06.06.2015 Views

New Horizons in Black Hole Physics and Holography - Institute of ...

New Horizons in Black Hole Physics and Holography - Institute of ...

New Horizons in Black Hole Physics and Holography - Institute of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5 The planar Reissner-Nordström-AdS black hole 13<br />

5 The planar Reissner-Nordström-AdS The Maxwell potential black hole<strong>of</strong> the solution 13is<br />

<strong>New</strong> <strong>Horizons</strong> <strong>in</strong> <strong>Black</strong> <strong>Hole</strong><br />

⇥<br />

<strong>Physics</strong><br />

The Maxwell potential <strong>of</strong> the solution is<br />

r<br />

⇥<br />

A = µ 1 dt . (5.5)<br />

r<br />

r<br />

A = µ 1<br />

<strong>and</strong><br />

dt .<br />

r +<br />

<strong>Holography</strong><br />

+<br />

(5.5)<br />

We have required the Maxwell potential to vanish on the horizon, A t (r + )=<br />

We have required the Maxwell potential 0. The tosimplest vanish onargument the horizon, for Athis t (r + condition )= is that otherwise the holonomy<br />

0. The simplest argument for this condition <strong>of</strong> the potential is that around otherwise the the Euclidean holonomy time circle would rema<strong>in</strong> nonzero when<br />

<strong>of</strong> the potential around the Euclidean the time circle circle collapsed would rema<strong>in</strong> at thenonzero horizon, when <strong>in</strong>dicat<strong>in</strong>g a s<strong>in</strong>gular gauge connection.<br />

the circle collapsed at the horizon, The <strong>in</strong>dicat<strong>in</strong>g planaraReissner-Nordström-AdS s<strong>in</strong>gular gauge connection. solution is characterized by two scales,<br />

The planar Reissner-Nordström-AdS the solution chemical is characterized potential µ =lim by two r scales, 0 A t <strong>and</strong> the horizon radius r + . From the<br />

the chemical potential µ =lim r 0 Adual t <strong>and</strong> field thetheory horizonperspective, radius r + . From it is the more physical to th<strong>in</strong>k <strong>in</strong> terms <strong>of</strong> the<br />

dual field theory perspective, it is temperature more physical than to th<strong>in</strong>k the horizon <strong>in</strong> terms radius <strong>of</strong> the<br />

temperature than the horizon radius<br />

<strong>Black</strong> Branes <strong>and</strong> Field<br />

<strong>Black</strong><br />

Theory<br />

Branes <strong>and</strong> Field Theory<br />

at<br />

T<br />

F<strong>in</strong>ite<br />

= 1 r<br />

3<br />

+µ<br />

4⇥r +<br />

Density<br />

2 2 ⇥<br />

2 2 .<br />

at<br />

T<br />

F<strong>in</strong>ite<br />

= 1 r<br />

3<br />

+µ<br />

(5.6)<br />

Density<br />

2 2 ⇥<br />

4⇥r + 2 2 . (5.6)<br />

The black hole is illustrated <strong>in</strong> figure 4 below. This black hole, which can<br />

The black hole is illustrated <strong>in</strong> figure 4 below. This black hole, which can<br />

Saturday, November 10, 12<br />

Sunday, September 2, 2012<br />

Figure 4 The planar Reissner-Nordström-AdS Figure 4black Thehole. planar The Reissner-Nordström-AdS charge density<br />

is sourced entirely by flux emanat<strong>in</strong>g sityfrom is sourced the black entirely hole horizon. by flux emanat<strong>in</strong>g from the black hole<br />

black hole. The charge den-<br />

horizon.<br />

additionally carry a magnetic charge, additionally was the start<strong>in</strong>g carry apo<strong>in</strong>t magnetic for holographic charge, was the start<strong>in</strong>g po<strong>in</strong>t for holographic<br />

Shamit Kachru<br />

approaches to f<strong>in</strong>ite density condensed<br />

Shamit Kachru<br />

Shamit Kachru<br />

approaches<br />

Stanford &<br />

matter<br />

SLAC<br />

[27, to f<strong>in</strong>ite 28]. density condensed<br />

Stanford &<br />

matter<br />

SLAC<br />

[27, 28].<br />

Because the underly<strong>in</strong>g UV theory Because is scaleStanford <strong>in</strong>variant, the underly<strong>in</strong>g the <strong>and</strong> only UVdimension-<br />

less quantity that we can discuss isless thequantity ratio T/µ. that In we order canto discuss answerisour<br />

the ratio T/µ. In order to answer our<br />

SLAC<br />

theory is scale <strong>in</strong>variant, the only dimension-<br />

Based on:<br />

Based on:<br />

basic question aboutarXiv:1201.1905, the IR physics basic 1201.4861, at low question temperature, 1202.6635 aboutarXiv:1201.1905, the we must IR physics take the 1201.4861, at low temperature, 1202.6635 we must take the<br />

limit T/µ ⇥ 1 <strong>of</strong> the solution. Welimit thereby T/µ obta<strong>in</strong> ⇥ 1 <strong>of</strong> the the extremal solution. Reissner- We thereby obta<strong>in</strong> the extremal ReissnerarXiv<br />

: 1201.1905, 1201.4861, 1202.6635 & to appear<br />

Nordström-AdS black hole with Nordström-AdS black hole with<br />

f(r) =1 4<br />

r<br />

r +<br />

⇥ 3<br />

+3<br />

⇥<br />

r 4 ⇥<br />

r 3<br />

. f(r) =1 4 (5.7) +3<br />

r + r +<br />

r<br />

r +<br />

⇥ 4<br />

. (5.7)


I. Introduction<br />

An ab <strong>in</strong>itio <strong>in</strong>terest<strong>in</strong>g question <strong>in</strong> theoretical physics is<br />

the classification <strong>of</strong> states <strong>of</strong> matter. Interest<strong>in</strong>g new states<br />

are thought to arise <strong>in</strong> f<strong>in</strong>ite density QCD; <strong>in</strong> materials <strong>of</strong><br />

modern <strong>in</strong>terest <strong>in</strong> condensed matter physics; <strong>and</strong><br />

probably other places as well.<br />

Saturday, November 10, 12


At first, the richness <strong>of</strong> phases <strong>of</strong> quantum matter is an<br />

An a priori different question is the classification <strong>of</strong> black<br />

embarassment for holography.<br />

hole solutions <strong>in</strong> general relativity (or its extensions with<br />

simple matter sectors). In asymptotically flat 4d M<strong>in</strong>kowski<br />

space, This impressive is because, results famously, were “black obta<strong>in</strong>ed holes by have the early no hair”: 1970s.<br />

Tuesday, October 2, 12<br />

Saturday, November 10, 12


Gauge/gravity duality <strong>in</strong>vites us to connect the two<br />

questions.<br />

Thus, our l<strong>in</strong>e <strong>of</strong> attack will be as follows. In AdS/CFT, f<strong>in</strong>ite<br />

F<strong>in</strong>ite temperature field theory is represented by the AdS/<br />

temperature field theory is represented by the AdS<br />

Schwarzschild black brane:<br />

Thus, our l<strong>in</strong>e <strong>of</strong> attack will be as follows. In AdS/CFT, f<strong>in</strong>ite<br />

Schwarzschild black brane:<br />

temperature field theory is represented by the AdS<br />

Schwarzschild black brane:<br />

ds 2 = L2<br />

z 2 (<br />

ds 2 = L2<br />

z 2 (<br />

fdt2 + dx 2 + dz2<br />

f )<br />

fdt2 z d + dx 2 + dz2<br />

f )<br />

f 7=1<br />

T H E SC H WA RZSC HIL D SO LU T IO N A N D BL A C K H O L ES<br />

f 7=1<br />

T H E SC H WA RZSC HIL D SO LU T IO N A N D BL A C K H O L ES<br />

<strong>of</strong> the external<br />

zH<br />

d (asymptotically flat) universe, at least as seen from<br />

“Dop<strong>in</strong>g” by add<strong>in</strong>g charge density, one is led to study<br />

see this<br />

<strong>of</strong> the<br />

(<strong>in</strong>f<strong>in</strong>itely<br />

external (asymptotically<br />

long) history <strong>in</strong><br />

flat)<br />

a<br />

universe,<br />

f<strong>in</strong>ite amount<br />

at least<strong>of</strong> as<br />

their<br />

seen from<br />

prope<br />

th<br />

that gets see this to (<strong>in</strong>f<strong>in</strong>itely them as long) they history approach <strong>in</strong> arf<strong>in</strong>ite − is amount <strong>in</strong>f<strong>in</strong>itely <strong>of</strong> their blueshifted. proper tim<br />

to believe (although I know <strong>of</strong> no pro<strong>of</strong>) that any non-sphericall The<br />

relativity that there are that comes to believe <strong>in</strong>to(although a Reissner-Nordstrøm I know <strong>of</strong><br />

<strong>of</strong><br />

no pro<strong>of</strong>)<br />

such<br />

black that hole any<br />

branes:<br />

will non-spherically violently dist sy<br />

the Reissner-Nordstrøm go through the steps metric, explicitly, <strong>and</strong>but is given merelyby<br />

quote<br />

described.<br />

the f<strong>in</strong>al that answer. comes It’sThe <strong>in</strong>to hard<br />

solution a Reissner-Nordstrøm to say known<br />

whatas<br />

the black actual hole geometry will violently willdisturb<br />

holes that there are extremal avatars <strong>of</strong> such branes:<br />

look<br />

the Reissner-Nordstrøm metric, <strong>and</strong> is given by described. It’s hard to say what the actual geometry will look like<br />

good reason to believe that it must conta<strong>in</strong> an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> a<br />

ds 2 = −∆dt 2 + ∆ −1 dr 2 + r 2 dΩ 2 good , reason to believe that (7.110) it must conta<strong>in</strong> an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> asym<br />

ds 2 = −∆dt 2 + ∆ −1 dr connect<strong>in</strong>g 2 + r 2 dΩ 2 , to each other via (7.110) various wormholes.<br />

connect<strong>in</strong>g to each other via various wormholes.<br />

where<br />

Case Three — GM 2 = p 2 + q 2<br />

where<br />

∆ =1− 2GM<br />

Case Three — GM 2 = p 2 + q 2<br />

+ G(p2 + q 2 ) This<br />

.<br />

case is known as the ∆ =1− 2GM + G(p2 + q 2 ) This<br />

r r r 2 .<br />

case is known as the<br />

(7.111)<br />

extreme Reissner-Nordstrøm solution<br />

black r 2 black hole”). hole”). The The mass mass is is exactly balanced <strong>in</strong> some sense by by the the charg<br />

In this expression, In thisMexpression, once aga<strong>in</strong> M is once <strong>in</strong>terpreted aga<strong>in</strong> <strong>in</strong>terpreted as the mass the<br />

exact <strong>of</strong> mass exact the<strong>of</strong> solutions hole; the solutions hole; q qthe consist<strong>in</strong>g the total total<br />

<strong>of</strong> <strong>of</strong> electric<br />

several extremal black holes holes which which rema r<br />

charge, <strong>and</strong> pcharge, is the total<br />

<strong>and</strong> p<br />

magnetic<br />

is the total<br />

charge.<br />

magneticIsolated charge. Isolated<br />

magnetic<br />

magnetic<br />

spect<br />

charges<br />

charges<br />

to each<br />

(monopoles)<br />

(monopoles)<br />

other for all<br />

have<br />

have<br />

time.<br />

never<br />

never<br />

Sunday, September 2, 2012<br />

spect to each other for all time.<br />

Sunday, September 2, 2012<br />

been observed <strong>in</strong> nature, but that doesn’t stop us from writ<strong>in</strong>g down the metric that they On<br />

On the one h<strong>and</strong> the<br />

the<br />

extremal<br />

extremal<br />

hole<br />

hole<br />

is a<br />

been observed <strong>in</strong> nature, but that doesn’t stop us from writ<strong>in</strong>g toy; down these the solutions metric arethat <strong>of</strong>tenthey<br />

exam<strong>in</strong>ed <strong>in</strong> studies <strong>of</strong> the <strong>in</strong>formation<br />

Add<strong>in</strong>g charge density, one is led <strong>in</strong>stead to study a charged<br />

7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 202<br />

<strong>in</strong>stead black a charged<br />

Add<strong>in</strong>g charge brane. It is black<br />

density, familiar brane.<br />

one is from Reissner-Nordstrom It<br />

led <strong>in</strong>stead<br />

familiar<br />

to study<br />

from<br />

a charged<br />

flat black space<br />

7 THE SCHWARZSCHILD SOLUTION AND BLACKthat HOLES gets to them as they approach 202 r − <strong>in</strong>f<strong>in</strong>itely blueshifted.<br />

go through the<br />

holes<br />

steps black explicitly, brane.<br />

that<br />

but<br />

there<br />

merelyIt quote is familiar<br />

are<br />

the<br />

extremal<br />

f<strong>in</strong>al answer. from The Reissner-Nordstrom<br />

avatars<br />

solution <strong>of</strong><br />

known<br />

such<br />

as black<br />

branes:<br />

Saturday, November 10, 12<br />

z d H<br />

z d


Figure 6 The zero temperature holographic superconductor. The electric<br />

flux is sourced entirely by the scalar field condensate.<br />

The no-hair<br />

f<strong>in</strong>ds<br />

theorems<br />

that theory (6.1) admits<br />

fail <strong>in</strong><br />

Lifshitz<br />

AdS<br />

solutions<br />

space.<br />

with the dynamical<br />

Charged black<br />

critical exponent z given by solutions to<br />

brane<br />

8(V T<br />

horizons<br />

3) + 4(V 2<br />

can take a variety <strong>of</strong> forms:<br />

T 4V T + 12)z +(V T 2 +8V T 24)z 2 + VT 2 z 3 =0. (6.6)<br />

12 <strong>Horizons</strong>, holography <strong>and</strong> condensed matter<br />

Here we <strong>in</strong>troduced<br />

given electric flux at the boundary, leads to gravitational physics that is<br />

V T = ⇥ 2 L 2 V (⇤ ⇥ )+m 2 ⇤ 2 ⇥<br />

⇥ , VT = ⇥2 L<br />

V (⇤ ⇥ )+2m 2 ⇥<br />

<strong>in</strong>terest<strong>in</strong>g <strong>in</strong> its own right.<br />

⇤ ⇥ . (6.7)<br />

e<br />

Figure 7 The electron star. The electric flux is sourced entirely by a fluid<br />

Thus <strong>of</strong> the fermions. dynamical The fluid critical is present exponent at all radii is determ<strong>in</strong>ed for which the bylocal the chemical value <strong>of</strong> the<br />

potential <strong>and</strong>is its greater firstthan derivative the fermion at the mass. fixed po<strong>in</strong>t value <strong>of</strong> ⇤ ⇥ , which is <strong>in</strong><br />

turn determ<strong>in</strong>ed by the equations <strong>of</strong> motion. In order for the scal<strong>in</strong>g (6.5) to<br />

have charge a is straightforward carried by the <strong>in</strong>terpretation fermions ratherasthan a renormalisation ly<strong>in</strong>g beh<strong>in</strong>d a horizon.<br />

!" transformation,<br />

one<br />

Secondly,<br />

should have<br />

consider<br />

z>0.<br />

heat<strong>in</strong>g 5))5))5<br />

The null<br />

up the<br />

energy<br />

system.<br />

condition<br />

At lead<strong>in</strong>g #$%&'()<br />

<strong>in</strong> the<br />

order<br />

bulk<br />

<strong>in</strong><br />

furthermore<br />

semiclassical<br />

01(#.&-# *(+,-./<br />

implies z<br />

limit,<br />

> 1<br />

this<br />

[46].<br />

means<br />

Even<br />

67)2&89)'&%:-./) plac<strong>in</strong>g<br />

if (6.6)<br />

a f<strong>in</strong>ite<br />

gives<br />

temperature 2134<br />

physical solutions<br />

black hole<br />

for z,<br />

horizon<br />

it is<br />

<strong>in</strong><br />

not<br />

*/+%9-#,<br />

guaranteed<br />

the <strong>in</strong>terior <strong>of</strong><br />

that<br />

the<br />

the<br />

spacetime.<br />

correspond<strong>in</strong>g<br />

The fluid<br />

Lifshitz<br />

rema<strong>in</strong>s<br />

solution<br />

at zero<br />

is<br />

temperature,<br />

realised as the<br />

as the<br />

near<br />

fluid must be <strong>in</strong> thermal equilibrium with the Hawk<strong>in</strong>g radiation <strong>of</strong><br />

horizon geometry. An <strong>in</strong>structive simple case to consider is m 2 the black<br />

> 0 <strong>and</strong><br />

hole, the e ects <strong>of</strong> which are negligible <strong>in</strong> the semiclassical limit. At f<strong>in</strong>ite<br />

V = 0. One obta<strong>in</strong>s <strong>in</strong> this case [46, 45]<br />

temperature, a fraction <strong>of</strong> the charge is carried by the black hole horizon,<br />

2<br />

which Figure subsequently 3 The basic pushes question the<br />

z =<br />

2 L 2 m 2 , <strong>in</strong> fermion f<strong>in</strong>ite ⇤2 density fluid<br />

⇥ = 1 a f<strong>in</strong>ite holography: distance 6z useaway the<br />

e 2 L 2 (1 + z)(2 + z) . gravitational<br />

Theequations star becomes to motion a b<strong>and</strong> to <strong>of</strong> f<strong>in</strong>dfluid the with <strong>in</strong>terior an IR <strong>in</strong>ner geometry <strong>and</strong> angiven outerthe<br />

radius<br />

from (6.8) the<br />

horizon.<br />

boundary condition that there is an electric flux at <strong>in</strong>f<strong>in</strong>ity.<br />

[66, 67]. At nonzero temperature we can dial the ratio T/µ. We can expect<br />

The Lifshitz solutions are seen to exist so long as the scalar is not too heavy,<br />

that<br />

L 2 m 2 at su⌅ciently<br />

<<br />

2 . As L 2 high<br />

m 2 values <strong>of</strong> this ratio, the star will collapse to form a<br />

Tuesday, ⌅ 0, we see that z ⌅ 1 <strong>and</strong> an emergent relativistic<br />

black<br />

October<br />

hole. This<br />

2, 12<br />

will be analogous<br />

AdS 4 is obta<strong>in</strong>ed. As L 2 m 2 to<br />

⌅<br />

2 the maximal mass <strong>of</strong> spherical neutron<br />

from below, z ⌅⇧<strong>and</strong> the extremal<br />

stars; <strong>in</strong><br />

AdS 2 ⇥R 2 5global Therather planarthan Reissner-Nordström-AdS planar AdS, the mass scale black canhole<br />

be compared<br />

geometry is recovered. However, recall from (6.2) that AdS 2 ⇥R 2 is<br />

to the radius <strong>of</strong> the spatial boundary<br />

stable<br />

The m<strong>in</strong>imal<br />

aga<strong>in</strong>st<br />

framework<br />

⇤ condens<strong>in</strong>g<br />

capable<br />

if<br />

2 <strong>of</strong><br />

m<br />

describ<strong>in</strong>g 2 sphere.<br />

L 2 ⇤ 3 In that case there is a first<br />

2<br />

.<br />

the<br />

Extremal<br />

physics<br />

Reissner-Nordström<br />

<strong>of</strong> electric flux <strong>in</strong><br />

is<br />

an<br />

likely<br />

asymptotically<br />

the ground<br />

AdS<br />

state<br />

geometry<br />

<strong>in</strong> this case.<br />

is E<strong>in</strong>ste<strong>in</strong>-Maxwell<br />

It follows that<br />

theory<br />

the Lifshitz<br />

with a<br />

geometries<br />

negative<br />

cosmological constant [26]. The Lagrangian density can be written<br />

(6.8) realized as IR scal<strong>in</strong>g regimes <strong>in</strong> this theory with a positive quadratic<br />

L = 1<br />

2⇥ 2 R + 6 ⇥<br />

1<br />

L 2 4e 2 F µ⇥F µ⇥ . (5.1)<br />

Here ⇥ <strong>and</strong> e are respectively the <strong>New</strong>tonian <strong>and</strong> Maxwell constants while<br />

L sets the cosmological constant lengthscale.<br />

There is a unique regular solution to the theory (5.1) with electric flux<br />

at <strong>in</strong>f<strong>in</strong>ity <strong>and</strong> that has rotations <strong>and</strong> spacetime translations as symmetries.<br />

represe<br />

The problem <strong>of</strong> classify<strong>in</strong>g low-energy phases <strong>of</strong> doped<br />

matter can be mapped to the problem <strong>of</strong> classify<strong>in</strong>g<br />

Saturday, November 10, 12<br />

extremal black brane geometries.<br />

conduc<br />

Gubser;<br />

liquid<br />

dual ... to


While attempts at classification (<strong>of</strong> 2d cfts, str<strong>in</strong>g vacua,<br />

etc.) have a checkered history, we will put aside suspicion<br />

<strong>and</strong> pursue this l<strong>in</strong>e <strong>of</strong> thought:<br />

II. The basic horizon<br />

A. Near-horizon limit<br />

B. Interest<strong>in</strong>g physics (non-Fermi liquids)<br />

III. More general homogeneous, isotropic geometries<br />

A. Lifshitz geometries (<strong>and</strong> l<strong>in</strong>ear resistivity)<br />

B. Hyperscal<strong>in</strong>g violation (& entanglement)<br />

C. Instabilities<br />

IV. Homogeneous, anisotropic geometries<br />

A. Bianchi horizons<br />

B. More general 4-algebras<br />

Saturday, November 10, 12


The Fermi liquid fixed po<strong>in</strong>t is <strong>in</strong>fr<br />

the Cooper channel <strong>in</strong>stability). Th<br />

metals.<br />

At various times, we will take detours to explore the<br />

physical properties <strong>of</strong> the horizons we’ve discovered.<br />

We will <strong>of</strong>ten comment on their possible But a variety relationship <strong>of</strong> experiments to yield<br />

le <strong>of</strong> a system which enjoys such “shifted d” decidedly <strong>in</strong> “non-Fermi liquid” beha<br />

eal world, theories is a Fermi <strong>of</strong> liquid. Fermi Basic surfaces picture: <strong>and</strong><br />

where<br />

non-Fermi<br />

Fermi liquid<br />

liquids.<br />

theory would<br />

rmi liquids A. J. Sch<strong>of</strong>ield 2<br />

simply us<strong>in</strong>g Fermi’s golden<br />

ll’s equations) <strong>and</strong> I have <strong>in</strong>ho<br />

would like to see where<br />

com<strong>in</strong>g from.<br />

w is as follows. I beg<strong>in</strong> with<br />

id theory itself. This thevery<br />

good description <strong>of</strong> a<br />

s <strong>of</strong> Fermi particles (i.e. that<br />

ciple) where the <strong>in</strong>teractions<br />

nimportant. The reason is<br />

eally describ<strong>in</strong>g are not the<br />

tron-like quasiparticles that<br />

gas <strong>of</strong> electrons. Despite its<br />

Figure 1: The ground state <strong>of</strong> the free Fermi gas <strong>in</strong> momentum<br />

space. All the states below the Fermi surface<br />

ate the subject <strong>of</strong> non-Fermi<br />

successful theory at describsome,<br />

like UPt 3 , where the<br />

are filled with both a sp<strong>in</strong>-up <strong>and</strong> a sp<strong>in</strong>-down electron.<br />

A particle-hole excitation is made by promot<strong>in</strong>g<br />

ig<strong>in</strong>al electrons are very imen<br />

to fail <strong>in</strong> other materials<br />

an electron from a state below the Fermi surface to an<br />

empty one above it.<br />

ptionsion to a general rule one but surface <strong>in</strong> k-space divides occupied Sunday, September 2, 2012<br />

est<strong>in</strong>g materials<br />

It<br />

known.<br />

is<br />

As<br />

important to remember that this is a problem <strong>of</strong><br />

ilure <strong>in</strong> the metallic state <strong>of</strong><br />

2. Fermi-Liquid Theory: the electron quasiparticle<br />

rconductors.<br />

mples<br />

ccupied<br />

which, from a theo-stateste non-Fermi liquid metals.<br />

Only the orthogonal direction<br />

The need for a Fermi-liquid theory dates from the<br />

roperties<br />

classical<br />

first applications<br />

which can not be<br />

&<br />

<strong>of</strong><br />

quantum<br />

quantum mechanics to metallic<br />

gravity <strong>in</strong> its own right, however, <strong>and</strong><br />

state. There were two key problems. Classically each<br />

t kly <strong>in</strong>teract<strong>in</strong>g a given electron-like po<strong>in</strong>t electron should contributethe 3k B /2 to theFermi specific heat surface. It is like a<br />

capacity <strong>of</strong> a metal—far more than is actually seen experimentally.<br />

In addition, as soon as it was realized<br />

tum critical po<strong>in</strong>t. When a<br />

should be understood on its own terms.<br />

ens rfaces at temperatures close worth to <strong>of</strong> 1+1 dimensional CFTs.<br />

that the electron had a magnetic moment, there was<br />

the puzzle <strong>of</strong> the magnetic susceptibility which did not<br />

show the expected Curie temperature dependence for<br />

iparticles scatter so strongly<br />

ave <strong>in</strong> the way that Fermiedict.<br />

ion–the Lutt<strong>in</strong>ger liquid. In<br />

s, electrons are unstable <strong>and</strong><br />

ate particles (sp<strong>in</strong>ons <strong>and</strong><br />

Saturday, November 10, 12<br />

free moments: χ ∼ 1/T .<br />

These puzzles were unraveled at a stroke when<br />

Pauli (Pauli 1927, Sommerfeld 1928) (apparently<br />

reluctantly—see Hermann et al. 1979) adopted Fermi<br />

statistics for the electron <strong>and</strong> <strong>in</strong> particular enforced the<br />

??


mR = ∆ − 3 2<br />

II. The basic horizon<br />

In AdS/CFT, one represents a (global) U(1) symmetry <strong>of</strong> the<br />

field theory by a bulk Abelian gauge field.<br />

(1)<br />

where R is the AdS curvature radius. The spectral function<br />

<strong>of</strong> O at f<strong>in</strong>ite charge density can then be extracted<br />

by solv<strong>in</strong>g the Dirac equation for ψ <strong>in</strong> the charged AdS<br />

black hole geometry. Which pairs <strong>of</strong> (q, ∆) arise depends<br />

on the specific dual CFT. However, s<strong>in</strong>ce we are work<strong>in</strong>g<br />

with a universal sector common to many gravity theories,<br />

we will take the liberty <strong>of</strong> consider<strong>in</strong>g an arbitrary pair<br />

<strong>of</strong> (q, ∆), scann<strong>in</strong>g many possible CFTs.<br />

A. <strong>Black</strong> hole geometry<br />

The action for a vector field A M coupled to AdS 4 gravity<br />

can be written as<br />

S = 1 ∫<br />

2κ 2 d 4 x √ −g<br />

[R − 6 ]<br />

R 2 − R2<br />

F MN F MN (2)<br />

where gF 2 is an effective dimensionless gauge coupl<strong>in</strong>g4 .<br />

The equations <strong>of</strong> motion follow<strong>in</strong>g from (2) are solved by<br />

the geometry <strong>of</strong> a charged black hole [18, 19] 5<br />

ds 2 = r2<br />

R 2 (−fdt2 + dx 2 i )+ R2 dr<br />

planar analogue <strong>of</strong> the Reissner-Nordstrom 2<br />

r 2 (3) black hole.<br />

f<br />

g 2 F<br />

The zero-temperat<br />

√<br />

3. At zero tempe<br />

becomes AdS 2 × R<br />

given by<br />

So the simplest theory where one can ask about field<br />

theory at f<strong>in</strong>ite density is:<br />

B<br />

To compute the<br />

the quadratic actio<br />

∫<br />

S sp<strong>in</strong>or = d d<br />

where<br />

¯ψ = ψ † Γ t ,<br />

D<br />

<strong>and</strong> ω abM is the s<br />

action (10) depend<br />

This theory has simple, exact solutions which represent the<br />

Saturday, November 10, 12<br />

4 It is def<strong>in</strong>ed so that for a typical supergravity Lagrangian it is a<br />

constant <strong>of</strong> order O(1)<br />

5 For a generic embedd<strong>in</strong>g <strong>of</strong> (2) <strong>in</strong>to 4d N =2supergravity,this<br />

6 We will use M <strong>and</strong><br />

space <strong>in</strong>dices respe<br />

the boundary direc<br />

matrices refer to ta


g<strong>of</strong> y<strong>of</strong> dimension gravity can be written as<br />

ermi<br />

the<br />

r <strong>in</strong> the low-energy <strong>of</strong> corre-<br />

S mapped = to<br />

IR CFT. When operator is where (1)<br />

R CFT. When the operator is where g 2 gF<br />

2 is an effective dimensionless gauge coupl<strong>in</strong>g7<br />

IR ts give CFT), a nice underst<strong>and</strong><strong>in</strong>g quasi-particle <strong>of</strong> the is unstable. low-energy <strong>and</strong>F<br />

is an effective dimensionless gauge coupl<strong>in</strong>g7<br />

S = R 1 ∫<br />

is the curvature radius <strong>of</strong> AdS. The equations <strong>of</strong><br />

arly avior theproportional around quasi-particle Fermi to its issurface. unstable. energyThe <strong>and</strong>scal<strong>in</strong>g<br />

the <strong>and</strong> Rmotion is the 2κfollow<strong>in</strong>g 2 d d+1 x √ [<br />

]<br />

rface. toa x −g field A M <strong>in</strong> AdS. − −g +<br />

d(dR − 2<br />

R 2 g<br />

1)<br />

2 2<br />

F MN F<br />

tate. In for a field A MN MN M F to AdS<br />

he n The the scal<strong>in</strong>g<br />

d+1<br />

<strong>of</strong> nderst<strong>and</strong><strong>in</strong>g quasi-particle <strong>of</strong> the is sur-<br />

a charged is where ang black 2 F is an gauge gauge coupl<strong>in</strong>g7 coupl<strong>in</strong>g7<br />

the radius <strong>of</strong> AdS. The equations <strong>of</strong><br />

2κ 2 d d+1 ad U(1)<br />

x √ x gauge −g field R + A M <strong>in</strong> AdS. − surface. The scal<strong>in</strong>g<br />

−g R + be −g as R + R 2<br />

R 2κ<br />

2 R<br />

2 g<br />

curvature from radius (1) are<strong>of</strong> solved RAdS. 2 − R2<br />

byThe g 2 F MN<br />

F<br />

F 2 2<br />

F MN F<br />

In contrast, there is no The action for a vector field A MN MN M coupled F to AdS d+1<br />

when dimension the dimension <strong>of</strong> the corre- is com-<br />

gravity can be written as<br />

F<br />

MN (1) (1)<br />

nsion Fthe equations geometry <strong>of</strong> <strong>of</strong><br />

ortional idue re FT. <strong>of</strong> en the approach<strong>in</strong>g is<br />

controlled vanishes to<br />

by<br />

its approach<strong>in</strong>g the<br />

energy<br />

dimension<br />

<strong>and</strong> the<strong>of</strong> fermi the<br />

the suroperator<br />

corre-<br />

The black hole solution takes the form: (1)<br />

When <strong>of</strong> the corren<br />

the operator is<br />

operator is<br />

where motion a charged follow<strong>in</strong>g black from hole (1) [5, 9] are solved by the geometry<br />

(1)<br />

<strong>of</strong><br />

shes<br />

the irrelevant,<br />

IR CFT. When is<br />

the the fermi quasi-particle<br />

the operator is<br />

2 is an gauge coupl<strong>in</strong>g7<br />

he hole [5, 9]<br />

article<br />

isscal<strong>in</strong>g nal theFermi IR<br />

irrelevant,<br />

toCFT), toward its the quasi-particle<br />

the thequasi-particle<br />

Fermi<br />

The <strong>and</strong> surface is unstable.<br />

with<br />

is the 2κ <strong>and</strong><br />

follow<strong>in</strong>g 2 d d+1 x [<br />

] (1)<br />

d(d − 1)<br />

where g 2 gF<br />

2 is an effective dimensionless −g R + R is the curvature<br />

from radius (1) ds<br />

oward<br />

particle<br />

the<br />

residue.<br />

Fermi<br />

When<br />

surface<br />

the operator<br />

with<br />

is<br />

≡ g MN dx M dx N = r2 are<strong>of</strong> solved R AdS. 2 − R2<br />

coupl<strong>in</strong>g7<br />

<strong>of</strong> the is unstable. low-energy <strong>and</strong>F<br />

is effective dimensionless<br />

The<br />

byThe gequations 2 Fgauge MN F MN coupl<strong>in</strong>g7<br />

S = R 1 ∫<br />

is the curvature radius <strong>of</strong> AdS. The equations <strong>of</strong><br />

ds<br />

esidue. 2 ≡ MN dx M dx N = r2 R 2 (−fdt2 + d⃗x 2 )+ R2 dr 2 <strong>of</strong><br />

the equations geometry <strong>of</strong> <strong>of</strong><br />

by Fermi<br />

l<strong>in</strong>early proportional to its energy <strong>and</strong> the motion (1) are solved by geometry<br />

R 2 (−fdt2 + d⃗x 2 )+ R2 r 2 <strong>of</strong><br />

dr f 2 (2)<br />

its le approach<strong>in</strong>g the<br />

to<br />

residue energy<br />

dimension<br />

its issurface. unstable. energyThe vanishes the<strong>of</strong><strong>and</strong> scal<strong>in</strong>g<br />

approach<strong>in</strong>g fermi surelevant,<br />

corre-<br />

<strong>and</strong><br />

F<br />

Rmotion is the 2κ follow<strong>in</strong>g 2 d d+1 x √ [<br />

]<br />

The AdS/RN solution −g has R + a<br />

d(d<br />

metric:<br />

− 1)<br />

curvature from radius (1) takes are<strong>of</strong> solved Rthe AdS. 2 − R2<br />

form: byThe g 2 F MN F MN<br />

Fthe equations geometry<br />

the fermi surthe<br />

operator functionis irrelevant, then has the the quasi-particle<br />

form for a<br />

charged a charged black from black hole (1) [5, 9] are 9] solved by the geometry<br />

(1)<br />

<strong>of</strong> <strong>of</strong><br />

<strong>of</strong><br />

IR spproach<strong>in</strong>g the<br />

ctral energy<br />

dimension<br />

r 2 (2)<br />

h<strong>in</strong>g<br />

CFT. When <strong>and</strong> the<strong>of</strong> the the fermi quasi-particle<br />

the fermi the<br />

the<br />

operator surlevant,<br />

corre- The black hole solution takes the form:<br />

motion is awhere charged follow<strong>in</strong>g g<br />

sur-<br />

F<br />

liquid” <strong>in</strong>troduced <strong>in</strong> the phenomeno-<br />

chargedwith<br />

black 2 is black anfrom effective hole (1) [5, dimensionless 9] are solvedgauge by the coupl<strong>in</strong>g7 geometry<br />

(1)<br />

<strong>of</strong><br />

f<br />

able,<br />

CFT. When hole [5, 9]<br />

rd <strong>in</strong>g the scal<strong>in</strong>g quasi-particle toward the Fermi surface with<br />

ction normal thenstate has<strong>of</strong> the high form T c cuprates for a<br />

residue. When the operator [8]. ds<br />

is<br />

2 ≡ g MN dx M dx N ( )<br />

ntroduced emphasiz<strong>in</strong>g<strong>in</strong>two theimportant phenomenol<br />

state is that <strong>of</strong> high TIR, c cuprates the theory [8]. has not<br />

r 2d−2 − M (−fdt2 + d⃗x 2 )+ R2 dr the the the Fermi fermi quasi-particle<br />

features <strong>of</strong><br />

e spectral function then has the form for a f =1+<br />

Q2<br />

first<br />

the operator is where g<br />

surface surthe<br />

is unstable.<br />

with<br />

<strong>and</strong> isF<br />

a charged black 2 is an effective dimensionless gauge 2 coupl<strong>in</strong>g7<br />

the curvature radius<br />

r 2 (2)<br />

with ds an “emblacken<strong>in</strong>g factor” <strong>and</strong> gauge f<br />

ue. field:<br />

ermi<br />

When<br />

surface operator<br />

with<br />

is<br />

2 g MN dx M dx N = r2 <strong>of</strong> AdS. The equations<br />

( )<br />

z<strong>in</strong>g scal<strong>in</strong>g twosymmetry important butfeatures an SL(2,R) <strong>of</strong> con- f =1+<br />

Q2<br />

at <strong>in</strong> IR, the theory has not<br />

r 2d−2 − M r d , A t = µ 1 − rd−2 0<br />

r d−2 . (3)<br />

ermi liquid” <strong>in</strong>troduced <strong>in</strong> phenomenoy<br />

<strong>of</strong> thenormal operator state <strong>of</strong> high is<br />

2 MN dx M dx N = r2 R 2 (−fdt2 + d⃗x 2 )+ R2 dr 2 <strong>of</strong><br />

ds with<br />

he quasi-particle is unstable.<br />

hole [5, 9]<br />

ortional thequasi-particle<br />

Fermi to itssurface energy <strong>and</strong> with the<br />

<strong>and</strong> R is the curvature radius<br />

motion follow<strong>in</strong>g from (1) are solved by the geometry<br />

T<br />

r d , A t = µ 1 − rd−2<br />

c cuprates [8].<br />

R 2 (−fdt2 + d⃗x 2 )+ R2 r 2 <strong>of</strong><br />

dr 2 (2)<br />

shes approach<strong>in</strong>g fermi sur-<br />

ds f<br />

e. charged black hole [5, 9]<br />

nis then<br />

When<br />

irrelevant, surface has<br />

the<br />

the<br />

operator with form for<br />

is<br />

2 ≡ g MN dx M dx N = r2 <strong>of</strong> AdS. The equations<br />

quasi-particle<br />

( 0 ) r 2 (2)<br />

duced <strong>in</strong> phenomeno-dte <strong>of</strong> high T c cuprates [8]. ds<br />

f<br />

n<br />

with<br />

oward<br />

r d−2 . (3)<br />

worth as<br />

the the<br />

(maybe the<br />

operator Fermi surface<br />

emphasiz<strong>in</strong>g even formVirasoro two is<br />

2 ≡ g MN dx M dx N = r2 R 2 (−fdt2 + d⃗x 2 )+ R2 dr 2 <strong>of</strong><br />

tional to its energy <strong>and</strong> the motion follow<strong>in</strong>g from (1) are solved by the geometry<br />

with<br />

important algebra). features The<strong>of</strong><br />

r 0 isf the =1+ horizon Q2 radius determ<strong>in</strong>ed by the largest positive<br />

ymmetry al The behavior first is that<br />

but (<strong>in</strong>clud<strong>in</strong>g IR, SL(2,R) around the theory<br />

con-<br />

Fermi has not root <strong>of</strong> the redshift r 2d−2 − M r d , A t = µ 1 − rd−2 0<br />

r d−2 . (3)<br />

esidue. When the operator is<br />

2 ≡ g MN dx M dx N =<br />

R r22<br />

(−fdt2 + d⃗x 2 )+ R2 r 2 <strong>of</strong><br />

dr 2 (2)<br />

es approach<strong>in</strong>g the fermi surirrelevant,<br />

then has the the quasi-particle<br />

form for a<br />

a charged black hole [5, 9]<br />

f<br />

( )<br />

n<br />

pears rgent two the<br />

scal<strong>in</strong>g<br />

phenomenoeven<br />

important<br />

Virasoro frequency, symmetry features but<br />

algebra).<br />

notan <strong>in</strong>SL(2,R) the<br />

<strong>of</strong><br />

Thespatial<br />

conmetry<br />

T (maybe even Virasoro algebra). The<br />

gh r 0<br />

f is=1+<br />

Q2<br />

the r 0 is horizon the horizon radius radius determ<strong>in</strong>ed by bythe the largest positive<br />

the IR, c cuprates theory [8]. has not<br />

r 2d−2 − M R 2 (−fdt2 + d⃗x 2 )+ R2 dr 2<br />

r 2 (2)<br />

uced <strong>in</strong> phenomenoes<br />

<strong>of</strong> the high form<br />

with<br />

r 2 (2)<br />

f<br />

ard the Fermi surface with<br />

f<br />

ction then<br />

Thas c cuprates for a<br />

the form<br />

[8].<br />

an ds “emblacken<strong>in</strong>g factor” <strong>and</strong> gauge field:<br />

idue. When the operator for is<br />

2 ≡ g MN dx M dx N = r2<br />

a<br />

(<br />

or (<strong>in</strong>clud<strong>in</strong>g around the Fermi root <strong>of</strong> the redshift f(r 0 )=0, → M r0 d largest + Q2 positive )<br />

critical behavior (<strong>in</strong>clud<strong>in</strong>g around the Fermi root <strong>of</strong> the redshift factor<br />

r (4)<br />

Monday, July 11, 2011<br />

portant<br />

he lyetry appears<br />

but<br />

frequency, <strong>in</strong>features an<br />

theSL(2,R) not frequency,<br />

<strong>of</strong><br />

<strong>in</strong> thenot connz<strong>in</strong>g<br />

Virasoro tw<strong>of</strong>eatures important algebra). <strong>of</strong> features The<strong>of</strong><br />

r 0 isf the =1+ horizon Q2 radius determ<strong>in</strong>ed by the largest<br />

spatial <strong>in</strong> thef spatial =1+<br />

Q2<br />

0<br />

the theory has not<br />

r 2d−2 − M r d , A (<br />

t = µ 1 − rd−2 )<br />

0<br />

r d−2 . (3)<br />

ntroduced wo theimportant phenomenohhl<br />

state TIR, c cuprates <strong>of</strong> the high theory T<br />

<strong>in</strong> features phenomeno-<br />

<strong>of</strong><br />

with f =1+<br />

Q2<br />

f(r<br />

f(r 0 )=0, r0 d + Q2<br />

ere may exist certa<strong>in</strong> operator dimensions or<br />

0 )=0, r d , A t = µ 1 − rd−2<br />

c<br />

[8]. cuprates has not [8].<br />

r 2d−2 − M R 2 (−fdt2 + d⃗x 2 )+ R2 dr 2<br />

r 2 (2)<br />

with an “emblacken<strong>in</strong>g factor” <strong>and</strong> gauge ffield:<br />

ion then has form for a<br />

( 0 )<br />

→ M r0 d + Q2 r d−2 . (3)<br />

ortant<br />

r d−2 (4)<br />

positive<br />

at 0<br />

d−2 (4)<br />

nclud<strong>in</strong>g IR, 0<br />

tnot anarise SL(2,R) <strong>in</strong>around the theory<br />

a consistent con-<br />

gravity Fermi has not root <strong>of</strong> the redshift r 2d−2 − factor r t = µ 1 − rd−2 0<br />

f =1+<br />

Q2<br />

r d−2 . (3)<br />

he theory has not theory with r 2d−2 − M r d , A t = µ<br />

(<br />

1 − rd−2 0<br />

r d−2 )<br />

. (3)<br />

troduced phenomenostate<br />

try but high SL(2,R) T<br />

with<br />

r d , A t = µ 1 − rd−2<br />

c cuprates con- [8].<br />

( 0 )<br />

r d−2 . (3)<br />

ng Virasoro two important algebra). features The<strong>of</strong><br />

r 0 isf the =1+ horizon Q2 radius determ<strong>in</strong>ed by the largest positive<br />

ymmetry 7<br />

exactly zero frequency G R (ω = 0,<br />

ist certa<strong>in</strong> operator dimensions ⃗ It is def<strong>in</strong>ed so that for a typical supergravity Lagrangian it is a<br />

oro clud<strong>in</strong>g equency, the IR, but<br />

is there algebra).<br />

notan <strong>in</strong>SL(2,R) may exist certa<strong>in</strong> Thespatial<br />

conevenSL(2,R)<br />

around the theory<br />

an operator dimensions r or<br />

Virasoro algebra). con-<br />

Fermi has not<br />

The k) 0 is the roothorizon <strong>of</strong> the redshift r<br />

radius 2d−2 − M factor r d , A t = µ 1 − rd−2 0<br />

r<br />

is conysics,<br />

not by IR CFT.<br />

with 0 is the horizon radius determ<strong>in</strong>ed by the<br />

r constant <strong>of</strong> order O(1). g F<br />

by the largest d−2 . (3)<br />

positive<br />

is related <strong>in</strong> boundary theory to<br />

ich do not arise <strong>in</strong> a consistent gravity theory<br />

tion. around the Fermi root <strong>of</strong> the redshift f(r normalization 0 )=0, <strong>of</strong> the two po<strong>in</strong>t function <strong>of</strong> J µ .<br />

<strong>in</strong> a consistent gravity theory with<br />

7<br />

ior at exactly zero frequency G R (ω = 0, ⃗ It is def<strong>in</strong>ed so → M = r d largest<br />

that for a typical supergravity Lagrangian<br />

0 + Q2 positive<br />

quency, metry but<br />

or o (<strong>in</strong>clud<strong>in</strong>g algebra).<br />

notan <strong>in</strong>SL(2,R) the<br />

around Thespatial<br />

conven<br />

Virasoro algebra). Theis the r 0 is horizon the horizon radius radius determ<strong>in</strong>ed by bythe the largest<br />

the Fermi root <strong>of</strong> the redshift factor<br />

r d−2 (4)<br />

Monday, July 11,<br />

r 0 2011<br />

it is a<br />

positive<br />

k) is con-<br />

V physics, not by the IR CFT.<br />

7 constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory 0<br />

he to<br />

around , not frequency, the not spatial Fermi <strong>in</strong> spatial root <strong>of</strong><br />

ro G R (ω = 0, ⃗ Ithe is def<strong>in</strong>ed redshift f(r<br />

the normalization so 0 )=0,<br />

that → M = r d largest<br />

for <strong>of</strong> the a typical two po<strong>in</strong>t supergravity function <strong>of</strong> J µ<br />

Lagrangian 0 + Q2 positive<br />

(<strong>in</strong>clud<strong>in</strong>g around .<br />

it is a<br />

k) is cony<br />

the IR CFT.<br />

thef(r f(r<br />

constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory to<br />

not<br />

normalization 0 )=0,<br />

<strong>of</strong> the two po<strong>in</strong>t function r0 d <strong>of</strong> + Q2<br />

erta<strong>in</strong><strong>in</strong>operator the spatial dimensions or<br />

0 )=0, → M = r0 d + Q2 r0<br />

d−2 (4)<br />

Monday, the Fermi<br />

July 11, 2011 root <strong>of</strong> the redshift factor<br />

e frequency, not <strong>in</strong> the spatial<br />

J r d−2 (4)<br />

µ .<br />

r0<br />

d−2 (4)<br />

0<br />

consistent gravity theory with<br />

f(r<br />

f(r 7<br />

equency G R (ω = 0,<br />

erator dimensions ⃗ It is def<strong>in</strong>ed 0 )=0, r d so that for a typical supergravity 0 + Q2<br />

rta<strong>in</strong> operator dimensions or<br />

0 )=0, → M = r0 d + Q2<br />

Lagrangian r d−2 (4)<br />

Friday, July 20, 2012<br />

it is a<br />

certa<strong>in</strong> operator dimensions or<br />

r d−2 (4)<br />

0<br />

onsistent gravity theory with<br />

k) is con- constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary 0 theory to<br />

<strong>in</strong> a consistent gravity theory<br />

IR CFT.<br />

with 7 the normalization <strong>of</strong> the two po<strong>in</strong>t function <strong>of</strong> J µ .<br />

uency gravity G theory with<br />

7<br />

ro frequency G R (ω = 0, ⃗ It is def<strong>in</strong>ed so that for a typical supergravity Lagrangian it is a<br />

R (ω = 0,<br />

rator dimensions ⃗ It is def<strong>in</strong>ed so that for a typical supergravity Lagrangian it is a<br />

t certa<strong>in</strong> operator dimensions or<br />

k) is con- constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory to<br />

a consistent gravity theory k) is with cony<br />

the IR CFT.<br />

7 constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory to<br />

R CFT.<br />

R(ω = 0, ⃗ It is def<strong>in</strong>ed the normalization<br />

the normalization so that for<strong>of</strong> <strong>of</strong> the a the typical two<br />

two po<strong>in</strong>t supergravity po<strong>in</strong>t function<br />

function <strong>of</strong> J µ <strong>of</strong> J<br />

. µ . it is a<br />

gravity theory with<br />

7<br />

frequency Gk) R (ω is= con- 0, ⃗ It is def<strong>in</strong>ed so that for a typical supergravity Lagrangian it is a<br />

k) is con-constanthe IR CFT.<br />

7 constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory to<br />

<strong>of</strong> order O(1). g F is related <strong>in</strong> the to<br />

.<br />

the <strong>of</strong> the two po<strong>in</strong>t <strong>of</strong> R(ω = 0, ⃗ It is def<strong>in</strong>ed the normalization so that for <strong>of</strong> the a typical two po<strong>in</strong>t supergravity function <strong>of</strong> J µ<br />

Lagrangian .<br />

it is a<br />

k) is con- constant <strong>of</strong> order O(1). g F is related <strong>in</strong> the boundary theory to<br />

the normalization <strong>of</strong> the two po<strong>in</strong>t function <strong>of</strong> J µ .<br />

S = 1<br />

d(d d(d −−1)<br />

1)<br />

with gauge field <strong>and</strong> “emblacken<strong>in</strong>g factor”:<br />

Chambl<strong>in</strong>, Emparan,<br />

Johnson, Myers<br />

The extremal limit arises when Q reaches a value where f<br />

develops a double zero at the outer horizon. This black<br />

brane represents the zero temperature ground state.<br />

Saturday, November 10, 12


4⇤r + 2 2<br />

The black hole is illustrated <strong>in</strong> figure 4 below. This black hole, which can<br />

4<br />

4<br />

4 4<br />

4<br />

./&0,$+0'1/23<br />

!"#$%&'<br />

(&)*+,-<br />

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-<br />

At extremality, the near-horizon geometry simplifies<br />

sity is sourced entirely by flux emanat<strong>in</strong>g from the black hole horizon.<br />

to AdS 2 R 2 :<br />

additionally carry a magnetic charge, was the start<strong>in</strong>g po<strong>in</strong>t for holographic<br />

approaches to f<strong>in</strong>ite density condensed matter [27, 28].<br />

Because the underly<strong>in</strong>g UV theory is scale <strong>in</strong>variant, the only dimensionless<br />

quantity that we can discuss is the ratio T/µ. In order to answer our<br />

basic question about the IR physics at low temperature, we must take the<br />

ds 2 =<br />

r 2 dt 2 + dr2<br />

r 2 + dx 2 + dy 2<br />

limit T/µ ⇥ 1 <strong>of</strong> the solution. We thereby obta<strong>in</strong> the extremal Reissner-<br />

Nordström-AdS black hole with<br />

f(r) =1 4<br />

r<br />

r +<br />

⇥ 3<br />

+3<br />

r<br />

r +<br />

⇥ 4<br />

. (5.7)<br />

It has some <strong>in</strong>terest<strong>in</strong>g (peculiar) features:<br />

The near-horizon extremal geometry, captur<strong>in</strong>g the field theory IR, follows<br />

1. The spatial slices don’t contract at the horizon. This<br />

leads directly to an extensive ground state entropy.<br />

Saturday, November 10, 12


2. A natural notion at RG fixed po<strong>in</strong>ts is dynamical scal<strong>in</strong>g.<br />

We’re used to fixed po<strong>in</strong>ts <strong>of</strong> the renormalization group<br />

with a scale <strong>in</strong>variance:<br />

x x, t t<br />

In a doped system, even if you have IR rotation <strong>in</strong>variance,<br />

you may well expect <strong>in</strong>stead:<br />

x x, t z t, z ⇥= 1<br />

By a simple change <strong>of</strong> variables, you can see that the<br />

IR extremal geometry here realizes this with<br />

z =<br />

Saturday, November 10, 12


ead <strong>of</strong> the more familiar scale <strong>in</strong>variance which arises <strong>in</strong> the conformal group<br />

Naively, this too could <strong>in</strong>dicate that such a fixed po<strong>in</strong>t is<br />

t → λt, x → λx . (1<br />

f<strong>in</strong>e tuned. Large z is hard to realize <strong>in</strong> weakly coupled<br />

oy model which exhibits this scale <strong>in</strong>variance (<strong>and</strong> which is analogous <strong>in</strong> many wa<br />

QFT. E.g. to get z=2, one can consider:<br />

he free scalar field example <strong>of</strong> a st<strong>and</strong>ard conformal field theory) is the Lifshitz fi<br />

ory:<br />

∫<br />

L = d 2 xdt ( (∂ t φ) 2 − κ(∇ 2 φ) 2) . (1<br />

s theory has a l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts parametrized by κ [1] <strong>and</strong> arises at f<strong>in</strong>ite temperatu<br />

lticritical po<strong>in</strong>ts <strong>in</strong> the phase diagrams <strong>of</strong> known materials [2,1]. It enjoys the anisotro<br />

One has tuned away the st<strong>and</strong>ard gradient term. Higher z<br />

le <strong>in</strong>variance (1.1) with z =2.<br />

would require tun<strong>in</strong>g away more such operators.<br />

This fixed po<strong>in</strong>t <strong>and</strong> its <strong>in</strong>teract<strong>in</strong>g cous<strong>in</strong>s have become a subject <strong>of</strong> renewed <strong>in</strong>ter<br />

the context <strong>of</strong> strongly correlated electron systems.<br />

For <strong>in</strong>stance, <strong>in</strong> the Rokhs<br />

But, this is just weakly coupled <strong>in</strong>tuition, <strong>and</strong> could be<br />

elson dimer model [3], there is a zero-temperature quantum critical po<strong>in</strong>t which l<br />

mislead<strong>in</strong>g at strong coupl<strong>in</strong>g.<br />

he universality class <strong>of</strong> (1.3) [4] (for a nice general exposition <strong>of</strong> the importance<br />

ntum critical po<strong>in</strong>ts, see [5]). Similar critical po<strong>in</strong>ts also arise <strong>in</strong> more general latt<br />

dels <strong>of</strong> strongly correlated electrons [6,7,8]. The correlation functions <strong>in</strong> these mod<br />

Saturday, November 10, 12


1<br />

transition is T c a defect<br />

1<br />

dialed freely; while k F<br />

[6], where a defect is the lattice spac<strong>in</strong>g for defect fermions, <strong>and</strong> can be<br />

3. These geometries<br />

a it<strong>in</strong>erant<br />

can give rise to holographic<br />

is another free parameter, where a it<strong>in</strong>erant is the lattice spac<strong>in</strong>g<br />

for semi-holographic it<strong>in</strong>erant free fermions, which can also be adjusted <strong>in</strong>dependently.<br />

Thus we make a hierarchy a defect ⇥ a it<strong>in</strong>erant .<br />

non-Fermi liquids.<br />

S.S. Lee; Liu,<br />

McGreevy, Vegh;<br />

Leiden group<br />

Consider a field theory whose action takes the general<br />

Consider a quantum field theory whose action takes<br />

Easiest<br />

We now semi-holographically<br />

to see on the<br />

couple<br />

the “field<br />

this<br />

form:<br />

large<br />

schematic theory”<br />

N field theory<br />

form: side.<br />

to the free<br />

Consider:<br />

b<strong>and</strong> fermion <strong>in</strong><br />

the spirit <strong>of</strong> [8]: 7 S = S strong +<br />

⇥<br />

+g<br />

J<br />

J,J<br />

dt<br />

⇥<br />

dt<br />

⇤c † J (i J,J ⇧ t + µ J,J + t J,J )c J<br />

⌅<br />

⇤<br />

⌅<br />

c † J OF J + (Hermitian conjugate) . (11)<br />

Here t J,J characterizes the b<strong>and</strong> structure <strong>of</strong> the orig<strong>in</strong>ally free fermion c sector, which now<br />

* There Here you is a strongly should th<strong>in</strong>k coupled <strong>of</strong> the sector c fields which as free we’ll lattice assume is<br />

mixes with the large N dimer model through the coupl<strong>in</strong>g constant g.<br />

A free fermion is coupled to a strongly coupled critical<br />

fermions, a large N with theory lattice that sites we can <strong>in</strong>dexed describe by J, us<strong>in</strong>g <strong>and</strong> Ogravity.<br />

F as J<br />

The key <strong>in</strong>sight <strong>of</strong> [8] is that large N factorization <strong>of</strong> the field theory (which would work<br />

theory by a coupl<strong>in</strong>g g.<br />

an even operator small ’t <strong>in</strong> Ho<strong>of</strong>t the coupl<strong>in</strong>g) strongly can be used coupled to <strong>in</strong>fer the field modifications theory, to the<strong>in</strong>teract<strong>in</strong>g<br />

two-po<strong>in</strong>t<br />

with * functions There the<br />

<strong>of</strong> the<br />

free is a conduct<strong>in</strong>g free fermion (lattice) c fermions the<br />

aris<strong>in</strong>g fermion Jth<br />

fromlattice thewith coupl<strong>in</strong>g<br />

site. a g. Fermi The<br />

In<br />

g<br />

our<br />

= surface.<br />

0 Green’s<br />

setup,<br />

We assume the CFT has correlators governed by<br />

it could be a fermionic operator on the Jth D5 or anti-D5<br />

6 At very low frequency G( ) will still approach zero on general grounds, but it may do so with a di⇥erent<br />

* We deform these AdS2 two symmetries. theories by coupl<strong>in</strong>g them with<br />

scal<strong>in</strong>g dimension<br />

<strong>in</strong> even more<br />

brane,<br />

complicated<br />

for<br />

ways.<br />

<strong>in</strong>stance.<br />

7<br />

coupl<strong>in</strong>g<br />

For notational simplicity,<br />

constant<br />

we made the<br />

“g”;<br />

free c fermions<br />

c should<br />

live on the<br />

couple<br />

same lattice sites<br />

to<br />

as<br />

the<br />

the defect<br />

lowest<br />

fermions<br />

do. As just mentioned, however, we should really make the c fermions live on a much f<strong>in</strong>er lattice to get<br />

Saturday, November 10, 12<br />

1 1


∑<br />

between the free fermion dt c † (with its Fermi liquid behaviour)<br />

J (iδ tum numbers to c, o<br />

J,J ′ ∂ t + µδ J,J ′ + t J,J ′)c J ′<br />

dimension fermioni<br />

<strong>and</strong> In the perturbation<br />

J,J<br />

strongly <strong>in</strong>teract<strong>in</strong>g ′ theory sector. g, the lead<strong>in</strong>g For <strong>in</strong>stance, effect on there are<br />

+ g ∑ ∫<br />

ized sector.<br />

dt (c †<br />

fermion a set <strong>of</strong> propagator tree graphs comes that<br />

J OF J + Hermitian conjugate) . (12) Return<strong>in</strong>g to the<br />

renormalize from the “mix<strong>in</strong>g” the c propagator: diagrams:<br />

that the idea above<br />

J<br />

imation. By approp<br />

In (12), we are coupl<strong>in</strong>g a normal theory <strong>of</strong> a weakly coupled (under the Z 4 lattic<br />

Fermi surface (govern<strong>in</strong>g the excitations <strong>of</strong> the c fermion) to preserved by the br<br />

a) + + + ...<br />

the strongly coupled locally critical sector, through the coupl<strong>in</strong>g<br />

constant g mix<strong>in</strong>g c with (<strong>in</strong> any natural theory) the low-<br />

10<br />

no lower ∆ operato<br />

<strong>in</strong> the previous subs<br />

to<br />

Normally,<br />

<strong>in</strong>stead havewe zest ⇥dimension would<br />

N].<br />

b) + While fermionic<br />

have<br />

<strong>in</strong> many operator<br />

+ to<br />

cases O<br />

<strong>in</strong>clude<br />

F these that has deformations the right quantum<br />

c fermions numbers<br />

<strong>in</strong>teractions + ... maycorrelators leave<br />

com<strong>in</strong>g<br />

the(14) essent<br />

<strong>of</strong>f<br />

afte<br />

function<br />

At large<br />

for the<br />

N, this<br />

is<br />

geometric<br />

to couple to c.<br />

series is the exact answer.<br />

clude that we can w<br />

physics<br />

the<br />

<strong>of</strong><br />

strong<br />

the fermion Us<strong>in</strong>gspectral O l<strong>in</strong>es.<br />

function<br />

But <strong>in</strong><br />

unchanged<br />

a large<br />

(see<br />

N<br />

[8]<br />

strong<br />

for a nicesector, discussion),<br />

such<br />

it is al<br />

1 ⇥large ⇤ N factorization, it is then easy to show that the<br />

G<br />

reasonable<br />

0 (k, ) ⇥ i dte<br />

Figure to 2: a) The geometric sum lead<strong>in</strong>g to the fermion correlator (2.5). The solid l<strong>in</strong>e<br />

to<br />

f<strong>in</strong>d<br />

<strong>in</strong>stead<br />

other<br />

haveways z ⇥ N].<br />

that i t ik·(x J x<br />

While<br />

the essential ) J<br />

⌃c J (t)c † J<br />

N<br />

<strong>in</strong> many cases<br />

<strong>in</strong>sights (0)⌥ 1<br />

a marg<strong>in</strong>al Fermi l<br />

g =0Green’s function <strong>of</strong> the c fermion g=0 ⌅<br />

fermionic (12) operator i<br />

l.s.<br />

these<strong>of</strong> deformations<br />

[10–13] v|k can k F<br />

may<br />

(k)| be<br />

leave<br />

reproduced<br />

the essent<br />

<strong>in</strong><br />

J,J<br />

above. This has ∆<br />

more with robust k F (k) physics sett<strong>in</strong>g. the po<strong>in</strong>t <strong>of</strong> the The onfermion the AdS Fermi 2 spectral regions surface, function spanned closest unchanged toby the the argument D5- (see <strong>and</strong> [8] k, for <strong>and</strong> anti-D5-branes aNnice l.s. the<br />

tion, discussion), number<br />

this dimension <strong>in</strong> the it is to al<br />

ω − v|k − k<br />

down<br />

Then,<br />

holographic reasonable<br />

the<br />

dimer the result<strong>in</strong>g<br />

to f<strong>in</strong>d model two-po<strong>in</strong>t other <strong>of</strong> ways [6]<br />

“dressed”<br />

provide that the function<br />

F (k)|<br />

Backreaction U<br />

<strong>of</strong> lattice sites. Then we f<strong>in</strong>d that for f<strong>in</strong>ite coupl<strong>in</strong>g an essential alternative g,<br />

c<br />

after<br />

propagator<br />

<strong>in</strong>sights <strong>of</strong> summ<strong>in</strong>g way O<strong>of</strong> F<br />

[10–13] a:<br />

geometric obta<strong>in</strong> can<br />

can<br />

the be series reproduced<br />

be<br />

same <strong>of</strong> physi <strong>in</strong><br />

is modified to<br />

action <strong>of</strong> the impur<br />

exhibit<strong>in</strong>g more the robust strange sett<strong>in</strong>g. metallic The behavior AdS discussed <strong>in</strong> Refs. [6, 8]. The calculation uses only<br />

Here, tree-level<br />

written<br />

we explore mix<strong>in</strong>g<br />

purely<br />

this diagrams, <strong>in</strong> a semi-holographic<br />

<strong>in</strong> terms<br />

2 regions spanned by the D5- <strong>and</strong> anti-D5-branes <strong>in</strong> the to<br />

<strong>of</strong><br />

sett<strong>in</strong>g<br />

the two-po<strong>in</strong>t<br />

follow<strong>in</strong>g [8], <strong>and</strong><br />

function<br />

we abstract each other.<br />

<strong>of</strong>the Thus ma<br />

the factorization property <strong>and</strong> so would be equally1<br />

true <strong>in</strong> weakly coupled large-N theories.<br />

down holographic G dimer model <strong>of</strong> [6] provide an alternative way to obta<strong>in</strong> the same physi<br />

features <strong>of</strong> the top-down<br />

O <strong>in</strong><br />

g (k, ω) ∼<br />

the<br />

Gmodel g (k,<br />

strongly<br />

) to ⌅ω −<strong>in</strong>clude v|k − kmore F<br />

1<br />

coupled<br />

(k)| −generic g 2 G(k,<br />

sector:<br />

possibilities.<br />

ω) , (14) s<strong>in</strong>gle impurity <strong>in</strong>te<br />

Now Here, we we canexplore see whatthis happens <strong>in</strong> aifsemi-holographic thev|k AdS 2 ⇥k R F (k)| 2 strongly sett<strong>in</strong>g g 2 G(k, coupled follow<strong>in</strong>g ) . gravity<br />

theory[8], is replaced <strong>and</strong> weby<br />

abstract (13) side exhibit<br />

branes each wrap the ma an<br />

We beg<strong>in</strong> an AdS with 4 theory, where a large with ⇤N anfield operator theory, <strong>of</strong> dimension governed ⇥ <strong>in</strong>by thesome 2 + 1 dimensional action S strong CFT. , The withFaulkner,<br />

the followi<br />

In particular, features for G(k, <strong>of</strong> the)=c top-down 2 1 with model to ⇤ <strong>in</strong>clude 1, one f<strong>in</strong>ds morea dom<strong>in</strong>ant generic possibilities. low-frequency calbehavior<br />

quantum Polch<strong>in</strong>skicritical<br />

Thursday, January correlator<br />

∫<br />

6, 2011<br />

features:<br />

characteristic<br />

V. On<br />

We <strong>of</strong><br />

large<br />

beg<strong>in</strong> a non-Fermi with<br />

N<br />

aG(ω) liquid<br />

FL/NFL<br />

⌅0|T large ⇤(⌅x, = Nwhich t)⇤ field dt † (0, ehas transitions<br />

theory, iωt 0)|0⇧ 〈O vanish<strong>in</strong>g =(x J F (t)O governed 2 F tquasiparticle 2 †<br />

J ) (0)〉 by<br />

<strong>in</strong> . some<br />

our<br />

action residue (15) nontrivial field theo<br />

system<br />

S[with strong (2.6) , marg<strong>in</strong>al with the followi<br />

Wednesday, May 18, 2011<br />

tree-level gravity so<br />

features:<br />

+<br />

<strong>in</strong>teractions are suppressed by powers <strong>of</strong> 1/N!<br />

Then,<br />

represents<br />

the c-fermion<br />

G 0 <strong>and</strong> the dashed<br />

self-energy<br />

l<strong>in</strong>e represents G 0 . b) 1The can<br />

geometric<br />

be written<br />

sum (3.2), where<br />

<strong>in</strong><br />

an<br />

terms<br />

⇥<br />

<strong>of</strong><br />

represents the double-trace perturbation. G 0 (k, ω) ∼<br />

(13)<br />

+<br />

implies<br />

2<br />

Fermi liquid behavior precisely at = 1, when the naive 1 is modified to have log( )<br />

G 0 ( ⌅ k, ⇥) =A(⇥)(k 2 ⇥ 2 )<br />

3/2 , (2.7)<br />

behaviour]. For > 1, the residue does not vanish, but the theory is still novel <strong>in</strong> that<br />

vary the external parameters such as temperature [see ⌅ Fig.2 for the (1+1)-dimension<br />

1. There is a lattice <strong>of</strong> defect fermions which undergoes a dimerization transition as<br />

Saturday, November 10, 12<br />

+<br />

1. There is a lattice <strong>of</strong> defect fermions which undergoes a dimerization transition as w


vary the1. external There isparametersa lattice <strong>of</strong> defect such as fermions temperature which undergoes [see Fig.2 a dimerization for the (1+1)-dimensiona<br />

transition as we<br />

Now, If we let make us consider the strong the behaviour dynamical <strong>of</strong> two-po<strong>in</strong>t assumption functions that the<br />

the quasiparticle width does not agree with that <strong>of</strong> st<strong>and</strong>ard Fermi liquid theory. As we<br />

strongly In a<br />

for<br />

“locally<br />

natural<br />

critical”<br />

fermionic<br />

theory,<br />

operators<br />

i.e.<br />

<strong>in</strong><br />

one<br />

our setup.<br />

with <strong>in</strong>f<strong>in</strong>ite<br />

described above, coupled these results sector are trueexhibits <strong>in</strong> a regime where local k quantum<br />

easily generalize. dynamical 5 exponent, one<br />

F ⇧ ⇧ 1<br />

a<br />

has:<br />

defect<br />

, criticality,<br />

where the 4<br />

zero-temperature<br />

then<br />

Green’s<br />

the two-po<strong>in</strong>t<br />

functions used above<br />

function<br />

should be a<br />

is<br />

goodconstra<strong>in</strong>ed:<br />

approximation to the true<br />

vary the external parameters such as temperature [see Fig.2 for the (1+1)-dimensional<br />

case]. We will focus on the cases for which this parameter is temperature, but one can<br />

case]. We will focus on the cases for which this parameter is temperature, but one can<br />

easily generalize. 5<br />

9<br />

(f<strong>in</strong>ite- a) In the phase: The operator lives on an slice<br />

2.<br />

Thisbut Theretwo-po<strong>in</strong>t low-temperature)<br />

exist fermionic<br />

function answers.<br />

operators<br />

is<br />

Ofixed by the scal<strong>in</strong>g<br />

<strong>of</strong> the bulk F AdSsymmetry 2 <strong>of</strong><br />

J<br />

2. There exist fermionic operators geometry. OJ the LC theory to be G(ω) = c F The two-po<strong>in</strong>t<br />

correlation<br />

correlation<br />

functions<br />

functions<br />

<strong>in</strong> the undimerized ∆ ω 2∆−1 where ∆ is the di-<br />

<strong>in</strong> the are undimerized<br />

phase<br />

constra<strong>in</strong>ed phase<br />

are known<br />

are known<br />

<strong>and</strong><br />

to behave <strong>and</strong><br />

gapless:<br />

advocated <strong>in</strong> [8]:<br />

gapless:<br />

mension <strong>of</strong> O F (<strong>and</strong>, importantly, G(ω) ∼ c ω log(ω) <strong>in</strong> as: the<br />

4<br />

degenerate case ∆ dte =1).<br />

This creates i t ⌅Odte J F (t)O i<br />

a t ⌅Onon-Fermi F F†<br />

J<br />

(0)⇧ J (t)O F = †<br />

J<br />

(0)⇧ i J,J = i G(⌅),<br />

liquid<br />

J,J G(⌅),<br />

if<br />

The correction term <strong>in</strong> the denom<strong>in</strong>ator <strong>of</strong> G g will dom<strong>in</strong>ateprecisely<br />

function<br />

o-po<strong>in</strong>t dte i t ⌃OJ F (t)OF †<br />

J<br />

the low-frequency<br />

is1, fixed one byhas the<br />

behavior a scal<strong>in</strong>g marg<strong>in</strong>al if<br />

symmetry ≤Fermi 1. Unitarity<br />

<strong>of</strong>liquid allows with<br />

theory<br />

FIG. 1: Thursday, Predimerization January to6, 2011 be<br />

transition. (a)Disconnected configuration dom<strong>in</strong>ates at high temperature.<br />

3.<br />

G(ω)<br />

In the dimerized phase, is gapped <strong>and</strong><br />

(b)Connected<br />

3. any Inconfiguration the ∆dimerized ≥ 1 = c<br />

dom<strong>in</strong>ates at low temperature.<br />

2<br />

<strong>and</strong> phase, this ∆ ω<br />

thescal<strong>in</strong>g 2∆−1 where apple 1. ∆ is the di<strong>of</strong><br />

O<br />

spectrumdimension is gapped <strong>and</strong>is a free parameter<br />

<strong>in</strong> F (<strong>and</strong>, importantly, G(ω) ∼ c ω log(ω) <strong>in</strong> the<br />

the general A. Disconnected approaches configuration<br />

<strong>of</strong> exhibit<strong>in</strong>g power-law behavior, lim lim dte i t ⌅OJ F (t)O F †<br />

⇥0<br />

<strong>of</strong> [4, 7]. The marg<strong>in</strong>al Fermi liq-<br />

obvious c<strong>and</strong>idate behavior stable configuration <strong>of</strong> [2] <strong>of</strong> suchappears a pair ⇥0<br />

ate case ∆ =1).<br />

lim dte ⇥0<br />

G(k,<br />

i t ⌅O F Theuid is just two<strong>in</strong> separated the J (t)O F †<br />

configurations<br />

<strong>of</strong> the sort consideredHere, <strong>in</strong> Sec.II BA with J,J ⇥ ⇥ = ¯⇥¯⇥ [see Fig.1(a)]. Its free energy is just<br />

case that the dimension <strong>of</strong><br />

orrection ednesday, May<br />

twice orig<strong>in</strong>al O F 18, 2011term <strong>in</strong> the denom<strong>in</strong>ator <strong>of</strong> G g will domilow-frequency<br />

is<br />

that <strong>of</strong> the s<strong>in</strong>gle k D5-brane:<br />

Here, F . precisely<br />

A J,J dimerization.<br />

behavior<br />

1. Therefore,<br />

if ∆ ≤ 1.<br />

the<br />

Unitarity<br />

question<br />

allows<br />

is, are there natural<br />

circumstances <strong>in</strong> which<br />

⇤<br />

⌅<br />

F D5 + F D5 ¯ = 2 L4 s<strong>in</strong> 3 ⇥ ⇥ vol(S 4 )<br />

≥ 1 r<br />

(2⇤) 5 g<br />

⇥3 +<br />

the theory S<br />

. (3.1) LC (A, B, Q, ˜Q) has a<br />

2 dimerization. <strong>and</strong> this scal<strong>in</strong>gfermion dimension Greens s<br />

is a freefunction.<br />

parameter<br />

Note that lead<strong>in</strong>g it is <strong>in</strong>dependent<br />

Forfermionic example,<br />

<strong>of</strong> the separation<br />

for<br />

x.<br />

the operator literal D5<strong>of</strong> probe ∆ theory =1which <strong>in</strong> AdS 5 can S 5 , we couple can take<br />

eneral approaches <strong>of</strong> [4, 7]. The marg<strong>in</strong>al Fermi liqvior<br />

example, <strong>of</strong> The [2] for theories appears literal weD5 have probeconstructed theory <strong>in</strong> AdS<br />

to c?<br />

For<br />

B. Connected<br />

<strong>in</strong>configuration<br />

the case that the dimension 5<br />

above S 5 , we<strong>of</strong><br />

naturally can take come<br />

recisely<br />

<strong>in</strong>with Kondodefect lattice models operators discussed<strong>of</strong> <strong>in</strong> [14] ∆ <strong>and</strong> =1, references as <strong>in</strong>dicated there<strong>in</strong>. by our calculation<br />

<strong>in</strong> <strong>of</strong>which the KKthespectrum theoryx =(<br />

<strong>of</strong><br />

1.<br />

behavior<br />

Therefore,<br />

conjectured<br />

the question is,<br />

by<br />

are<br />

Varma natumstances<br />

Another c<strong>and</strong>idate solution with the given boundary condition is a reconnect<strong>in</strong>g solution<br />

[see Fig.1(b)]: a reconnect<strong>in</strong>g D5-brane starts at r = ⇤ with ⇥ x<br />

S on , 0, 0), dips <strong>in</strong>to the<br />

2<br />

the probe M2 ′ LC (A, B, Q, ˜Q) et al <strong>in</strong> 1989.<br />

hasbranes. a It is <strong>in</strong>-<br />

Now, we are <strong>in</strong> a position to add one simple observation localized at onthe topJth <strong>of</strong> the lattice basic site, picture whose thermal<br />

Fermi surface. The ma<strong>in</strong> po<strong>in</strong>t is that the low frequency behavior <strong>of</strong> the Green’s function<br />

with G(⌅) with G(⌅) ⇥ ⌅ 2 ⇥ ⌅ 1 2 for 1 for ⌅ ⇤⌅ ⇤T. T. (8)<br />

(0)⌥ changes drastically <strong>in</strong> the dimerization transition. In the undimerized<br />

bulk, <strong>and</strong> then comes back to r = ⇤ now with ⇥ x =(+ x , 0, 0), e⇥ectively revers<strong>in</strong>g its<br />

2<br />

localized at the Jth lattice site, whose therma<br />

<strong>in</strong> holographic models which undergo a dimerization transition as <strong>in</strong><br />

The unitarity bound on the dimension is 1/2; for any value<br />

Sec. II, the phase transition also drives an <strong>in</strong>terest<strong>in</strong>g transition <strong>in</strong> the structure <strong>of</strong> the<br />

less than 1, one obta<strong>in</strong>s a non-Fermi liquid, <strong>and</strong> if Delta is<br />

state, we will have non-Fermi liquid behavior just as <strong>in</strong> [8]. However, <strong>in</strong> the dimerized phase,<br />

Varma et al<br />

(1989)<br />

the spectrum <strong>in</strong> the dimer sector is gapped. This means that at low frequencies, <strong>in</strong>stead<br />

)=A for some J (0)⇧ nonzero = iA J,J constant . A. Thus (9)<br />

This is evident because the simple pole (<strong>and</strong> hence the<br />

J (0)⇧ = iA J,J . (9<br />

<strong>in</strong> this phase, we have a conventional Fermi liquid whose Fermi surface is shifted from the<br />

is nonzero (generically if <strong>and</strong>) only if J = J ⇤ or J <strong>and</strong> J ⇤ are paired up via<br />

spectral weight <strong>of</strong> the quasiparticles) disappears from the<br />

is nonzero (generically if <strong>and</strong>) only if J = J ⇤ or J <strong>and</strong> J ⇤ are paired up via<br />

Therefore, <strong>in</strong> this semi-holographic sett<strong>in</strong>g, the dimerization transition <strong>of</strong> Sec. II becomes<br />

a transition between a conventional Fermi liquid phase (dimerized) <strong>and</strong> a non-Fermi liquid<br />

phase (undimerized). These transitions are somewhat<br />

OJ F = ⇤ † J ⇥ rem<strong>in</strong>iscent <strong>of</strong> the phase transitions<br />

N =4(J)⇤ J (10)<br />

In the special “marg<strong>in</strong>al” case, this gives a first derivation<br />

O F J = ⇤ † J ⇥ N =4(J)⇤ J (10<br />

F<strong>in</strong>ally, we note that if one is purely <strong>in</strong>terested <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g realizations <strong>of</strong> the non-Fermi<br />

Saturday, November 10, 12<br />

5 For <strong>in</strong>stance, one can consider driv<strong>in</strong>g such a transition by go<strong>in</strong>g to f<strong>in</strong>ite chemical potential for the large<br />

N gauge fields at T = 0, at the cost <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g Reissner-Nordström black branes. At su ciently


Note that the Fermi surface physics here is a modeldependent<br />

1/N effect.<br />

III. More general homogeneous, isotropic horizons<br />

Gravity + Maxwell is the m<strong>in</strong>imal content to study doped<br />

holographic matter.<br />

It is quite reasonable to expect additional light fields <strong>in</strong> the<br />

bulk! How does this effect the horizon?<br />

We’ll make some ad hoc choice <strong>of</strong> matter. The geometries<br />

we f<strong>in</strong>d emerge more universally, for many choices.<br />

Saturday, November 10, 12


hile<br />

ear-horizon<br />

the full black-brane<br />

behaviour<br />

solutions<strong>of</strong> with<br />

extremal<br />

AdS asymptotics<br />

branedid not admit a sim<br />

alytical form that we could f<strong>in</strong>d, we are able to provide an analytical description<br />

Near-horizon eLet near-horizon us consider geometry solution add<strong>in</strong>g for the extremal a neutral charged scalar dilaton “dilaton” branes 4 . field We use to a notati the<br />

d formalism similar to that <strong>in</strong> [14], <strong>in</strong> describ<strong>in</strong>g these near-horizon solutions.<br />

e the full black-brane system. solutions To beg<strong>in</strong> withwith, AdS asymptotics we consider:<br />

For our bulk action, we take<br />

did not admit a si<br />

tical form that we could ⇤ f<strong>in</strong>d, we are able to provide an analytical descriptio<br />

ear-horizon geometry S = for d 4 xthe ⇤ extremal g R 2(⌅⇥) charged 2 edilaton 2 ⇥ F 2 branes 2 ⇥ . 4 . We use a nota (2<br />

formalism similar A. to Theories that <strong>in</strong> [14], with <strong>in</strong> describ<strong>in</strong>g no dilaton these potential<br />

M. Taylor;<br />

Goldste<strong>in</strong>, S.K.,<br />

near-horizon solutions.<br />

Prakash, Trivedi<br />

3 or In the ourcontext bulk <strong>of</strong> action, holographic we take superconductors [10, 11], another class <strong>of</strong> black branes with vanish<br />

The maximally symmetric solution <strong>of</strong> this action has vanish<strong>in</strong>g<br />

ropy at T = 0 was recently ⇤ found<br />

S = d 4 x ⇤ <strong>in</strong> [12, 13].<br />

4 By the near-horizon gauge field, region constant we mean the region <strong>of</strong> spacetime<br />

g dilaton, R 2(⌅⇥) <strong>and</strong> 2 an e 2 AdS ⇥ “close<br />

F 2 metric to”<br />

2 ⇥ where the g<br />

. with tt compon<br />

the metric vanishes.<br />

curvature radius L related to the cosmological term via:<br />

the context <strong>of</strong> holographic superconductors [10, 11], another class <strong>of</strong> black branes with van<br />

The maximally symmetric solution <strong>of</strong> this action has vanish<strong>in</strong>g<br />

py at T = 0 was recently found <strong>in</strong> [12, 13].<br />

yerm<strong>in</strong>ed the near-horizon by =<br />

gauge field, We region constant 3 restrict . we We mean consider<br />

=<br />

the dilaton, region metrics a 3 L<br />

.<br />

4 <strong>of</strong> <strong>and</strong> 2 spacetime <strong>of</strong> <strong>of</strong><br />

an the<br />

AdS “close form:<br />

L 2 metric to” wherewith<br />

the g tt comp<br />

metric vanishes.<br />

aximally symmetric vacuum solution is then <strong>of</strong> course AdS space with Ad<br />

imally symmetric vacuum solution is then <strong>of</strong> course AdS space with Ad<br />

<strong>in</strong>ed<br />

curvature<br />

by =<br />

We <strong>in</strong>stead radius 3 . WeL consider<br />

related<br />

ato metric<br />

the cosmological<br />

<strong>of</strong> the form<br />

L term via:<br />

ds 2 = search 2 a(r) 2 for dt 2 solutions + a(r) 2 dr with 2 + b(r) a metric 2 (dx 2 <strong>of</strong> + dy the 2 ) form<br />

ximally symmetric ds 2 = a(r) vacuum 2 dt 2 + solution a(r) 2 is drthen <strong>of</strong> course AdS space with A<br />

m<strong>in</strong>ed<br />

= 3 2 + b(r) 2 (dx 2 + dy 2 )<br />

gauge L<br />

4<br />

2 .<br />

ally symmetric by field <strong>of</strong> = thevacuum 3 form . We consider solutiona is metric then <strong>of</strong> the course formAdS space with A<br />

L 2<br />

uge <strong>and</strong><br />

ed by fieldgauge <strong>of</strong> = the 3 field: form<br />

L 2 . We consider a metric <strong>of</strong> the form<br />

We <strong>in</strong>stead 2 search 2for 2solutions 2 with 2 a metric 2 2 <strong>of</strong> the 2 form<br />

Saturday, November 10, 12<br />

2 ⌅ Q


TheL maximally determ<strong>in</strong>edsymmetric by =<br />

4 L<br />

L vacuum 2 . We consider solutiona is metric then <strong>of</strong> the course form<br />

L = 3 AdS space with AdS scale (2.8)<br />

L determ<strong>in</strong>ed by =<br />

We <strong>in</strong>stead 3 . We consider a metric <strong>of</strong> the form<br />

Lsearch for solutions with a metric <strong>of</strong> the form<br />

One can solve<br />

ds 2 = 2 a(r)<br />

for 2 dt<br />

the 2 + a(r)<br />

gauge 2 dr 2 field<br />

+ b(r) 2 us<strong>in</strong>g<br />

(dx 2 + dyGauss’ 2 )<br />

law:<br />

(2.2)<br />

In the discussion below it will be convenient to set L = 1. When needed the dependence<br />

on L can beds determ<strong>in</strong>ed 2 = a(r) 2 bydtdimensional 2 + a(r) 2 dr analysis.<br />

2 + b(r) 2 (dx 2 + dy 2 ) (2.2)<br />

<strong>and</strong> a gauge It is field most <strong>of</strong> the useful form to first f<strong>in</strong>d an approximate, near-horizon<br />

To f<strong>in</strong>d the near-horizon limit, we proceed with a scal<strong>in</strong>g ansatz. Def<strong>in</strong>e the nearhorizon<br />

extremal variablesolution w form = r r to the equations.<br />

<strong>and</strong> a gauge <strong>and</strong> fieldgauge <strong>of</strong> the field:<br />

e 2 ⌅ F =<br />

Q Let us guess that near<br />

H where r H is the radius <strong>of</strong> the horizon. Let us make the<br />

dt ⇥ dr. (2.3)<br />

ansatz that the near-horizon w=0, scal<strong>in</strong>gsthe b(r)<br />

e 2 ⌅ F =<br />

Q <strong>of</strong> the 2solution functionstakes a, b, ⇥ are the given form: by<br />

These are electrically charged dt ⇥ dr. (2.3)<br />

b(r) black 2 branes.<br />

That is, we are look<strong>in</strong>g for a = electrically C charged black branes.<br />

The<br />

Monday, April 12, 2010<br />

2 w ⇤ ,b= C 1 w ⇥ , ⇥ = K log(w)+C 3 , (2.9)<br />

equations result <strong>of</strong> is motion solutions can be easily with <strong>in</strong>ferred near-horizon from (107)-(110) geometry:<br />

<strong>of</strong> [14]. We f<strong>in</strong>d<br />

That is, we are look<strong>in</strong>g for electrically charged black branes.<br />

that<br />

The equations where <strong>of</strong> the motion Cs are can be just easily <strong>in</strong>tegration <strong>in</strong>ferred from constants. (107)-(110) <strong>of</strong> [14]. We f<strong>in</strong>d<br />

(a 2 b 2 ) ⇥⇥ = 4 b 2 (2.4)<br />

that<br />

5<br />

a ⇠ r , b ⇠ r , = K log(r)<br />

together take with the values the first order constra<strong>in</strong>t,<br />

⇤ r (a 2 b 2 ⇤ r ⇥)=<br />

together with the first order a 2 b ⇥2 constra<strong>in</strong>t, + 1 2 a2⇥ b 2⇥ = ⇥ ⇥2 a 2 b 2<br />

Saturday, November 10, 12<br />

(a 2 2 ) ⇥⇥ = 4 b 2 (2.4)<br />

b ⇥⇥<br />

b = (⇤ r⇥) 2 (2.5)<br />

A little bit <strong>of</strong> algebra now shows that one can exactly<br />

where one easily f<strong>in</strong>ds:<br />

solve the system <strong>of</strong> equations from the previous slide,<br />

b ⇥⇥<br />

where C 1 ,C 2 ,C 3 are constants.<br />

if one<br />

A<br />

chooses<br />

little algebra<br />

exponents:<br />

then shows that an exact solution to<br />

the equations (2.4), (2.5), (2.6) <strong>and</strong> the constra<strong>in</strong>t eq.(2.7) is obta<strong>in</strong>ed if the exponents<br />

b = (⇤ r⇥) 2 (2.5)<br />

⇤ r (a 2 b 2 ⇤ r ⇥)= e 2 ⌅ Q2<br />

b , (2.6)<br />

2<br />

e 2 ⌅ Q2<br />

b 2 , (2.6)<br />

2<br />

⇤ =1,K=<br />

1+( 2<br />

) 2 , ⇥ = ( 2 )2<br />

1+( 2<br />

) . (2.10)<br />

2<br />

e 2 ⌅ Q2<br />

b 2 b 2 . (2.7)<br />

By rescal<strong>in</strong>g w, t, x <strong>and</strong> y appropriately the constant C 3 can be set to zero <strong>and</strong> C 1 to<br />

unity. One then gets that two rema<strong>in</strong><strong>in</strong>g parameters C 1 <strong>and</strong> Q are determ<strong>in</strong>ed <strong>in</strong> terms<br />

Even<br />

a 2 b ⇥2 + 1 a 2⇥ b 2⇥ = ⇥ ⇥2 a 2 b 2 e 2 ⌅ Q2<br />

b 2 Monday, April though 12, 2010<br />

<strong>of</strong> by<br />

we will be <strong>in</strong>terested <strong>in</strong> the near-horizon limit,<br />

.<br />

it is important to keep<br />

(2.7)<br />

2


After a simple change <strong>of</strong> variables, the metric takes the<br />

form <strong>of</strong> a “Lifshitz” metric represent<strong>in</strong>g emergent<br />

dynamical scal<strong>in</strong>g with dynamical exponent z:<br />

ds 2 =<br />

r 2z dt 2 + r 2 (dx 2 + dy 2 )+ dr2<br />

t ! z t, (x, y) ! (x, y), r ! r , z = 1<br />

r 2<br />

SK, Liu,<br />

Mulligan<br />

The near-horizon geometry glues <strong>in</strong>to asymptotically AdS<br />

space with constant dilaton.<br />

Compar<strong>in</strong>g to AdS/RN:<br />

Saturday, November 10, 12


As was mentioned above the solution eq.(2.40) arises as the near horizon limit <strong>of</strong><br />

a slightly non-extremal black brane solution. The entropy density can be expressed<br />

1. as aThe function (tunable) <strong>of</strong> two dimensionful value <strong>of</strong> parameters z controls for scal<strong>in</strong>g the non-extremal laws for solution, the<br />

temperature T <strong>and</strong><br />

thermodynamic chemical potential<br />

observables:<br />

µ. Both <strong>of</strong> these are <strong>in</strong>tensive variables<br />

with dimensions [Mass] 1 . It follows from eq.(2.43) <strong>and</strong> dimensional analysis that<br />

the entropy density <strong>of</strong> a slightly non-extremal black brane is given by<br />

s ⇥ T 2 µ 2 2 . (2.44)<br />

The entropy can be found from the classical action eq.(2.14) evaluated on-shell.<br />

This action can be calculated by scal<strong>in</strong>g out the dependence on L -theradius<strong>of</strong><br />

2. The f<strong>in</strong>ite value <strong>of</strong> z relaxes the extensive ground state<br />

AdS space - <strong>and</strong> then work<strong>in</strong>g with dimensionless quantities. As a result the action<br />

<strong>and</strong> the entropy entropy will have<strong>of</strong> a prefactor the E<strong>in</strong>ste<strong>in</strong>/Maxwell which goes like, L 2 /Gtheory.<br />

N where G N is the four<br />

dimensional <strong>New</strong>ton’s constant. Putt<strong>in</strong>g all this together gives the entropy density<br />

<strong>of</strong> the slightly non-extremal black brane to be<br />

s = aCT 2 µ 2 2 , (2.45)<br />

3. Fermions <strong>in</strong> these geometries can also naturally<br />

deform to non-Fermi liquids, <strong>in</strong> a way that is<br />

rem<strong>in</strong>iscent <strong>of</strong> field theory models:<br />

–12–<br />

Hartnoll,<br />

Polch<strong>in</strong>ski,<br />

Silverste<strong>in</strong>,<br />

Tong<br />

Saturday, November 10, 12


E.g. consider the simplest model <strong>of</strong> a Fermi surface coupled<br />

to a critical boson:<br />

FIG. 1. The shaded region represents the occupied states <strong>in</strong>side a Fermi surface. Fluctuations<br />

the order parameter φ at wavevectors parallel to ⃗q couple most strongly to fermions near the Ferm<br />

surface po<strong>in</strong>ts ± ⃗ k 0 .Thesefermionsaredenotedψ ± .<br />

FIG. 1. The shaded region represents the occupied states <strong>in</strong>side a Fermi surface. Fluctuations <strong>of</strong><br />

the order parameter φ at wavevectors parallel to ⃗q couple most strongly to fermions near the Fermi<br />

surface po<strong>in</strong>ts ± ⃗ k 0 .Thesefermionsaredenotedψ ± .<br />

Lagrangian becomes<br />

(<br />

L k0 = ψ † +σ ∂ τ − iv F ∂ x − 1<br />

Lagrangian becomes<br />

(<br />

L k0 = ψ † +σ ∂ τ − iv F ∂ x − 1<br />

2m ∂2 y<br />

2m ∂2 y<br />

) (<br />

ψ +σ + ψ † −σ ∂ τ + iv F ∂ x − 1<br />

)<br />

ψ +σ + ψ † −σ<br />

(<br />

∂ τ + iv F ∂ x − 1<br />

2m ∂2 y<br />

)<br />

ψ −σ<br />

Here v F <strong>and</strong> m are the Fermi velocity <strong>and</strong> the b<strong>and</strong> mass at k 0 , while d ±σ = d ±k0 σ,<strong>and</strong>we<br />

have added a subscript k 0 to L emphasize that this is the Lagrangian for the patch near<br />

± ⃗ k 0 .<br />

We should emphasize here that all the fields <strong>in</strong> Eq. (2.4) are 2+1 dimensional quantum<br />

fields, with full dependence upon x, y, <strong>and</strong>τ i.e. the fields are φ(x, y, τ) <strong>and</strong>ψ ±σ (x, y, τ). In<br />

2<br />

2m ∂2 y<br />

− d φψ +σψ † +σ − d −σ + 1 2 (∂ yφ) 2 + r 0<br />

2 φ2 (2.4)<br />

− d +σ φψ +σψ † +σ − d −σ φψ −σψ † −σ + 1 2 (∂ yφ) 2 + r 0<br />

2 φ2 (2.<br />

Here v F <strong>and</strong> m are the Fermi velocity <strong>and</strong> the b<strong>and</strong> mass at k 0 , while d ±σ = d ±k0 σ,<strong>and</strong>w<br />

have added a subscript k 0 to L emphasize that this is the Lagrangian for the patch nea<br />

Saturday, November 10, 12<br />

)<br />

ψ −σ


y<br />

The fermion correction to the boson propagator:<br />

FIG. 2: The one-loop boson self energy.<br />

FIG. 3: The one-loop fermion self energy. Here the boson propagator<br />

is a dressed propagator which <strong>in</strong>clude the one-loop self energy<br />

correction <strong>in</strong> Fig. 2.<br />

Note that η has dropped out <strong>of</strong> the f<strong>in</strong>al result. We are <strong>in</strong>terested above on<br />

contribution to Π 0 , <strong>and</strong> this is <strong>in</strong>sensitive to orders <strong>of</strong> <strong>in</strong>tegration: so unlike<br />

order, we have <strong>in</strong>tegrated over l x before l τ . We <strong>in</strong>clude the RPA polariza<br />

<strong>in</strong>to the bosonic propagator to obta<strong>in</strong><br />

3<br />

fermion self energy, the dressed boson propagator has been<br />

used because the boson self energy is <strong>of</strong> the order <strong>of</strong> 1. Inthe<br />

low energy limit, the lead<strong>in</strong>g terms <strong>of</strong> the quantum effective<br />

action are <strong>in</strong>variant under the scale transformation,<br />

D(q) = 1 N<br />

k 0 = b −1 k ′ 0 ,<br />

(<br />

) −1<br />

|q τ |<br />

c b<br />

|q y | + q2 y<br />

e + r .<br />

2<br />

k x = b −2/3 k x,<br />

′ fermion self energy, the dressed boson propagator has b<br />

k y = b −1/3 k y,<br />

′ used8<br />

because the boson self energy is <strong>of</strong> the order <strong>of</strong> 1. In<br />

ψ a (b −1 k ′ 0 ,b−2/3 k ′ x ,b−1/3 k ′ y ) = b4/3 ψ ′ low<br />

a (k′ 0 ,k′ x ,k′ y ), energy limit, the lead<strong>in</strong>g terms <strong>of</strong> the quantum effec<br />

a(b −1 k 0,b ′ −2/3 k x,b ′ −1/3 k y) ′ = b 4/3 action are <strong>in</strong>variant under the scale transformation,<br />

a(k 0,k ′ x,k ′ y). ′ (3)<br />

k<br />

yields a theory with<br />

The s<strong>in</strong>gular<br />

z=3<br />

self energies render<br />

dynamical<br />

the terms,<br />

scal<strong>in</strong>g.<br />

0 = b −1 k ′ 0 ,<br />

k x = b −2/3 k x,<br />

′<br />

ik 0 ψj ∗ (k)ψ j (k),<br />

FIG. 2: The one-loop[ boson self<br />

k<br />

2<br />

0 + kx<br />

2 ] energy.<br />

k y = b −1/3 k y,<br />

′<br />

a ∗ (k)a(k) (4)<br />

ψ a (b −1 k ′ 0 ,b−2/3 k ′ x ,b−1/3 k ′ y ) = b4/3 ψ ′ a (k′ 0 ,k′ x ,k′ y ),<br />

irrelevant <strong>in</strong> the low energy limit. Usually, it is expected that a(b −1 k 0,b ′ −2/3 k x,b ′ −1/3 k y) ′ = b 4/3 a(k 0,k ′ x,k ′ y).<br />

′<br />

one restores the same low energy quantum effective action if<br />

one drops the irrelevant terms from the beg<strong>in</strong>n<strong>in</strong>g. However, The s<strong>in</strong>gular self energies render the terms,<br />

this is not true <strong>in</strong> this case. If one drops the irrelevant terms<strong>in</strong><br />

the bare action, then the result<strong>in</strong>g theory becomes completely<br />

localized <strong>in</strong> time <strong>and</strong> one can not have a propagat<strong>in</strong>g mode. If<br />

there is no frequency dependence <strong>in</strong> the bare action, the fre-<br />

<strong>of</strong> the Fermi surface. The Fermi surface is on v x k x +v y ky 2 =0<br />

ik 0 ψj ∗ (k)ψ j (k),<br />

[<br />

as is shown <strong>in</strong> Fig. 1. Thisisa‘chiralFermisurface’where<br />

k<br />

2<br />

0 + k 2 ]<br />

x a ∗ (k)a(k)<br />

the x-component <strong>of</strong> Fermi velocity is always positive. a is the quency dependent s<strong>in</strong>gular self energies can not be generated<br />

transverse component <strong>of</strong> an emergent U(1) gauge<br />

FIG.<br />

boson<br />

3: The<br />

<strong>in</strong><br />

one-loop either. fermion Therefore, selfto energy. restoreHere the full the boson low energy propagator<br />

is a dressedhas propagator keep which a m<strong>in</strong>imal <strong>in</strong>clude <strong>in</strong>formation the one-loop that self the theory energy is not one com-<br />

restores the same low energy quantum effective actio<br />

dynamics, irrelevant one <strong>in</strong> the low energy limit. Usually, it is expected<br />

the Coulomb gauge ∇ · a =0.Weignorethetemporalcomponent<br />

<strong>of</strong> the gauge field which is screened to a short correction range<strong>in</strong> Fig. pletely 2. localized <strong>in</strong> time. It turns out that the follow<strong>in</strong>gone action drops the irrelevant terms from the beg<strong>in</strong>n<strong>in</strong>g. Howe<br />

<strong>in</strong>teraction. The transverse gauge field is massless without a given by<br />

this is not true <strong>in</strong> this case. If one drops the irrelevant term<br />

f<strong>in</strong>e tun<strong>in</strong>g due to an emergent U(1) symmetry associated with<br />

the dynamical suppression <strong>of</strong> <strong>in</strong>stantons 21,22 the bare action, then the result<strong>in</strong>g theory becomes comple<br />

. e is the<br />

<strong>of</strong><br />

coupl<strong>in</strong>g<br />

the Fermi surface. The Fermi surface ψj ∗ (η∂ is τ on −viv x ∂ x − v y ∂y)ψ 2 x k x +v y ky 2 =0 j localized <strong>in</strong> time <strong>and</strong> one can not have a propagat<strong>in</strong>g mod<br />

L = ∑ between<br />

Feed<strong>in</strong>g<br />

fermions <strong>and</strong> the critical boson.<br />

this back<br />

as is shown <strong>in</strong> Fig.<br />

<strong>in</strong><br />

1.<br />

to<br />

Thisisa‘chiralFermisurface’where<br />

the<br />

j<br />

fermionic<br />

In the one-loop order, s<strong>in</strong>gular self energies are generated<br />

from the diagrams Figs. 2 <strong>and</strong> 3,<strong>and</strong>thequantumeffective<br />

+ e<br />

there is no<br />

sector<br />

frequency dependence <strong>in</strong> the bare action, the<br />

the x-component <strong>of</strong> Fermi velocity √ is always ∑<br />

aψ ∗positive. j ψ j + a(−∂ a is y 2 )a, the quency (5) dependent s<strong>in</strong>gular self energiesS.S. canLee;<br />

not be gener<br />

transverse component <strong>of</strong> an emergent<br />

action becomes<br />

N U(1) gauge boson <strong>in</strong> either. Therefore, to restore the full<br />

j<br />

Metlitski,<br />

low energy<br />

Sachdev;<br />

dynamics,<br />

Γ = ∑ ∫ [<br />

dk i c yields<br />

the Coulomb<br />

a<br />

gauge<br />

non-Fermi<br />

∇ · a =0.Weignorethetemporalcomponent<br />

<strong>of</strong> the liquid.<br />

has to keep a m<strong>in</strong>imal <strong>in</strong>formation that the theory is not c<br />

N sgn(k 0)|k 0 | 2/3 + ik 0<br />

is gauge the m<strong>in</strong>imal field which local is theory screened which to restores a short the range one-looppletely quantumtransverse<br />

effective action gauge(2). fieldHere is massless η is a parameter withoutwhich a has given theby<br />

] f<strong>in</strong>e tun<strong>in</strong>g due<br />

localized <strong>in</strong> time. It turns out that the<br />

....<br />

follow<strong>in</strong>g ac<br />

<strong>in</strong>teraction. The<br />

j<br />

+ v x k x + v y ky<br />

2 ψj ∗ (k)ψ dimension to an emergent −1/3 U(1) accord<strong>in</strong>g symmetry to the associated scal<strong>in</strong>g (3). with<br />

j(k) the dynamical suppression S<strong>in</strong>ce the time <strong>of</strong> <strong>in</strong>stantons derivative 21,22 term . eis isirrelevant, the coupl<strong>in</strong>g η will flow to L = ∑ Saturday, November 10, 12<br />

ψj ∗ (η∂ τ − iv x ∂ x − v y ∂y)ψ 2 j


We can also use gauge/gravity duality to see<br />

The the set-up effect is the <strong>of</strong> a follow<strong>in</strong>g. small z critical One <strong>in</strong>serts sector a on s<strong>in</strong>gle fermions. ‘probe’<br />

For large enough mass (i.e. small enough v 0 ), the flavor brane still shr<strong>in</strong>ks to a po<strong>in</strong>t<br />

D-brane <strong>in</strong>to the Lifshitz space-time with dynamical<br />

correspond to str<strong>in</strong>gs stretch<strong>in</strong>g from the flavor brane at v<br />

Insert a “probe” flavor-brane <strong>in</strong> a Lifshitz<br />

0 to the horizon at v<br />

geometry<br />

+ .<br />

exponent z. The probe changes the dual field<br />

ds 2 =<br />

correspond to str<strong>in</strong>gs stretch<strong>in</strong>g from the tip <strong>of</strong> the cigar down to the Po<strong>in</strong>caré horizon<br />

v = ⇥. At f<strong>in</strong>ite temperature, a black hole horizon arises at a f<strong>in</strong>ite radial position v + .<br />

outside the black hole horizon. Charge carriers <strong>in</strong> this 0


energy gap E gap to excit<strong>in</strong>g charge carriers which is large compared to t<br />

. If the conductivity <strong>in</strong> a Lifshitz system is l<strong>in</strong>ear <strong>in</strong> the density J t <strong>of</strong><br />

By a scal<strong>in</strong>g argument, if the conductivity is l<strong>in</strong>ear <strong>in</strong> the<br />

density <strong>of</strong> charge carriers:<br />

then by the scal<strong>in</strong>g given above we can conclude that the resistivity<br />

e<br />

⌅ T 2/z<br />

J t .<br />

lt is <strong>in</strong>dependent <strong>of</strong> the spatial dimension d. Here we are us<strong>in</strong>g the fa<br />

In This the high would density, give l<strong>in</strong>ear strongly resistivity <strong>in</strong>teract<strong>in</strong>g if z=2. regime, However, it is far <strong>in</strong> the from<br />

obvious real materials, that one charge-charge should have such self-<strong>in</strong>teractions l<strong>in</strong>earity. Nevertheless, are crucial;<br />

a non-trivial so why gravity is the calculation conductivity (us<strong>in</strong>g l<strong>in</strong>ear techniques <strong>in</strong> the density? developed<br />

g the energy gap should not lead to larger conductivity <strong>in</strong> order to excl<br />

gap-dependent contributions to (2.7). (Contributions to the conductivit<br />

with E gap are negligible <strong>in</strong> the limit <strong>of</strong> large E gap /T .)<br />

by Karch & co.) shows that such l<strong>in</strong>earity does hold, giv<strong>in</strong>g<br />

In l<strong>in</strong>ear the HPST resistivity calculation, at z=2 even this comes <strong>in</strong> the regime out <strong>of</strong> basic <strong>of</strong> strongly facts about self<strong>in</strong>teract<strong>in</strong>g<br />

the charge large density carriers. expansion. Even<br />

the probe DBI action<br />

at large density, one gets l<strong>in</strong>ear resistivity at z=2.<br />

the chemical potential µ ⇥ T , l<strong>in</strong>earity <strong>of</strong> the conductivity <strong>in</strong> the de<br />

te: this regime corresponds to very low density, where the conductivity<br />

ause it is simply the sum <strong>of</strong> the <strong>in</strong>dividual contributions <strong>of</strong> non-<strong>in</strong>teract<strong>in</strong>g<br />

Thursday, Saturday, January November 12, 10, 2012


II.<br />

EINSTEIN-MAXWELL-DILATON THEORY<br />

= f ⇥ (r) ⇥ (r)<br />

2f(r)<br />

+ h⇥ (r) 2 Z ⇥ ( (r))<br />

4f(r)<br />

g ⇥ (r) ⇥ (r)<br />

2g(r)<br />

We beg<strong>in</strong> with a discussion<br />

B.<br />

<strong>of</strong>Hyperscal<strong>in</strong>g the basic characteristicsviolation<br />

<strong>of</strong> the EMD theory <strong>of</strong> compressible<br />

quantum states [14, 25] <strong>in</strong> d spatial dimensions. As reviewed <strong>in</strong> Ref. [37], the globally<br />

conserved U(1) charge <strong>of</strong> the compressible state ⇤ is holographically ⌅ realized by a U(1) gauge<br />

field A µ . In addition, the EMD ⇧ 2 ⇤Stheories EMD also <strong>in</strong>clude a scalar field (the ‘dilaton’) [66] which<br />

is dual to a relevant perturbation L d ⇤h(r)<br />

= d h ⇥ (r)Z( (r))<br />

on the UVdrconformal r d⇧ f(r)g(r) field theory, <strong>and</strong> which allows access<br />

to a wider range <strong>of</strong> IR scal<strong>in</strong>g reasonable behavior <strong>in</strong> compressible to postulate:<br />

states.<br />

So we consider the holographic Lagrangian<br />

So far, we considered vanish<strong>in</strong>g dilaton potential. It is more<br />

def<strong>in</strong>ed on a (d + 2)-dimensional spacetime with Ricci scalar R, with Maxwell flux F µ⇥<br />

associated with A µ , <strong>and</strong> a dilaton field with potential V ( ) <strong>and</strong> coupl<strong>in</strong>g Z( ).<br />

We use co-ord<strong>in</strong>ates (t, r, x i ), where t is the time direction, r is the emergent holographic<br />

direction, <strong>and</strong> x i (i =1...d) are the flat spatial directions. We will exam<strong>in</strong>e solutions with<br />

metric<br />

⇤<br />

⌅<br />

ds 2 = L 2 f(r)dt behavior 2 + g(r)drto 2 + obey<br />

dx2 i<br />

, (2.2)<br />

r 2<br />

Rather We now discuss natural the structure choices <strong>of</strong> the for solutions the <strong>in</strong> functions the IR limit, r(motivated ⇤⌅. As we discussed by e.g. <strong>in</strong><br />

only the temporal component <strong>of</strong> the gauge field non-zero<br />

A t = eL ⇥<br />

1<br />

4 g(r)V ⇥ ( (r)) + ⇥⇥ (r) d<br />

F<strong>in</strong>ally, the only non-zero Maxwell equation is Gauss’ Law, which yields<br />

h(r), (2.3)<br />

<strong>and</strong> a dilaton field (r) dependent only upon r. Under these conditions, we can work with<br />

action per unit spacetime volume <strong>of</strong> the boundary theory<br />

⇥ (r)<br />

r<br />

=0.<br />

=0. (2.7)<br />

The <strong>in</strong>tegration constant <strong>in</strong> (2.7) is set by the charge density on the boundary [36], <strong>and</strong> so<br />

we have<br />

L EMD = 1 ⇥<br />

R 2(⌅ ) 2 V ( )<br />

⇥<br />

L d 1 h ⇥ (r)Z( (r)) Z( )<br />

2⇥ 2 L 2 4e F µ⇥F µ⇥ (2.1)<br />

⇧e r d⇧ = Q.<br />

f(r)g(r) 2 (2.8)<br />

The dependence <strong>of</strong> the solutions on the charge density Q will be crucial to our purposes.<br />

Section<br />

gauged<br />

I, we are<br />

supergravity),<br />

<strong>in</strong>terested <strong>in</strong> solutions which obey<br />

yield<br />

(1.1)<br />

scal<strong>in</strong>g this limit.<br />

solutions,<br />

Extend<strong>in</strong>g theare:<br />

results<br />

<strong>of</strong> Ref. [25] to general d, we can deduce that such a solution will emerge from the equations<br />

<strong>of</strong> motion provided we choose the large<br />

with<br />

Saturday, November 10, 12<br />

Charmousis,<br />

Z( ) = Z 0 exp ( )<br />

, as ⇤⌅.<br />

Gouteraux, Kim,<br />

(2.9)<br />

Kiritsis, Meyer<br />

V ( ) = V 0 exp ( ⇥ )<br />

, ⇥ > 0, <strong>and</strong> the exponents z <strong>and</strong> ⌅ are then given by<br />

⌅ =<br />

d 2 ⇥<br />

(2.10)


The first parameter, <strong>in</strong> the gauge coupl<strong>in</strong>g function,<br />

transmuted <strong>in</strong>to a dynamical critical exponent z.<br />

With two parameters <strong>in</strong> L, we f<strong>in</strong>d solutions that reflect<br />

two critical exponents: z <strong>and</strong> a “hyperscal<strong>in</strong>g violation”<br />

.1 Metrics with scale covariance parameter ✓ :<br />

Metrics with scale covariance<br />

s we reviewed before, the gravity side is characterized by a metric <strong>of</strong> the form<br />

e reviewed before, the<br />

ds 2 gravity<br />

d+2 = r 2(d side )/d is characterized ⇥<br />

r 2(z 1) dt 2 by<br />

+ dr 2 a metric<br />

+ dx 2 <strong>of</strong> the form<br />

i .<br />

⇥<br />

ds<br />

his is the most general 2 d+2 = r<br />

metric that 2(d is )/d r<br />

spatially 2(z homogeneous 1) dt 2 + dr 2 + dx<br />

<strong>and</strong> 2 i .<br />

covariant under the<br />

ansformations<br />

is the most These general are metric conformal that is spatially to scale homogeneous <strong>in</strong>variant <strong>and</strong> metrics: covariant under th<br />

sformations x i ⌅ ⇥x i ,t⌅ ⇥ z t, r⌅ ⇥r , ds⌅ ⇥ /d ds .<br />

hus, z plays the role x<strong>of</strong> i ⌅the ⇥x dynamical i ,t⌅ ⇥exponent, z r⌅ ⇥r <strong>and</strong> , ds⌅ is the ⇥ /d hyperscal<strong>in</strong>g ds . violation<br />

ent.<br />

s, z plays the role <strong>of</strong> the dynamical exponent, <strong>and</strong> is the hyperscal<strong>in</strong>g violatio<br />

. The dual (d + 1)-dimensional field theory lives on a background spacetime identified<br />

surface <strong>of</strong> constant r <strong>in</strong> (2.1). The radial coord<strong>in</strong>ate is related to the energy scale<br />

he dual The (d f<strong>in</strong>ite + 1)-dimensional temperature field theory deformations lives on a background are also spacetime known: identifi<br />

ual theory. For example, an object <strong>of</strong> fixed proper energy E pr <strong>and</strong> momentum ⌘p pr red<br />

rface <strong>of</strong> constant r <strong>in</strong> (2.1). The radial coord<strong>in</strong>ate is related to the energy scale<br />

cord<strong>in</strong>g to<br />

Saturday, November 10, 12<br />

l theory. For example, an object <strong>of</strong> fixed proper energy E <strong>and</strong> momentum ⌘p re


Start<strong>in</strong>g now from the metric F (2.1) with hyperscal<strong>in</strong>g violation, the black hole solution<br />

Start<strong>in</strong>g now from the metric (2.1) with hyperscal<strong>in</strong>g violation, the black hole solution<br />

becomes [17, 34]<br />

becomes [17, 34]<br />

ith<br />

⇥<br />

⇥ d+z 2 /d /d<br />

r<br />

⇥<br />

⇥<br />

ds ds 2 f(r) 2<br />

d+2 R2<br />

=1<br />

. (5.3)<br />

d+2 = R2 r<br />

rr r 2(z 2(z 1) 1) f(r)dt 2 + dr2<br />

h<br />

f(r)dt 2 + dr2<br />

rr 2 2 r f(r) + dx2 i , (5.2)<br />

F f(r) + dx2 i , (5.2)<br />

tart<strong>in</strong>g from a solution with f(r) = 1 <strong>and</strong> matter content general enough to allow for<br />

with<br />

rbitrary<br />

with<br />

(z, ), 14 one can show, us<strong>in</strong>g the results <strong>in</strong> ⇥ d+z the Appendix, that (5.3) still gives a<br />

rr<br />

olution. Concrete examples will be f(r) presented =1 <strong>in</strong> §6. As. usual, the relation between (5.3) the<br />

r h<br />

⇥ d+z<br />

. (5.3)<br />

r<br />

emperature <strong>and</strong> r h follows by exp<strong>and</strong><strong>in</strong>g r h r = u h 2 , <strong>and</strong> dem<strong>and</strong><strong>in</strong>g that near the horizon<br />

Start<strong>in</strong>g from a general enough to allow for<br />

he metric Start<strong>in</strong>g is ds from 2 ⇧ adusolution 2 + u 2 d⇤with 2 , where f(r) ⇤ = =(2⇥T 1 <strong>and</strong>)it. matter The content result isgeneral enough to allow for<br />

arbitrary arbitrary (z, (z,), 14 ), 14 one onecan canshow, us<strong>in</strong>g the results<strong>in</strong> <strong>in</strong>the the Appendix, Appendix, that that (5.3) (5.3) still still gives gives a a<br />

solution. Concrete examples will be presented <strong>in</strong> §6. As usual, the relation between the<br />

solution. Concrete examples will be presented<br />

temperature <strong>and</strong> r h follows by exp<strong>and</strong><strong>in</strong>g T = 1 |d + z <strong>in</strong> | §6. As usual, the relation between the<br />

r h r = u 2 , <strong>and</strong> dem<strong>and</strong><strong>in</strong>g that near the horizon<br />

temperature <strong>and</strong><br />

the metric is ds 2 r<br />

. (5.4)<br />

h follows<br />

⇧ du 2 by<br />

+ u 2 exp<strong>and</strong><strong>in</strong>g<br />

d⇤ 2 , where 4⇥ r =(2⇥T h r z r = u<br />

)it. The 2 , <strong>and</strong> dem<strong>and</strong><strong>in</strong>g that near the horizon<br />

h result is<br />

the metric is ds 2 ⇧ du 2 + u 2 d⇤ 2 , where ⇤ =(2⇥T )it. The result is<br />

These expressions imply that the thermal<br />

T = 1 |d entropy, + z | which is proportional to the area <strong>of</strong><br />

. (5.4)<br />

he black hole, becomes<br />

This results <strong>in</strong><br />

T<br />

an<br />

= 4⇥<br />

entropy 1 |d +<br />

rh<br />

z z |<br />

.<br />

These expressions imply Sthat T ⌅ the (Mthermal Pl R) d Ventropy, T that scales like:<br />

(5.4)<br />

4⇥ r (d h<br />

z )/z<br />

which . is proportional to the area <strong>of</strong> (5.5)<br />

the These black expressions hole, becomes imply that the thermal entropy, r F which is proportional to the area <strong>of</strong><br />

hus, the a positive black hole, specific becomes heat imposesS T<br />

the ⌅ (M condition<br />

Pl R) d V T (d )/z<br />

. (5.5)<br />

r F<br />

S T ⌅<br />

Thus, a positive specific heat imposesd<br />

(M Pl R) d V T (d )/z<br />

. (5.5)<br />

the condition<br />

⇤ 0 . r F (5.6)<br />

z<br />

Thus, a positive specific heat imposes the d condition<br />

⇤ 0 . (5.6)<br />

e see that the branch {0 < z < 1, ⇤ zd + z} that was consistent with the NEC is<br />

hermodynamically<br />

We see that the<br />

unstable. Hyperscal<strong>in</strong>g<br />

d<br />

branch<br />

On<br />

{0 <<br />

the<br />

z<br />

other<br />

< 1,<br />

h<strong>and</strong>, violation ⇤ d +<br />

⇤{z z}<br />

0 ⇥. that<br />

0,<br />

was<br />

⇤shifts d}<br />

consistent<br />

is still d! allowed<br />

with the<br />

by<br />

NEC<br />

(5.6).<br />

is<br />

(5.6) It<br />

z<br />

ould bethermodynamically <strong>in</strong>terest<strong>in</strong>g to study unstable. this case On the <strong>in</strong> other moreh<strong>and</strong>, detail {zto ⇥decide 0, ⇤ d} whether is still allowed it is consistent by (5.6). It – the<br />

ntanglement Wewould see that be entropy <strong>in</strong>terest<strong>in</strong>g the branch analysis to study {0 <strong>of</strong> < §4 this z suggested case < 1, <strong>in</strong> more ⇤<strong>and</strong> detail <strong>in</strong>stability + z} tothat decide for was whether all consistent >d. it consistent with the– the NEC is<br />

thermodynamically entanglement entropy unstable. analysisOn <strong>of</strong> §4 thesuggested other h<strong>and</strong>, <strong>in</strong>stability {z ⇥ 0, for ⇤ all d} is>d.<br />

still allowed by (5.6). It<br />

Saturday, November 10, 12


An example <strong>of</strong> a system which enjoys such “shifted d” <strong>in</strong><br />

the real world, is a Fermi liquid. Basic picture:<br />

Non-Fermi liquids A. J. Sch<strong>of</strong>ield 2<br />

can be obta<strong>in</strong>ed relatively simply us<strong>in</strong>g Fermi’s golden<br />

rule (together with Maxwell’s equations) <strong>and</strong> I have <strong>in</strong>cluded<br />

these for readers who would like to see where<br />

some <strong>of</strong> the properties are com<strong>in</strong>g from.<br />

The outl<strong>in</strong>e <strong>of</strong> this review is as follows. I beg<strong>in</strong> with<br />

a description <strong>of</strong> Fermi-liquid theory itself. This theory<br />

tells us why one gets a very good description <strong>of</strong> a<br />

metal by treat<strong>in</strong>g it as a gas <strong>of</strong> Fermi particles (i.e. that<br />

obey Pauli’s exclusion pr<strong>in</strong>ciple) where the <strong>in</strong>teractions<br />

are weak <strong>and</strong> relatively unimportant. The reason is<br />

that the particles one is really describ<strong>in</strong>g are not the<br />

orig<strong>in</strong>al electrons but electron-like quasiparticles that<br />

emerge from the <strong>in</strong>teract<strong>in</strong>g gas <strong>of</strong> electrons. Despite its<br />

recent failures which motivate the subject <strong>of</strong> non-Fermi<br />

liquids, it is a remarkably successful theory at describ<strong>in</strong>g<br />

many metals <strong>in</strong>clud<strong>in</strong>g some, like UPt 3 , where the<br />

<strong>in</strong>teractions between the orig<strong>in</strong>al electrons are very important.<br />

However, it is seen to fail <strong>in</strong> other materials<br />

<strong>and</strong> these are not just exceptions to a general rule but<br />

are some <strong>of</strong> the most <strong>in</strong>terest<strong>in</strong>g materials known. As<br />

an example I discuss its failure <strong>in</strong> the metallic state <strong>of</strong><br />

the high temperature superconductors.<br />

I then present four examples which, from a theoretical<br />

perspective, generate non-Fermi liquid metals.<br />

These all show physical properties which can not be<br />

understood <strong>in</strong> terms <strong>of</strong> weakly <strong>in</strong>teract<strong>in</strong>g electron-like<br />

objects:<br />

Figure 1: The ground state <strong>of</strong> the free Fermi gas <strong>in</strong> momentum<br />

space. All the states below the Fermi surface<br />

are filled with both a sp<strong>in</strong>-up <strong>and</strong> a sp<strong>in</strong>-down electron.<br />

A particle-hole excitation is made by promot<strong>in</strong>g<br />

an electron from a state below the Fermi surface to an<br />

empty one above it.<br />

A codimension one surface <strong>in</strong> k-space divides occupied<br />

2. Fermi-Liquid Theory: the electron quasiparticle<br />

from unoccupied states. Only the orthogonal direction<br />

The need for a Fermi-liquid theory dates from the<br />

first applications <strong>of</strong> quantum mechanics to the metallic<br />

state. There were two key problems. Classically each<br />

electron should contribute 3k B /2 to the specific heat<br />

capacity <strong>of</strong> a metal—far more than is actually seen experimentally.<br />

In addition, as soon as it was realized<br />

“scales” at a given po<strong>in</strong>t on the Fermi surface. It is like a<br />

surfaces worth <strong>of</strong> 1+1 dimensional CFTs.<br />

• Metals close to a quantum critical po<strong>in</strong>t. When a<br />

phase transition happens at temperatures close to<br />

the puzzle <strong>of</strong> the magnetic susceptibility which did not<br />

absolute zero, the quasiparticles scatter so strongly<br />

show the expected Curie temperature dependence for<br />

that they cease to behave <strong>in</strong> the way that Fermiliquid<br />

theory would predict.<br />

free moments: χ ∼ 1/T .<br />

These puzzles were unraveled at a stroke when<br />

• Metals <strong>in</strong> one dimension–the Lutt<strong>in</strong>ger liquid. In Pauli (Pauli 1927, Sommerfeld 1928) (apparently<br />

one dimensional metals, electrons are unstable <strong>and</strong><br />

decay <strong>in</strong>to two separate particles (sp<strong>in</strong>ons <strong>and</strong><br />

holons) that carry the electron’s sp<strong>in</strong> <strong>and</strong> charge<br />

reluctantly—see Hermann et al. 1979) adopted Fermi<br />

statistics for the electron <strong>and</strong> <strong>in</strong> particular enforced the<br />

exclusion pr<strong>in</strong>ciple which now carries his name: No two<br />

respectively.<br />

electrons can occupy the same quantum state. In the<br />

Saturday, November 10, 12<br />

absence <strong>of</strong> <strong>in</strong>teractions one f<strong>in</strong>ds the lowest energy state


For<br />

We start with a review <strong>of</strong> basic ideas <strong>and</strong> properties <strong>of</strong> entanglement entropy.<br />

Next we divide the total system <strong>in</strong>to two subsystems A <strong>and</strong> B.<br />

✓ = d 1<br />

the thermodynamic functions <strong>of</strong> In the sp<strong>in</strong> black cha<strong>in</strong><br />

example, we just artificially cut <strong>of</strong>f the cha<strong>in</strong> at some po<strong>in</strong>t <strong>and</strong> divide the lattice po<strong>in</strong>ts<br />

brane match those <strong>of</strong> a theory with a Fermi surface.<br />

2.1 Def<strong>in</strong>ition <strong>of</strong> Entanglement Entropy<br />

Next we divide the total system <strong>in</strong>to two subsystems A <strong>and</strong> B.<br />

<strong>in</strong>to two groups. Notice that physically we do not do anyth<strong>in</strong>g to the system <strong>and</strong> the<br />

cutt<strong>in</strong>g<br />

Consider<br />

procedure<br />

a quantum<br />

is an<br />

mechanical<br />

imag<strong>in</strong>ary<br />

system<br />

process.<br />

with<br />

Accord<strong>in</strong>gly<br />

many degrees<br />

the total<br />

<strong>of</strong> freedom<br />

Hilbert<br />

such<br />

space<br />

as<br />

can<br />

sp<strong>in</strong><br />

be<br />

cha<strong>in</strong>s.<br />

written<br />

More<br />

as<br />

generally,<br />

a direct product<br />

we can consider<br />

<strong>of</strong> two spaces<br />

arbitrary<br />

H tot<br />

lattice<br />

= H A<br />

models<br />

⊗ H B<br />

or<br />

correspond<strong>in</strong>g<br />

QFTs <strong>in</strong>clud<strong>in</strong>g<br />

to<br />

CFTs.<br />

those <strong>of</strong><br />

One other subsystems hallmark A <strong>and</strong> B. The<strong>of</strong> observer fermions who is onlyis accessible an anomalous to the subsystem scal<strong>in</strong>g A will feel as<strong>of</strong><br />

One place where this shows up quantitatively is <strong>in</strong> the<br />

the entanglement entropy: entropy.<br />

We put the system at zero temperature <strong>and</strong> then the total quantum system is described<br />

by<br />

if<br />

the<br />

the<br />

pure<br />

total<br />

ground<br />

system<br />

state<br />

is described<br />

|Ψ〉. Weassumenodegeneracy<strong>of</strong>thegroundstate.Then,the<br />

by the reduced density matrix ρ A<br />

density matrix is that <strong>of</strong> the pure state ρ A =tr B ρ tot , (2.2)<br />

where the trace is taken only over the ρ tot<br />

Hilbert = |Ψ〉〈Ψ|. space H B .<br />

(2.1)<br />

Now we def<strong>in</strong>e the entanglement entropy <strong>of</strong> the subsystem A as the von Neumann<br />

The entropy von Neumann <strong>of</strong> the reduced entropy density <strong>of</strong> thematrix total system ρ A<br />

is clearly zero S tot = −tr ρ tot log ρ tot =0.<br />

S A = −tr A ρ A log ρ A . (2.3)<br />

This quantity provides us with a convenient<br />

4<br />

way to measure how closely entangled (or how<br />

“quantum”) a given wave function |Ψ〉 is. Notice also that <strong>in</strong> time-dependent backgrounds<br />

the density matrix ρ tot <strong>and</strong> ρ A are time dependent as dictated by the von Neumann<br />

equation. Thus we need to specify the time t = t 0 when we measure the entropy. In this<br />

paper, we always study static systems <strong>and</strong> we can neglect this issue.<br />

“quantum”) It is a given also possible wave function to def<strong>in</strong>e|Ψ〉 theis. entanglement Notice also entropy that <strong>in</strong> time-dependent S A (β) at f<strong>in</strong>ite temperature backgrounds<br />

T = β −1 . This can be done just by replac<strong>in</strong>g (2.1) with the thermal one ρ thermal = e −βH ,<br />

where H is the total Hamiltonian. When A is the total system, S A (β) is clearly the same<br />

as the thermal entropy.<br />

In the sp<strong>in</strong> cha<strong>in</strong><br />

example, we just artificially cut <strong>of</strong>f the cha<strong>in</strong> at some po<strong>in</strong>t <strong>and</strong> divide the lattice po<strong>in</strong>ts<br />

<strong>in</strong>to two groups. Notice that physically we do not do anyth<strong>in</strong>g to the system <strong>and</strong> the<br />

cutt<strong>in</strong>g procedure is an imag<strong>in</strong>ary process. Accord<strong>in</strong>gly the total Hilbert space can be<br />

written as a direct product <strong>of</strong> two spaces H tot = H A ⊗ H B correspond<strong>in</strong>g to those <strong>of</strong><br />

subsystems A <strong>and</strong> B. The observer who is only accessible to the subsystem A will feel as<br />

if the total system is described by the reduced density matrix ρ A<br />

where the trace is taken only over the Hilbert space H B .<br />

ρ A =tr B ρ tot , (2.2)<br />

Now we def<strong>in</strong>e the entanglement entropy <strong>of</strong> the subsystem A as the von Neumann<br />

entropy <strong>of</strong> the reduced density matrix ρ A<br />

S A = −tr A ρ A log ρ A . (2.3)<br />

This quantity provides us with a convenient way to measure how closely entangled (or how<br />

A<br />

the density matrix ρ tot <strong>and</strong> ρ A are time dependent as dictated by the von Neumann<br />

equation. Thus we need to specify the time t = t 0 when we measure the entropy. In this<br />

Saturday, November 10, 12<br />

Tuesday, October 23, 12<br />

B


ce the entanglement between A <strong>and</strong> B occurs at t<br />

In general, one expects an “area law” for the entanglement<br />

result (2.8) was orig<strong>in</strong>ally found from numerical com<br />

(with a UV-cut<strong>of</strong>f dependent coefficient). This represents<br />

ny later arguments (see e.g. recent works [27, 28, 29<br />

the entanglement <strong>of</strong> microscopic d.o.f. across the boundary.<br />

area law (2.8), however, does not always describe t<br />

One well-known violation <strong>of</strong> the area law occurs <strong>in</strong> 2D<br />

The Fermi liquid actually famously gives a logarithmic<br />

CFTs. There, the result is:<br />

violation <strong>of</strong> the “area law” which is universal. Eg <strong>in</strong> d=2:<br />

y <strong>in</strong> generic situations. As we will discuss <strong>in</strong> detai<br />

ent entropy <strong>of</strong> 1D quantum systems at criticality sca<br />

l<strong>in</strong>ear size l <strong>of</strong> A, S A ∼ c 3<br />

A<br />

------------------------<br />

log l/a where c is the<br />

Holzhey,<br />

cen<br />

Wolf; Larsen,<br />

we can match the entanglement thermodynamic B entropy. behavior <strong>of</strong> a<br />

Cardy;<br />

Fermi<br />

Holzhey,<br />

Saturday, Tuesday, October November 23, 10, 12 12<br />

S L ⇠ k F L log(L)+ L ✏ + ···<br />

6<br />

Gioev, KlichWilczek<br />

By sett<strong>in</strong>g<br />

This can roughly be understood from the fact that 1+1<br />

= d 1<br />

Huijse, Sachdev,<br />

Sw<strong>in</strong>gle<br />

dimensional CFTs have an anomalous log <strong>in</strong> their<br />

Larsen, Wilczek<br />

surface, <strong>in</strong> terms <strong>of</strong> T-scal<strong>in</strong>g <strong>of</strong> entropy, heat capacity, etc.


he<br />

he<br />

n-<br />

er<br />

ot<br />

m<br />

an<br />

d,<br />

as<br />

].<br />

ce<br />

er<br />

a<br />

en<br />

be<br />

ed<br />

er<br />

ly,<br />

<strong>in</strong><br />

w<br />

with<br />

papers [12, 13]. Def<strong>in</strong>e the entanglement entropy S A <strong>in</strong><br />

a CFT on R 1,d (or R×S d ) for a subsystem A that has an<br />

arbitrary d − 1 dimensional boundary ∂A ∈ R d (or S d ).<br />

In this setup we<br />

entropy<br />

propose<strong>in</strong> the<br />

holography:<br />

follow<strong>in</strong>g ‘area law’<br />

There is a formula for comput<strong>in</strong>g the entanglement<br />

Saturday, November 10, 12<br />

S A = Area <strong>of</strong> γ A<br />

4G (d+2)<br />

N<br />

Ryu,<br />

, (1.5)<br />

Takayanagi<br />

where γ A is the d dimensional static m<strong>in</strong>imal surface <strong>in</strong><br />

A<br />

AdS d+2 whose boundary is given by ∂A, <strong>and</strong> G (d+2)<br />

N<br />

is<br />

the d + extend<strong>in</strong>g 2 dimensional <strong>in</strong>to <strong>New</strong>ton the bulk constant. <strong>of</strong> AdS Intuitively, space. this<br />

suggests that the m<strong>in</strong>imal surface γ A plays the role <strong>of</strong> a<br />

holographic screen for an observer who is only accessible<br />

to the subsystem A. We show explicitly the relation (1.5)<br />

<strong>in</strong> the lowest dimensional case d = 1, where γ A is given<br />

by a geodesic l<strong>in</strong>e <strong>in</strong> AdS 3 . We also compute S A from the<br />

gravity side for general d <strong>and</strong> compare it with field theory<br />

results, which is successful at least qualitatively. From<br />

(1.5), it is readily seen that the basic properties <strong>of</strong> the<br />

entanglement entropy (i) S = S (B is the complement<br />

the m<strong>in</strong>imal surface with appropriate boundary,


Calculat<strong>in</strong>g this for the<br />

✓ = d 1<br />

metric yields a matched<br />

anomalous entanglement entropy!<br />

Are the hyperscal<strong>in</strong>g violat<strong>in</strong>g geometries<br />

theories with a Fermi surface at lead<strong>in</strong>g order?<br />

Ogawa, Takayanagi,<br />

Ugaj<strong>in</strong>; Huijse,<br />

Sachdev,<br />

Sw<strong>in</strong>gle<br />

C. Instability <strong>of</strong> the dilatonic metrics<br />

In the theories we’ve discussed so far, the dilaton is runn<strong>in</strong>g<br />

to extreme values close to the horizon:<br />

= K log(r)<br />

Saturday, November 10, 12


In electric (magnetic) black branes, this implies that there is<br />

weak (strong) coupl<strong>in</strong>g at the horizon:<br />

g = e<br />

⇥ magnetic:<br />

g $ 1 g<br />

Both are potentially problematic.<br />

Electric case:<br />

At weak coupl<strong>in</strong>g <strong>in</strong> str<strong>in</strong>g theory, higher-derivative<br />

terms are important:<br />

M str<strong>in</strong>g = gM Planck<br />

L = ⌅ g R + R 2 + ···⇥<br />

Saturday, November 10, 12


S = d 4 x g R 2(⌥⇤) 2 e 2 ⇥ F 2 2 . (1.3)<br />

They are<br />

In these<br />

known<br />

theories, although<br />

to play<br />

the metric<br />

an important<br />

<strong>in</strong> the IR takes the<br />

role<br />

Lifshitz<br />

<strong>in</strong><br />

form<br />

asymptotically<br />

with z = 1+( 2 )2<br />

,the<br />

( 2<br />

)<br />

In these theories, although the metric <strong>in</strong> the IR takes the Lifshitz form with z = 1+( 2 )2<br />

,the<br />

2<br />

scalar dilaton is logarithmically runn<strong>in</strong>g. Both electrically <strong>and</strong> magnetically ( charged black<br />

branes flat giveblack rise to such hole geometries: solutions <strong>in</strong> the former with thefew dilatoncharges.<br />

2<br />

) 2<br />

scalar dilaton is logarithmically runn<strong>in</strong>g. Both electrically <strong>and</strong> magnetically charged<br />

runs towards weak<br />

Sen; black Dabholkar,<br />

coupl<strong>in</strong>g<br />

branes give rise to such geometries: <strong>in</strong> the former Kallosh, Maloney<br />

at the horizon (<strong>in</strong> the sense that g ⇤ e ⇥ the dilaton runs towards weak coupl<strong>in</strong>g<br />

⇧ 0), while <strong>in</strong> the latter, the dilaton runs<br />

at the horizon (<strong>in</strong> the sense that g ⇤ e ⇥ ⇧ 0), while <strong>in</strong> the latter, the dilaton runs<br />

towards<br />

towards<br />

strong<br />

strong<br />

coupl<strong>in</strong>g.<br />

coupl<strong>in</strong>g. Related<br />

Related<br />

solutions<br />

solutions<br />

with<br />

with<br />

Lifshitz<br />

Lifshitz<br />

asymptotics<br />

asymptotics<br />

were<br />

were<br />

first<br />

first<br />

discussed<br />

discussed<br />

<strong>in</strong><br />

<strong>in</strong><br />

[13], [13], <strong>and</strong> <strong>and</strong> several other papers papersexplor<strong>in</strong>g explor<strong>in</strong>gclosely closely related related solutions solutions have have subsequently subsequently appeared appeared<br />

[14, 15, 21, Magnetic 22]. case:<br />

[14, 15, 16, 17, 18, 19, 20, 21, 22].<br />

It It was noted already <strong>in</strong> <strong>in</strong> [11, 12] 12] that thathe the runn<strong>in</strong>g <strong>of</strong> the <strong>of</strong> the dilaton dilaton means means that that one cannot one cannot<br />

trust the Lifshitz form <strong>of</strong> the solutions to tothe the action action (1.3) (1.3) <strong>in</strong> the <strong>in</strong> the very very deep deep IR. InIR. theIncase<br />

case<br />

many similar cases such s<strong>in</strong>gularities are known to be harmless <strong>and</strong> physically admissible<br />

<strong>of</strong> <strong>of</strong> the magnetically charged branes, this this is because as as g grows, g grows, quantum quantum corrections corrections should should<br />

be expected to grow <strong>in</strong> importance – see §4.2 <strong>of</strong> [12]. For electrically charged branes, on the<br />

⇥ corrections (i.e., higher-derivative<br />

Now, For magnetic g flows to branes, strong <strong>in</strong> coupl<strong>in</strong>g some cases at the the horizon. “very near-horizon<br />

[10], it is an open question <strong>in</strong> this case what the correct <strong>in</strong>terpretation <strong>of</strong> the s<strong>in</strong>gularities<br />

be expected Then, we<br />

can neglect<br />

fate”<br />

is. 1 to grow <strong>in</strong> importance – see §4.2 <strong>of</strong> [12]. For electrically charged branes, on the<br />

The<br />

<strong>of</strong><br />

results<br />

higher<br />

the<br />

<strong>of</strong><br />

emergent<br />

this note will not apply<br />

derivative<br />

Lifshitz<br />

to the solutions,<br />

terms,<br />

solution<br />

like those <strong>of</strong><br />

but not<br />

(with<br />

[6], which<br />

g corrections<br />

runn<strong>in</strong>g<br />

have exact<br />

other<br />

Lifshitz h<strong>and</strong>,<br />

scal<strong>in</strong>g it would be<br />

symmetry.<br />

expected that that<strong>in</strong> <strong>in</strong>str<strong>in</strong>g str<strong>in</strong>g theory theory<br />

⇥ corrections (i.e., higher-derivative<br />

terms)<br />

More would<br />

generally, become important.<br />

these dilaton)<br />

metrics also emerge<br />

is as<br />

naturally<br />

follows:<br />

<strong>in</strong> relativistic systems which are<br />

doped We<br />

We<br />

have<br />

have by f<strong>in</strong>ite already<br />

already charge seen<br />

seendensity.<br />

cases<br />

cases to<br />

<strong>in</strong><br />

<strong>in</strong><br />

str<strong>in</strong>g For str<strong>in</strong>g the<br />

<strong>in</strong>stance, theory<br />

theory action.<br />

where asymptotically where<br />

⇥ corrections AdS extremal “resolve” black a horizon<br />

Harrison, SK,<br />

branes which<br />

Wang<br />

Saturday, November 10, 12<br />

⇥ corrections “resolve” a horizon which<br />

is naively s<strong>in</strong>gular [23]. Here, we discuss an analogous phenomenon for black branes. Instead<br />

⇥<br />

<strong>of</strong> corrections we will focus on the quantum corrections to the near-horizon geometry <strong>of</strong><br />

the magnetically charged black branes <strong>in</strong> quantum-corrected versions <strong>of</strong> the theory (1.3). As<br />

a simplest toy model for these corrections <strong>in</strong> g, we will promote the gauge k<strong>in</strong>etic term <strong>in</strong><br />

(1.3)<br />

e 2 ⇥ F 2 ⇧ f(⇤)F 2 (1.4)<br />

iswhose naively near-horizon s<strong>in</strong>gular [23]. geometry Here, we is <strong>of</strong> discuss the Lifshitz an analogous form were phenomenon found <strong>in</strong> [11, for 12] black by study<strong>in</strong>g branes. the Instead<br />

⇥<br />

<strong>of</strong>solutions corrections <strong>of</strong> the theory we will with focus action<br />

the quantum corrections to the near-horizon geometry <strong>of</strong><br />

the magnetically charged black ⇤ branes<br />

S = d 4 x ⌃ <strong>in</strong> quantum-corrected versions<br />

g R 2(⌥⇤) 2 e 2 ⇥ F 2 2 ⇥ <strong>of</strong> the theory (1.3). As<br />

a simplest toy model for these corrections <strong>in</strong> g, we will promote . the gauge k<strong>in</strong>etic(1.3)<br />

term <strong>in</strong><br />

(1.3)<br />

e 2 ⇥ F 2 ⇧ f(⇤)F 2<br />

In these theories, although the metric <strong>in</strong> the IR takes the Lifshitz form with z = 1+( (1.4)<br />

2 )2<br />

,the<br />

( 2<br />

)<br />

with 2 scalar the dilaton “gauge is coupl<strong>in</strong>g logarithmically function” runn<strong>in</strong>g. f(⇤) Both tak<strong>in</strong>g electrically the form<strong>and</strong> magnetically charged black<br />

branes give rise to such geometries: <strong>in</strong> the former the dilaton runs towards weak coupl<strong>in</strong>g<br />

at the f(⇤) horizon =e 2 (<strong>in</strong> ⇥ + the ⇥ sense that g ⇤ e 1 + ⇥ 2 e 2 ⇥ + ⇥ 3 e 4 ⇥ + ⇧···= 0), while 1 <strong>in</strong> the latter, the dilaton runs<br />

towards strong coupl<strong>in</strong>g. Related solutions with Lifshitz g + ⇥ 2 1 + ⇥ 2 g 2 + ⇥ 3 g 4 + ··· (1.5)<br />

asymptotics were first discussed <strong>in</strong><br />

[13], <strong>and</strong> several other papers explor<strong>in</strong>g closely related solutions have subsequently appeared<br />

The new terms ⌅ ⇥<br />

[14, 15, 16, 17, 18, 19, i <strong>in</strong> the gauge coupl<strong>in</strong>g function are meant to mock up the quantum<br />

20, 21, 22].<br />

corrections which become important as the coupl<strong>in</strong>g constant grows near the horizon. We<br />

It was noted already <strong>in</strong> [11, 12] that the runn<strong>in</strong>g <strong>of</strong> the dilaton means that one cannot<br />

with the “gauge coupl<strong>in</strong>g function” f(⇤) tak<strong>in</strong>g the form<br />

f(⇤) =e 2 ⇥ + ⇥ 1 + ⇥ 2 e 2 ⇥ + ⇥ 3 e 4 ⇥ + ···= 1 g 2 + ⇥ 1 + ⇥ 2 g 2 + ⇥ 3 g 4 + ··· (1.5)<br />

The new terms ⌅ ⇥ i <strong>in</strong> the gauge coupl<strong>in</strong>g function are meant to mock up the quantum


The corrections yield “attractor fixed po<strong>in</strong>ts” for the<br />

dilaton <strong>in</strong> the near-horizon region:<br />

Ferrara, Kallosh,<br />

Strom<strong>in</strong>ger<br />

20<br />

15<br />

10<br />

5<br />

2 4 6 8 10 12 14<br />

Figure 1: Evolution <strong>of</strong> the dilaton from various <strong>in</strong>itial conditions at <strong>in</strong>f<strong>in</strong>ity to a common fixed<br />

po<strong>in</strong>t at r =0.<br />

So the radial flows one f<strong>in</strong>ds:<br />

Saturday, November 10, 12


* Asymptote to<br />

AdS 4<br />

Harrison,<br />

SK, Wang<br />

* Exhibit Lifshitz-scal<strong>in</strong>g with the expected “z” over many<br />

decades <strong>in</strong> energy<br />

* End up <strong>in</strong> AdS 2 R 2 (with much reduced entropy)<br />

0.75<br />

0.7<br />

a r⇥<br />

10 4 b r⇥<br />

0.65<br />

0.6<br />

1000<br />

0.55<br />

0.5<br />

100<br />

0.45<br />

10 8 10 10 10 12 10 14 r<br />

10<br />

10 8 10 10 10 12 10 14 r<br />

Figure 2: Here we see a log-log plot <strong>of</strong> the crossover from Lifshitz scal<strong>in</strong>g to AdS 4 <strong>in</strong> the<br />

metric functions a(r) <strong>and</strong>b(r). The crossover occurs around r =10 11 . For r10 11 , the solution becomes<br />

AdS 4 . Left: a (r); right: b(r). The flow <strong>in</strong> a(r) just reflects the fact that the coe⌅cient <strong>of</strong><br />

the l<strong>in</strong>ear term <strong>in</strong> a(r) ⇤ r is di erent <strong>in</strong> the Lifshitz <strong>and</strong> AdS 4 regions. The change <strong>in</strong> slope<br />

<strong>in</strong> the log-log plot for b(r) <strong>in</strong>dicates the di erence between a solution with dynamical scal<strong>in</strong>g<br />

(z = 5, for our choice <strong>of</strong> parameters) <strong>and</strong> the z = 1 characteristic <strong>of</strong> AdS 4 .<br />

Saturday, November 10, 12


The hyperscal<strong>in</strong>g metrics can similarly be “IR completed” by<br />

AdS2 regions, <strong>in</strong> some cases.<br />

Bhattacharya,<br />

Cremon<strong>in</strong>i,<br />

S<strong>in</strong>kovics<br />

But as AdS2 itself is under suspicion <strong>of</strong> various <strong>in</strong>stabilities,<br />

this leads to an Ouroborosian scenario...<br />

Some <strong>of</strong> the <strong>in</strong>stabilities <strong>of</strong> AdS2 that have been discussed<br />

<strong>in</strong> the literature, break spatial translations. This<br />

provides a natural transition to our f<strong>in</strong>al topic...<br />

Donos,<br />

Gauntlett,<br />

Pantelidou<br />

Saturday, November 10, 12


IV. Homogeneous, anisotropic geometries<br />

All the phases we’ve discussed (<strong>and</strong> most discussed <strong>in</strong> the<br />

literature) have enjoyed normal translation symmetry. But<br />

<strong>in</strong> real systems, <strong>of</strong>ten the low T states break naive<br />

translations:<br />

Saturday, November 10, 12


As a start<strong>in</strong>g po<strong>in</strong>t for a classification, we would like to<br />

classify the most general homogeneous, anisotropic<br />

extremal black brane geometries.<br />

Iizuka, SK,<br />

Kundu, Narayan,<br />

Sircar, Trivedi<br />

Homogeneous: For a theory <strong>in</strong> d spatial dimensions, there<br />

should be a d-dimensional group action which relates each<br />

po<strong>in</strong>t to its neighbors.<br />

That, is there should be d Kill<strong>in</strong>g vectors whose<br />

commutators give rise to a Lie algebra. Only the trivial<br />

algebra gives “normal” translations.<br />

Saturday, November 10, 12


sed Translations <strong>and</strong> The Bianchi Classification<br />

<strong>in</strong>n<strong>in</strong>g with a simple example illustrat<strong>in</strong>g the k<strong>in</strong>d <strong>of</strong> generalised<br />

metry we would like to explore. Example: Suppose we are <strong>in</strong> three dimensional<br />

<strong>in</strong>n<strong>in</strong>g<br />

by coord<strong>in</strong>ates<br />

with a simple<br />

x 1 ,x 2 ,x<br />

example 3 <strong>and</strong> suppose<br />

illustrat<strong>in</strong>g<br />

the system<br />

the k<strong>in</strong>d<br />

<strong>of</strong> <strong>in</strong>terest<br />

<strong>of</strong> generalised<br />

has the<br />

mmetry<br />

nal symmetries<br />

we would<br />

along<br />

like to<br />

the<br />

explore.<br />

x 2 ,x 3 directions.<br />

Suppose we<br />

It<br />

are<br />

also<br />

<strong>in</strong><br />

has<br />

three<br />

an<br />

dimensional<br />

additional<br />

nstead<br />

by coord<strong>in</strong>ates<br />

<strong>of</strong> be<strong>in</strong>g<br />

x<br />

the 1 ,x<br />

usual 2 ,x 3 <strong>and</strong><br />

translation<br />

suppose<br />

<strong>in</strong><br />

the<br />

the<br />

system<br />

x 1 direction<br />

<strong>of</strong> <strong>in</strong>terest<br />

it is<br />

has<br />

now<br />

the<br />

a<br />

nal<br />

mpanied<br />

symmetries<br />

by a rotation<br />

along the<br />

<strong>in</strong><br />

x<br />

the 2 ,x<br />

x 3 2 directions.<br />

− x 3 plane.<br />

It<br />

The<br />

also<br />

translations<br />

has an additional<br />

along<br />

ion<br />

nstead<br />

are<br />

<strong>of</strong><br />

generated<br />

be<strong>in</strong>g the<br />

by<br />

usual<br />

the vectors<br />

translation<br />

fields,<br />

<strong>in</strong> the x 1 direction it is now a<br />

mpanied by a transverse rotation <strong>in</strong> theplane, x 2 − x 3 to plane. get a The symmetry. translations along<br />

ion are generatedξ 1 by= the ∂ 2 , vectors ξ 2 = ∂ 3 fields, , (2.1)<br />

Imag<strong>in</strong>e <strong>in</strong> our three-dimensional space, we enjoy usual<br />

translation symmetries along two <strong>of</strong> the directions. But<br />

along the third, one must translate as well as rotat<strong>in</strong>g <strong>in</strong> the<br />

rd symmetry is generated ξ 1 = ∂ 2 , byξ 2 the = ∂vector 3 , field,<br />

(2.1)<br />

rd symmetry isξgenerated 3 = ∂ 1 + x 2 by ∂ 3 the − xvector 3 ∂ 2 . field, translations (2.2)<br />

ξ 3 = ∂ 1 + x 2 ∂ 3 − x 3 ∂ 2 . (2.2)<br />

–4–<br />

–4–<br />

vector fields which<br />

generate our generalised<br />

These generate a homogeneous space, <strong>in</strong> the sense that<br />

each po<strong>in</strong>t <strong>in</strong> an <strong>in</strong>f<strong>in</strong>itesimal neighborhood can be<br />

transported to each other po<strong>in</strong>t.<br />

Saturday, November 10, 12


It is easy to see that the three transformations generated by these vectors transform<br />

that any requir<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> that the three this is dimensional true for the plane three to symmetry any other po<strong>in</strong>t generators <strong>in</strong> its immediate mentioned<br />

see<br />

bove, However, neighborhood. eq.(2.1), eq.(2.2), the Thiscommutation property, leads towhich the condition ak<strong>in</strong> relations to that <strong>of</strong> φdef<strong>in</strong>e usual is a constant translations, a Lie <strong>in</strong>dependent algebra is called<br />

fwhich the homogeneity. coord<strong>in</strong>ates, is <strong>in</strong>variantly However, x 1 ,x 2 ,xthe 3 . dist<strong>in</strong>ct Now, symmetry suchfrom group a constant we the arealgebra configuration deal<strong>in</strong>g with <strong>of</strong> here for translations:<br />

φis is clearly <strong>in</strong>variant different<br />

the from usual usual translation translations, alongs<strong>in</strong>ce x 1 , generated the commutators by ∂ 1 , <strong>of</strong> besides the generators, be<strong>in</strong>g <strong>in</strong>variant eq.(2.1,2.2) also<br />

nder<br />

nder take a rotation the form<strong>in</strong> the x 2 −x 3 plane (<strong>and</strong> the other rotations). Thus we see that with<br />

scalar order parameter [ξ a 1 situation , ξ 2 ]=0; where [ξ 1 , ξ 3 ]=ξ the 2 generalised ; [ξ 2 , ξ 3 ]=−ξ translations 1 , are unbroken (2.3)<br />

ight as well be thought <strong>of</strong> as one that preserves the usual three<br />

<strong>and</strong> do not vanish, as they would have for the usual translation 3 translations along<br />

.<br />

ith additional rotations.<br />

In this paper we will be <strong>in</strong>terested <strong>in</strong> explor<strong>in</strong>g such situations <strong>in</strong> more generality<br />

th In Now where additional fact, suppose these symmetries rotations. that generalised <strong>in</strong>stead are different <strong>of</strong> be<strong>in</strong>g translations from a scalar the usual the order could translations parameter leave but<strong>in</strong>variant specify<strong>in</strong>g still preserve the a<br />

vector<br />

stem Now homogeneity, issuppose a<br />

order<br />

vectorallow<strong>in</strong>g that V ,<br />

parameter<br />

which <strong>in</strong>stead anywe po<strong>in</strong>t denote <strong>of</strong> be<strong>in</strong>g (whose the by asystem V i scalar ∂ i .<br />

expectation<br />

Under <strong>of</strong>the <strong>in</strong>terest the order transformation to parameter bevalue transformed “breaks” specify<strong>in</strong>g generated to any<br />

y aother vector byfield a symmetry ξ i this transforms transformation as 4 .<br />

normal translations):<br />

a vector When field canξ i<br />

one this expect transforms such a symmetry as group to arise? Let us suppose that there<br />

is a scalar order parameter, φ(x), δV which = ɛ[ξspecifies i ,V]. the system <strong>of</strong> <strong>in</strong>terest. Then (2.5) this<br />

order parameter must be <strong>in</strong>variant under the unbroken symmetries. The change <strong>of</strong><br />

equir<strong>in</strong>g this order thatparameter these commutators under an <strong>in</strong>f<strong>in</strong>itesimal vanish for all transformation three ξ i ’s leads generated to theby conditions, the vector<br />

field ξ i is given by<br />

V 1 = constant, V 2 = V 0<br />

δφ<br />

cos(x<br />

= ɛξ 1 +<br />

i (φ)<br />

δ),V 3 = V 0 s<strong>in</strong>(x 1 + δ)<br />

(2.4)<br />

(2.6)<br />

d this would have to vanish for the transformation to be a symmetry. It is e<br />

see that requir<strong>in</strong>g that this is true for the three symmetry generators mentio<br />

ove, eq.(2.1), eq.(2.2), leads to the condition that φ is a constant <strong>in</strong>depend<br />

the coord<strong>in</strong>ates, x 1 ,x 2 ,x 3 . Now, such a constant configuration for φ is <strong>in</strong>vari<br />

der the usual translation along x 1 , generated by ∂ 1 , besides be<strong>in</strong>g <strong>in</strong>variant a<br />

der a rotation <strong>in</strong> the x 2 −x 3 plane (<strong>and</strong> the other rotations). Thus we see that w<br />

calar order parameter a situation where the generalised translations are unbro<br />

ght as well be thought <strong>of</strong> as one that preserves the usual three translations al<br />

stem is a vector V , which we denote by V i ∂ i . Under the transformation genera<br />

δV = ɛ[ξ i ,V]. (2<br />

quir<strong>in</strong>g that these commutators vanish for all three ξ i ’s leads to the condition<br />

V 1 = constant, V 2 = V 0 cos(x 1 + δ),V 3 = V 0 s<strong>in</strong>(x 1 + δ) (2<br />

3 In fact this symmetry group is simply the group <strong>of</strong> symmetries <strong>of</strong> the two dimensional Euclidean<br />

<strong>and</strong> this would have to vanish for the transformation to be a symmetry. It is easy<br />

to see that requir<strong>in</strong>g that this is true for the three symmetry generators mentioned<br />

3 In 4 Infact a connected this symmetry space group this follows is simply from thegroup requirement <strong>of</strong> symmetries that any<strong>of</strong> po<strong>in</strong>t the two is transformed dimensionalto Euclid any<br />

above, eq.(2.1), eq.(2.2), leads to the condition that φ is a constant <strong>in</strong>dependent<br />

lane, its two translations <strong>and</strong> one rotation.<br />

Saturday, November 10, 12


Insulator<br />

Fig. 1.<br />

electron theory.<br />

k<br />

Or <strong>in</strong> a picture:<br />

Schematic <strong>of</strong> the phases <strong>of</strong> matter which can be described by extensions <strong>of</strong> the <strong>in</strong>dependent<br />

Fermi energy E F . The states with energy equal to E F def<strong>in</strong>e a (d 1)-dimensional<br />

‘Fermi surface’ <strong>in</strong> momentum space (<strong>in</strong> spatial dimension d), <strong>and</strong> the low energy<br />

excitations across the Fermi surface are responsible for the metallic conduction.<br />

When the Fermi energy lies <strong>in</strong> an energy gap, then the occupied states completely<br />

fill a set <strong>of</strong> b<strong>and</strong>s, <strong>and</strong> there is an energy gap to all electronic excitations: this def<strong>in</strong>es<br />

a b<strong>and</strong> <strong>in</strong>sulator, <strong>and</strong> the b<strong>and</strong>-fill<strong>in</strong>g criterion requires that there be an even number<br />

<strong>of</strong> electrons per unit cell. Both the metal <strong>and</strong> the b<strong>and</strong> <strong>in</strong>sulator are states which are<br />

adiabatically connected to the states <strong>of</strong> free electrons illustrated <strong>in</strong> Fig. 1. F<strong>in</strong>ally,<br />

<strong>in</strong> the Bardeen-Cooper-Schrie er theory, a superconductor is obta<strong>in</strong>ed when the<br />

Happily, for the application to phases <strong>in</strong> 3 spatial<br />

dimensions, all possible algebras <strong>of</strong> this sort have been<br />

classified. This is the Bianchi classification, also <strong>of</strong> use <strong>in</strong><br />

theoretical cosmology.<br />

Saturday, November 10, 12


ostly we will work <strong>in</strong> 5 dimensions, this corresponds to sett<strong>in</strong>g d = 4 <strong>in</strong> eq.(1.<br />

addition, to keep the discussion simple, we assume that the usual translatio<br />

mmetry along The the basic timemathematical direction is preserved structure so that the is metric as follows: is time <strong>in</strong>depend<br />

nd also assume that there are no <strong>of</strong>f-diagonal components between t <strong>and</strong> the oth<br />

irections <strong>in</strong> the metric. This leads to<br />

* For each <strong>of</strong> the 9 <strong>in</strong>equivalent algebras, there are three<br />

“<strong>in</strong>variant one-forms”<br />

! i<br />

three isometries.<br />

left <strong>in</strong>variant under all<br />

ds 2 = dr 2 − a(r) 2 dt 2 + g ij dx i dx j (3<br />

ith the <strong>in</strong>dices i, j tak<strong>in</strong>g values 1, 2, 3. For any fixed value <strong>of</strong> r, t, we get a th<br />

imensional subspace spanned by x i . We will take this subspace to be a homogeneo<br />

* A metric expressed <strong>in</strong> terms <strong>of</strong> these forms with constant<br />

ace, correspond<strong>in</strong>g to one <strong>of</strong> the 9 types <strong>in</strong> the Bianchi classification.<br />

As discussed coefficients <strong>in</strong> [2], for each will <strong>of</strong> automatically the 9 cases therebe are<strong>in</strong>variant.<br />

three <strong>in</strong>variant one form<br />

i ,i=1, 2, 3, which are <strong>in</strong>variant under all 3 isometries. A metric expressed <strong>in</strong> ter<br />

f these one-forms with x i <strong>in</strong>dependent coefficients will be automatically <strong>in</strong>varia<br />

nder the isometries. * The Forone-forms future reference satisfy we also the note relations: that these one-forms sati<br />

e relations<br />

dω i = 1 2 Ci jk ωj ∧ ω k (3<br />

here Cjk i are the structure constants <strong>of</strong> the group <strong>of</strong> isometries [2].<br />

with C the structure constants <strong>of</strong> the algebra.<br />

We take the metric to have one additional isometry which corresponds to sc<br />

Saturday, variance. November 10, 12 An <strong>in</strong>f<strong>in</strong>itesimal isometry <strong>of</strong> this type will shift the radial coord<strong>in</strong>


,i=1, 2, 3, which are <strong>in</strong>variant under all 3 isometries. A metric expressed <strong>in</strong> term<br />

these one-forms with x i <strong>in</strong>dependent coefficients will be automatically <strong>in</strong>varia<br />

der the Now, isometries. <strong>in</strong> holography For future reference we really we also have notean that extra these spatial one-forms satis<br />

e relations<br />

dimension. We also have time. Natural assumptions:<br />

dω i = 1 2 Ci jk ωj ∧ ω k (3.<br />

ere C r r + ,t e t⇥ t ;<br />

jk i are the structure constants <strong>of</strong> the group <strong>of</strong> isometries Ma<strong>in</strong>ta<strong>in</strong> [2]. as<br />

t t + const .<br />

symmetries<br />

We take the metric to have one additional isometry which corresponds to sca<br />

variance. An <strong>in</strong>f<strong>in</strong>itesimal isometry <strong>of</strong> this type will shift the radial coord<strong>in</strong>a<br />

r → r + ɛ. In addition we will take it to rescale the time direction with weig<br />

, t →Then te −βtɛ the<br />

, <strong>and</strong>general assume that<br />

“allowed”<br />

it acts on<br />

near-horizon<br />

the spatial coord<strong>in</strong>ates<br />

metrics<br />

x i such<br />

take<br />

that th<br />

variant one forms, ω i transform with weights β<br />

the form:<br />

i under it, 5 ω i → e −βiɛ ω i .<br />

These properties fix the metric to be <strong>of</strong> the form<br />

ds 2 = R 2 [dr 2 − e 2β tr dt 2 + η ij e (β i+β j )r ω i ⊗ ω j ] (3.<br />

th η ij be<strong>in</strong>g a constant matrix which is <strong>in</strong>dependent <strong>of</strong> all coord<strong>in</strong>ates.<br />

I.e. In given the previous the Bianchi section wetype, saw that there a situation are a where f<strong>in</strong>ite theset usual <strong>of</strong> translations constants we<br />

t preserved<br />

one<br />

butmust the generalised<br />

solve for<br />

translations<br />

to get the<br />

werescal<strong>in</strong>g unbrokenmetric.<br />

requires a vector (<br />

ssibly tensor) order parameter. A simple sett<strong>in</strong>g <strong>in</strong> a gravity sett<strong>in</strong>g which cou<br />

d to such a situation is to consider an Abelian gauge field coupled to gravity. W<br />

Saturday, November 10, 12


* Can f<strong>in</strong>d solutions <strong>in</strong> most Bianchi types <strong>in</strong> E<strong>in</strong>ste<strong>in</strong><br />

gravity + massive vector, by solv<strong>in</strong>g algebraic equations.<br />

* 7 <strong>of</strong> the types, as far as we can tell, are entirely new as<br />

symmetries <strong>of</strong> black-brane solutions.<br />

* Close analogues <strong>of</strong> type VII have been previously found as<br />

<strong>in</strong>stabilities <strong>of</strong> other holographic phases.<br />

Domokos, Harvey;<br />

Nakamura, Ooguri, Park;<br />

Donos, Gauntlett<br />

* Glu<strong>in</strong>g these solutions <strong>in</strong>to AdS seems possible. We have<br />

done it for type VII (numerically).<br />

Saturday, November 10, 12


Generalization to 4-algebras:<br />

In fact, the Bianchi classification isn’t quite what we ordered<br />

for 5-geometries dual to 4d field theories. Even if we wish<br />

to study static geometries, we really have 4d spatial slices <strong>in</strong><br />

the bulk.<br />

We should study real 4d Lie algebras with 3d subalgebras<br />

that give the symmetry preserved <strong>in</strong> the “field theory”<br />

spatial directions.<br />

Saturday, November 10, 12


These were classified ~60 years after Bianchi.<br />

There are 12 4-algebras <strong>and</strong> a myriad <strong>of</strong> possible<br />

embedd<strong>in</strong>gs <strong>of</strong> 3-algebras with<strong>in</strong>.<br />

MacCallum;<br />

Patera, W<strong>in</strong>ternitz<br />

In the follow<strong>in</strong>g, we follow the notation <strong>of</strong> [26] <strong>in</strong> nam<strong>in</strong>g the algebras – we call them<br />

A 4,k with k =1, ··· , 12. We list only the non-vanish<strong>in</strong>g structure constants (up to obvious<br />

permutation <strong>of</strong> <strong>in</strong>dices).<br />

• A 4,1 : C24 1 =1,C34 2 =1<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3 e 4 = x 2 @ 1 + x 3 @ 2 + @ 4<br />

! 1 = dx 1 x 4 dx 2 + 1 2 x2 4dx 3 ! 2 = dx 2 x 4 dx 3 ! 3 = dx 3 ! 4 = dx 4<br />

e 1 = @ 1 e 2 = @ 2<br />

1<br />

2 3@ 1 e 3 = @ 3 + 1x 2 2@ 1<br />

e 4 =2x 1 @ 1 +(x 2 + x 3 )@ 2 + x 3 @ 3 + @ 4<br />

! 1 = e 2x4 (dx 1 + 1x 2 2dx 3 1x 2 3dx 2 ) ! 2 = e x4 (dx 2 x 4 dx 3 )<br />

! 3 = e x4 dx 3 ! 4 = dx 4<br />

• A a 4,2: C14 1 = a, C24 2 =1,C34 2 =1,C34 3 =1<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3 e 4 = ax 1 @ 1 +(x 2 + x 3 )@ 2 + x 3 @ 3<br />

! 1 = e ax4 dx 1 ! 2 = e x4 (dx 2 x 4 dx 3 ) ! 3 = e ax4 dx 3 ! 4 = dx 4<br />

• A 4,8 : C23 1 =1,C24 2 =1,C34 3 = 1<br />

e 1 = @ 1 e 2 = @ 2<br />

1<br />

2 3@ 1 e 3 = @ 3 + 1x 2 2@ 1<br />

e 4 = x 2 @ 2 x 3 @ 3 + @ 4<br />

! 1 = dx 1 + 1x 2 2dx 3 1 2 dx3 dx 2 ! 2 = e x4 dx 2 ! 3 = e x4 dx 3 ! 4 = dx 4<br />

• A 4,3 : C 1 14 =1,C 2 34 =1<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3 e 4 = x 1 @ 1 + x 3 @ 2 + @ 4<br />

! 1 = e x4 dx 1 ! 2 = dx 2 x 4 dx 3 ! 3 = dx 3 ! 4 = dx 4<br />

• A 4,4 : C14 1 =1,C24 1 =1,C24 2 =1,C34 2 =1,C34 3 =1<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3<br />

e 4 =(x 1 + x 2 )@ 1 +(x 2 + x 3 )@ 2 + x 3 @ 3 + @ 4<br />

! 1 = e x4 (dx 1 x 4 dx 2 + 1 2 x2 4dx 3 ) ! 2 = e x4 (dx 2 x 4 dx 3 ) ! 3 = e x4 dx 3 ! 4 = dx 4<br />

• A a,b<br />

4,5: C14 1 =1, C24 2 = a, C34 3 = b<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3 e 4 = x 1 @ 1 + ax 2 @ 2 + bx 3 @ 3 + @ 4<br />

! 1 = e x4 dx 1 ! 2 = e ax4 dx 2 ! 3 = e bx4 dx 3 ! 4 = dx 4<br />

• A a,b<br />

4,6: C14 1 = a, C24 2 = b, C24 3 = 1<br />

e 1 = @ 1 e 2 = @ 2 e 3 = @ 3<br />

e 4 = ax 1 @ 1 +(bx 2 + x 3 )@ 2 +(bx 3 x 2 )@ 3 + @ 4<br />

! 1 = e ax4 dx 1 ! 2 = e bx4 [cos(x 4 )dx 2 s<strong>in</strong>(x 4 )dx 3 ]<br />

! 3 = e bx4 (cos(x 4 )dx 3 + s<strong>in</strong>(x 4 )dx 2 ) ! 4 = dx 4<br />

• A 4,7 : C 1 14 =2,C 2 24 =1,C 2 34 =1,C 3 34 =1,C 1 23 =1<br />

• A b 4,9: C23 1 =1,C14 1 =1+b, C24 2 =1,C34 3 = b<br />

e 1 = @ 1 e 2 = @ 2<br />

1<br />

2 3@ 1 e 3 = @ 3 + 1x 2 2@ 1<br />

e 4 =(1+b)x 1 @ 1 + x 2 @ 2 + bx 3 @ 3 + @ 4<br />

! 1 = e (b+1)x4 (dx 1 + 1x 2 2dx 3 1x 2 3dx 2 ) ! 2 = e x4 dx 2 ! 3 = e bx4 dx 3 ! 4 = dx 4<br />

• A 4,10 : C23 1 =1,C24 3 = 1, C34 2 =1<br />

e 1 = @ 1 e 2 = @ 2<br />

1<br />

2 3@ 1 e 3 = @ 3 + 1x 2 2@ 1<br />

e 4 = x 2 @ 3 + x 3 @ 2 + @ 4<br />

! 1 = dx 1 + 1x 2 2dx 3 1x 2 3dx 2 ! 2 = cos(x 4 )dx 2 s<strong>in</strong>(x 4 )dx 3 ! 3 = cos(x 4 )dx 3 + s<strong>in</strong>(x 4 )dx 2<br />

! 4 = dx 4<br />

• A a 4,11: C23 1 =1,C14 1 =2a, C24 2 = a, C24 3 = 1, C34 2 =1,C34 3 = a<br />

e 1 = @ 1 e 2 = @ 2<br />

1<br />

2 3@ 1<br />

e 3 = @ 3 + 1x 2 2@ 1 e 4 =2ax 1 @ 1 +(ax 2 + x 3 )@ 2 +(ax 3 x 2 )@ 3 + @ 4<br />

! 1 = e 2ax4 (dx 1 + 1x 2 2dx 3 1x 2 3dx 2 ) ! 2 = e ax4 (cos(x 4 )dx 2 s<strong>in</strong>(x 4 )dx 3 )<br />

! 3 = e ax4 (cos(x 4 )dx 3 + s<strong>in</strong>(x 4 )dx 2 ) ! 4 = dx 4<br />

• A 4,12 : C13 1 =1,C23 2 =1,C14 2 =<br />

e 1 = @ 1<br />

1, C24 1 =1<br />

e 2 = @ 2 e 3 = @ 3 + x 1 @ 1 + x 2 @ 2<br />

e 4 = @ 4 + x 2 @ 1 x 1 @ 2<br />

! 1 = e x3 (cos(x 4 )dx 1 s<strong>in</strong>(x 4 )dx 2 ) ! 2 = e x3 (cos(x 4 )dx 2 + s<strong>in</strong>(x 4 )dx 1 )<br />

! 3 = dx 3 ! 4 = dx 4<br />

2.2 Three-dimensional subalgebras<br />

Saturday, November 10, 12<br />

4<br />

We would like the bulk geometry to reflect homogeneity <strong>of</strong> the spatial slices <strong>in</strong> the dual<br />

field theory. For this to happen, we wish to embed a three-dimensional real Lie algebra


What we can hope to accomplish <strong>in</strong> the near future:<br />

* Ref<strong>in</strong>e classification <strong>of</strong> homogeneous but possibly<br />

anisotropic solutions us<strong>in</strong>g 4-algebras. Show that new<br />

horizons can be supported by reasonable bulk matter <strong>and</strong><br />

embedded <strong>in</strong>to asymptotically AdS space.<br />

* Try to relate to symmetries <strong>of</strong> observed phases.<br />

* Construct/classify extremal <strong>in</strong>homogeneous phases <strong>in</strong><br />

E<strong>in</strong>ste<strong>in</strong> gravity; hopefully some that are analytically<br />

tractable.<br />

c.f. Horowitz,<br />

Santos, Tong<br />

Saturday, November 10, 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!