0.7089x + 0.0012<br />

R 2 = 0.9369<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

Normalised Effective Dose<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

( ED / <strong><strong>CT</strong>DI</strong> air )<br />

21


ImF vs Effective Dose<br />

1.6<br />

1.4<br />

1.2<br />

y = 0.977x + 0.0203<br />

R 2 = 0.977<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

Normalised Effective Dose (Abdomen)<br />

( ED / <strong><strong>CT</strong>DI</strong> air )<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

22


Correlations for data combinations<br />

Correlation co-efficient (r^2)<br />

(r 2 )<br />

1<br />

0.975<br />

0.95<br />

0.925<br />

0.9<br />

0.875<br />

0.85<br />

0.825<br />

0.8<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

HVL <strong><strong>CT</strong>DI</strong> <strong><strong>CT</strong>DI</strong> HVL,<br />

<strong><strong>CT</strong>DI</strong><br />

HVL <strong><strong>CT</strong>DI</strong> CDTI HVL & <strong><strong>CT</strong>DI</strong><br />

(PF) (ImF)<br />

head<br />

neck<br />

chest<br />

abdo<br />

pelvis<br />

23


Newer scanner models<br />

• ImF calculated<br />

• Compare to ImFs for SR250 scanners<br />

• Find closest match<br />

• Use that MC dataset<br />

New<br />

ImF<br />

<strong>Scanner</strong><br />

Philips AV 0.62<br />

SR250 ImF<br />

<strong>Scanner</strong><br />

xxx 0.60<br />

yyy 0.75<br />

Data Set<br />

MC 1<br />

MC 2<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

24


<strong><strong>CT</strong>DI</strong> data<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

25


<strong>ImPA<strong>CT</strong></strong> Factor - scanner matching<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

26


Organ and Effective Dose<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

28


Spiral scanning<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

29


<strong><strong>CT</strong>DI</strong> and collimation<br />

relative <strong><strong>CT</strong>DI</strong><br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

Single slice<br />

plus4<br />

Multi-slice<br />

vol zoom<br />

0 5 10 15 20<br />

collimation<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

30


<strong><strong>CT</strong>DI</strong> and slice width<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

31


Multi-slice scanners<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

32


<strong>ImPA<strong>CT</strong></strong> 1996-1997 survey<br />

• Enabled NRPB datasets to be used for<br />

99% of installed scanners in the UK<br />

• New scanners are measured routinely<br />

by <strong>ImPA<strong>CT</strong></strong> and published<br />

<strong><strong>CT</strong>DI</strong> in air and in phantom ImF<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

33


EUR16262 Quality Criteria for <strong>CT</strong><br />

• Dose Reference Levels <strong><strong>CT</strong>DI</strong> w , DLP<br />

<strong><strong>CT</strong>DI</strong> w =1/3<strong><strong>CT</strong>DI</strong> c +2/3<strong><strong>CT</strong>DI</strong> p<br />

c = centre positon, p= periphery position<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

34


<strong>Scanner</strong> models<br />

• Name can be misleading<br />

– Siemens Plus, Plus 4<br />

– Philips LX, AV Expander<br />

• Filtration can change on existing<br />

scanner models<br />

– name stays the same<br />

– need to identify by model name & date<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

35


<strong>ImPA<strong>CT</strong></strong> data<br />

• Survey data tried to minimise errors<br />

– chambers cross checked<br />

– extensive work checking consistency of data<br />

• data > 10% from mean of a group looked at<br />

• newer scanners use our own data<br />

• checked against manufacturers data<br />

• Data for 10 mm slices only<br />

• used for matching<br />

• look-up tables simplified<br />

• need focal spot with narrow slices<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

36


• Goal achieved<br />

<strong>ImPA<strong>CT</strong></strong> survey<br />

– matching new scanners to NRPB MC datasets<br />

• Additional use for phantom <strong><strong>CT</strong>DI</strong><br />

– EUR16262 (10 mm data)<br />

• Data continuously updated<br />

– Need to keep aware of manufacturers’ changes<br />

<strong><strong>CT</strong>DI</strong> air<br />

<strong><strong>CT</strong>DI</strong> Px<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

37


Acknowledgements<br />

• N. Keat, M.A. Lewis, H. Kiremidjian, Dr. S. Sassi,<br />

Dr. A.J Britten,<br />

• S E Jackson (DoH)<br />

• Department of Health Grant Ref RPP 26<br />

• Dr. P. Shrimpton (nrpb)<br />

• Participating centres<br />

<strong>ImPA<strong>CT</strong></strong><br />

Imaging Performance<br />

Assessment of <strong>CT</strong><br />

<strong>Scanner</strong>s<br />

A Medical Devices<br />

Agency <strong>Evaluation</strong> Group<br />

<strong>ImPA<strong>CT</strong></strong> EFOMP 2002<br />

www.impactscan.org<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!