08.06.2015 Views

Cyclotron line in accreting binaries

Cyclotron line in accreting binaries

Cyclotron line in accreting binaries

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Study of cyclotron <strong>l<strong>in</strong>e</strong> sources, the<br />

present and the future.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

1


Out<strong>l<strong>in</strong>e</strong><br />

• A quick summary<br />

• A theoretical study on the orig<strong>in</strong> of cyclotron <strong>l<strong>in</strong>e</strong> energy flux<br />

dependency<br />

• New INTEGRAL determ<strong>in</strong>ation of a positive flux-centroid<br />

energy <strong>in</strong> GX 304-1<br />

• IGR J18179-1621: a new cyclotron source ?<br />

• RX J0440.9+4431: a new cyclotron <strong>l<strong>in</strong>e</strong> source.<br />

• Prospects for future missions.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

2


High B-field:<br />

an ubiquitous phenomenon<br />

• Low mass X-ray b<strong>in</strong>aries normally<br />

associated with low-B (10 8-9 G)<br />

neutron star (old systems). An<br />

exception is, e.g., Her X-1<br />

– Roche lobe overflow -><br />

accretion disk<br />

– transient or persistent<br />

• Be-Xray b<strong>in</strong>aries are very<br />

important, as they become very<br />

bright dur<strong>in</strong>g outbursts and give<br />

high S/N<br />

• High mass X-ray b<strong>in</strong>aries are<br />

normally young systems, where<br />

NS has a high B-field (10 12-13 G)<br />

– w<strong>in</strong>d-fed systems but with<br />

formation of transient accretion<br />

disk<br />

– transients or persistent<br />

L outburst<br />

X<br />

L quiescence<br />

X<br />

∼ 10 3<br />

ESAC 28.06.2012 INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

3


Some famous sources<br />

Be-b<strong>in</strong>aries<br />

• 4U 0115+63:<br />

– B ~ 10 12 G, the lowest<br />

– Fundamental cyclotron <strong>l<strong>in</strong>e</strong> plus 5<br />

higher harmonics detected<br />

– Psp<strong>in</strong>=3.6 s. Spectrum is highly<br />

variable with sp<strong>in</strong> phase.<br />

• V 0332+53:<br />

– B ~ 2x10 12 G, 3 harmonics<br />

– Psp<strong>in</strong>=4.4 s not very variable with<br />

sp<strong>in</strong> phase<br />

• A 0535+262:<br />

– B ~ 5x10 12 G, 2 harmonics<br />

– Psp<strong>in</strong>= 103 s<br />

• Her X-1:<br />

– B ~ 4x10 12 G<br />

Roche lobe overflow<br />

– Fundamental cyclotron <strong>l<strong>in</strong>e</strong> plus 1<br />

higher harmonic<br />

– Psp<strong>in</strong>=1 s. Spectrum is highly<br />

variable with sp<strong>in</strong> phase and<br />

superorbital modulation<br />

Amsterdam 27.10.2011<br />

Tim<strong>in</strong>g and spectroscopy of HMXB - C.Ferrigno<br />

4


Emission mechanisms<br />

<strong>in</strong> a high magnetic field<br />

• Accret<strong>in</strong>g matter acquires a high<br />

k<strong>in</strong>etic energy v~c/2 which is partially<br />

dissipated close to the compact object<br />

surface and emitted <strong>in</strong> the form of X<br />

and Gamma-rays.<br />

• If the neutron star has a considerable<br />

magnetic field, the accret<strong>in</strong>g matter is<br />

channeled at the magnetic poles<br />

along the field <strong>l<strong>in</strong>e</strong>s and accretes on<br />

the poles.<br />

• For high accretion rates, radiation<br />

dom<strong>in</strong>ates: a radiative shock and<br />

accretion column form.<br />

• Seed photons com<strong>in</strong>g from thermal<br />

mound and electron breemstrahlung,<br />

<strong>in</strong> the high B-field, are Compton<br />

scattered.<br />

Becker & <br />

Wolff <br />

(2007)<br />

ESAC 28.06.2012 INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

5


Kreikenbohm et al. (2005)<br />

<strong>Cyclotron</strong> scatter<strong>in</strong>g<br />

absorption features<br />

• Electrons are exited to the first Landau level and then re-emit<br />

• To be observed <strong>in</strong> the X-ray doma<strong>in</strong>, a B-field of 10 12-13 G is required.<br />

4.4×10 13 G<br />

• Discovered on the spectrum of Her X-1 (Trumper 1977, 1978)<br />

<strong>Cyclotron</strong> <strong>l<strong>in</strong>e</strong>s<br />

Trumper et al. (1978)<br />

V 0332+53<br />

ESAC 28.06.2012<br />

Isenberg et al. (1998)<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

6


Cont<strong>in</strong>uum physical model<br />

• One long BeppoSAX observation <strong>in</strong> 1999. We <strong>in</strong>troduced the<br />

cyclotron emission model, and added a lower energy<br />

Comptonization component. Satisfactory description of the<br />

properties of 4U 0115+634.<br />

Thermal<br />

Comptonization of<br />

0.5 keV BB<br />

T_e ~ 2-3 keV<br />

CompTT<br />

Gaussian to<br />

correct the rough<br />

model<strong>in</strong>g<br />

Thermal and bulk<br />

Comptonization of<br />

cyclotron emission.<br />

T_e ~ 6-10 keV<br />

B ~ 0.6-0.8 10 12 G<br />

(Becker & Wolff, 2007)<br />

Ferrigno et al. (2009)<br />

Amsterdam 27.10.2011<br />

Tim<strong>in</strong>g and spectroscopy of HMXB - C.Ferrigno<br />

7


Soft scatter<strong>in</strong>g halo?<br />

Ferrigno et al. (2009)<br />

• Pronounced phase variations of<br />

cont<strong>in</strong>uum and <strong>l<strong>in</strong>e</strong>s.<br />

• Hard component prom<strong>in</strong>ent <strong>in</strong> the<br />

peak, soft component spread <strong>in</strong><br />

phase: a scatter<strong>in</strong>g halo?<br />

Amsterdam 27.10.2011<br />

Tim<strong>in</strong>g and spectroscopy of HMXB - C.Ferrigno<br />

8


Lum<strong>in</strong>osity dependent Ecyc<br />

V 0332+53<br />

Tsygankov et al (2006,<br />

2010)<br />

Her X-1<br />

Staubert et al (2008)<br />

• RXTE/INTEGRAL data <strong>in</strong> 3-100<br />

keV band<br />

• Anti correlation with lum<strong>in</strong>osity<br />

• Radiation enlarges the column<br />

• RXTE data of ma<strong>in</strong>-on<br />

(obscuration from disc)<br />

• Correlation with lum<strong>in</strong>osity<br />

• Accretion squeezes the column<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

9


Pulse to Pulse Variability<br />

• Dur<strong>in</strong>g the bright phase (!) of<br />

an outburst<br />

• Rate resolved spectroscopy<br />

reveals trend !<br />

• Evidence of different<br />

accretion regimes <strong>in</strong> four<br />

bright sources<br />

Klochkov et al (2011)<br />

V 0332+53<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

10


Different accretion regimes<br />

Becker et al. (2012)<br />

• Column is a region magnetically conf<strong>in</strong>ed<br />

• Depend<strong>in</strong>g on its width and amount of accretion, radiation can<br />

play an important role.<br />

• Edd<strong>in</strong>gton limit must be adapted for the geometrical and cross<br />

section effects<br />

Radius of the column<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

Cross section parallel to B-field<br />

11


A critical lum<strong>in</strong>osity<br />

Height of the radiative shock<br />

• Equation is derived follow<strong>in</strong>g Basko & Sunyaev (1977) by:<br />

– assum<strong>in</strong>g a strong radiative shock (L > LEdd)<br />

– free-fall velocity (vff) upstream and vps= 1/7 vff downstream<br />

– constant deceleration below the shock<br />

– radiation brak<strong>in</strong>g<br />

Becker et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

12


Comparison to data<br />

• Use the surface magnetic field and assume a dipole structure,<br />

a variation of the emission height translates <strong>in</strong>to a variation of<br />

the observed cyclotron scatter<strong>in</strong>g centroid energy<br />

• where h is hs or hc <strong>in</strong> the two regimes<br />

Becker et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

13


Comparison to data<br />

Becker et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

14


4U 0115+63, is the <strong>l<strong>in</strong>e</strong> variation real?<br />

• Only the fundamental shows a variation, the higher harmonics<br />

are stable !! -> fit is wrong (2008 outburst us<strong>in</strong>g NPEX<br />

cont<strong>in</strong>uum model)<br />

Li et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

15


NPEX<br />

Best fit (1)<br />

No <strong>l<strong>in</strong>e</strong>s (2)<br />

• I call it Wrong !!!!!<br />

• Large sigma <strong>in</strong><br />

Gaussian or width <strong>in</strong><br />

Lorentzian <strong>l<strong>in</strong>e</strong>s.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

16


High energy cut-off PL<br />

(1)<br />

(2)<br />

• Still artificial suppression of cont<strong>in</strong>uum<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

17


High-E cut-off PL+ 9 keV Gaussian<br />

(1)<br />

(2)<br />

• More correct<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

18


Cont<strong>in</strong>uum variations !<br />

Mueller, Ferrigno et al. (<strong>in</strong> prep)<br />

• Adopt a more complex cont<strong>in</strong>uum, so that the <strong>l<strong>in</strong>e</strong>s do not<br />

fudge the cont<strong>in</strong>uum itself<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

19


Lum<strong>in</strong>osity dependency vanishes<br />

Mueller, Ferrigno et al. (<strong>in</strong> prep)<br />

• Coherent fundamental and first harmonic non-variation<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

20


INTEGRAL observations of GX 304-1<br />

• Outburst <strong>in</strong> 2011 when it reached Crab-like flux<br />

• A flux-cyclotron <strong>l<strong>in</strong>e</strong><br />

positive correlation has<br />

been reported dur<strong>in</strong>g<br />

previous outbursts us<strong>in</strong>g<br />

Suzaku and RXTE<br />

Klochkov et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

21


Positive correlation<br />

• Beautiful measures of another<br />

subcritical system<br />

Klochkov (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

22


A new cyclotron source ?<br />

Bozzo, Ferrigno et al. (2012)<br />

• IGR J18179-1621 discovered dur<strong>in</strong>g quick-look (ATeL #3947)<br />

• Observed by INTEGRAL serendipitously<br />

• Swift/XRT follow-up campaign<br />

• Strong <strong>in</strong>dication of a cyclotron <strong>l<strong>in</strong>e</strong> a ~20 keV<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

23


Difficult tim<strong>in</strong>g study<br />

Data<br />

Simulations<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

24


Tim<strong>in</strong>g results<br />

• Estimate confidence of<br />

determ<strong>in</strong>ation us<strong>in</strong>g MC<br />

simulation and Z 2 statistics<br />

technique<br />

• At 99% c.l., we can reta<strong>in</strong> just<br />

4 out of 9 determ<strong>in</strong>ations<br />

Bozzo, Ferrigno et al. (2012)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

25


RX J0440.9+4431= LS V +44 17<br />

Usui et al. (2012)<br />

Tsygankov et al. (2012)<br />

• Classified as persistent Be/X-ray b<strong>in</strong>ary at 3.3 kpc distance<br />

• Series of flares separated of ~155 days <strong>in</strong> 2010-2011<br />

• Three papers published and one <strong>in</strong> preparation<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

26


A dip-like structure at high L<br />

Usui et al. (2012)<br />

• A dip-like structure appeared dur<strong>in</strong>g the first outburst at soft X-<br />

rays<br />

• Interpreted as due to occultation from the accretion stream<br />

• Introduced a very soft BB for a better fit (the accretion<br />

stream?)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

27


A cyclotron absorption <strong>in</strong> INTEGRAL<br />

Tsygankov et al. (2012)<br />

• Hard X-ray coverage by INTEGRAL of second outburst<br />

• Discovery of an absorption feature due to cyclotron scatter<strong>in</strong>g<br />

• Magnetic field strength confirmed by PSD analysis.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

28


RXTE-Swift/XRT follow-up<br />

Ferrigno et al. (<strong>in</strong> prep.)<br />

• Analysis of Swift/BAT data confirms periodicity and gives a<br />

typical Be/X-ray b<strong>in</strong>ary orbital light curve Porb=(147.9+/-0.3)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

29


RXTE-Swift/XRT follow-up<br />

Ferrigno et al. (<strong>in</strong> prep.)<br />

• Spectral harden<strong>in</strong>g as function of lum<strong>in</strong>osity, the same <strong>in</strong> three<br />

outbursts, due to high Ecut and larger BB area<br />

• Spectrum is comb<strong>in</strong>ation of BB+cutoffPL with low absorption<br />

NH~0.7x10 22 cm -2<br />

• BB not detectable at low lum<strong>in</strong>osity with RXTE but detected <strong>in</strong><br />

quiescence by XMMM-Newton (La Palombara et al., 2011)<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

30


BB radius and lum<strong>in</strong>osity<br />

Ferrigno et al. (<strong>in</strong> prep.)<br />

• BB radius <strong>in</strong>creases with L, as expected <strong>in</strong> disk-fed systems<br />

• slope is steeper than expected if BB radius is coupled with<br />

magnetospheric radius<br />

• At highest lum<strong>in</strong>osity, decrease ?<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

31


Future<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

32


Astro-H potential<br />

Ferrigno et al. (2009) SAX<br />

• 4U 0115+63 <strong>in</strong> outburst, fit with a complex model us<strong>in</strong>g Beppo-<br />

SAX broad-band data (45 ks)<br />

• Astro-H will provide <strong>in</strong> 10 ks a better constra<strong>in</strong>ts on relevant<br />

parameters (<strong>l<strong>in</strong>e</strong> width at 0.2 keV) and a slightly larger band !<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

33


LOFT<br />

LOFT<br />

SAX 45 ks<br />

LOFT 3.6 s<br />

• Smaller band prevents cont<strong>in</strong>uum study, but large effective<br />

area provides spectral ability on one pulse time-scale.<br />

• L<strong>in</strong>e centroids at better than 1 keV <strong>in</strong> 3.6s exposure !<br />

• Variability study at pulse time scale -> trace accretion.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

34


Conclusions<br />

• The presented theoretical study furnishes a robust<br />

understand<strong>in</strong>g of the cyclotron <strong>l<strong>in</strong>e</strong> flux dependency <strong>in</strong> different<br />

sources with different trend.<br />

• We also demonstrated that <strong>in</strong> the case of 4U 0115+63, the<br />

observational result is doubtful.<br />

• The use of archive data is limited and it would be important to<br />

discover more sources show<strong>in</strong>g this effect.<br />

• It is essential to use a facility with high-energy coverage as<br />

INTEGRAL and Suzaku (Astro-H and LOFT <strong>in</strong> the future).<br />

• However, Suzaku normally does not provide extended<br />

coverage of an outburst as INTEGRAL.<br />

ESAC 28.06.2012<br />

INTEGRAL and cyclotron <strong>l<strong>in</strong>e</strong>s - C.Ferrigno<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!