06.06.2015 Views

Gil Young Cho - Institute of Condensed Matter Theory at the U of I

Gil Young Cho - Institute of Condensed Matter Theory at the U of I

Gil Young Cho - Institute of Condensed Matter Theory at the U of I

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UIUC, Feb 5 th (2013)<br />

Superconductivities <strong>of</strong><br />

doped Weyl semimetals<br />

Phys. Rev. B. 86, 214514 (2012) - Editors’ suggestion<br />

<strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong><br />

UC Berkeley<br />

Jens H Bardarson<br />

Yuan-Ming Lu<br />

Joel E Moore


Plan.<br />

• Part 1 : superconductivities <strong>of</strong> doped WSM<br />

– Motiv<strong>at</strong>ions, Weyl semimetals?<br />

– BCS or FFLO superconductivity?<br />

– Topological Defects in FFLO SC-ivity<br />

UIUC, Feb 5 th (2013)<br />

• Part 2 : Proxim<strong>at</strong>e phases <strong>of</strong> Z2 spin liquid on<br />

Kagome l<strong>at</strong>tice (GYC, YML and AV, in prepar<strong>at</strong>ion)<br />

• Z2 spin liquid in Kagome l<strong>at</strong>tice<br />

• Proxim<strong>at</strong>e phases <strong>of</strong> Z2 spin liquid<br />

Ashvin<br />

Vishwan<strong>at</strong>h


Part 1.<br />

I. Superconductivity<br />

<strong>of</strong> doped Weyl semimetals<br />

Hedgehogs in momentum space


Weyl semimetals = 3D graphene?<br />

• graphene? Dirac fermion in 2D<br />

Honeycomb l<strong>at</strong>tice <strong>of</strong> graphene<br />

H = v D (σ x k x + σ y k y ) − μ Here σ<br />

a<br />

acts on subl<strong>at</strong>tice basis<br />

(A-B subl<strong>at</strong>tice)


Weyl semimetals = 3D graphene?<br />

graphene: H = v D (σ x k x + σ y k y ) − μ<br />

Weyl SM: H = v D (σ x k x + σ y k y + σ z k z ) − μ<br />

~ two-component Weyl fermion in HEP<br />

In general, WSM is described by<br />

H = v a ⋅ q σ a<br />

a=1..3<br />

with <strong>the</strong> chirality c = sgn ( v 1 ⋅ v 2 × v 3 )<br />

M<strong>at</strong>erial: irid<strong>at</strong>es, layered top. Ins., TlBi Se 1−x S x 2 , HgCr2Se3


Wh<strong>at</strong> is interesting in WSM?<br />

Ref. Wan et. al. (2011), Hosur et. al. (2012), Burkov et.al. (2011), Yang et.al. (2011)<br />

A. “robust-ness” <strong>of</strong> Weyl nodes:<br />

- no mass term for a single Weyl node: e.g H = v σ ⋅ k<br />

- “pair annihil<strong>at</strong>ion” is <strong>the</strong> only way to gap out!<br />

B. “fl<strong>at</strong>” fermi arc surface st<strong>at</strong>e<br />

C. three-dimensional anomalous Hall effect: σ xy ~ Δθ e2<br />

D. interesting transport phenomena<br />

E. Need to break time-reversal or/and inversion symmetry<br />

h<br />

Review article: Ari Turner, and Ashvin Vishwan<strong>at</strong>h, arxiv: 1301.0330 (2013)


Where can we find<br />

Weyl semimetal phase?<br />

Topological insul<strong>at</strong>or<br />

+ “large enough” Time-reversal symmetry breaking<br />

M<strong>at</strong>erial: Fe/Cr doped TlBi Se 1−x S x 2<br />

Ref. Burkov et.al. (2011), <strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong> (2011)


“Top. Ins.”-based Weyl semimetals<br />

• Minimal model for Topological Insul<strong>at</strong>ors<br />

H = v D τ z σ ⋅ k + τ x M<br />

Ref. <strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong> (2011)<br />

e.g. near <strong>the</strong> Γ-point in Bi 2 Se 3<br />

τ a : orbital degrees <strong>of</strong> freedom<br />

σ a : spin degrees <strong>of</strong> freedom<br />

• We add a time-reversal breaking term coming<br />

from magnetic impurities (e.g. Fe or Cr) in bulk<br />

H zeeman = mτ 0 σ z


“Top. Ins.”-based Weyl semimetals<br />

H = v D τ z σ ⋅ k + τ x M + mσ z<br />

• Spectrum for m > M<br />

E<br />

K Z ∗ = ± m 2 − M 2<br />

away from <strong>the</strong> high sym. point<br />

Winding # is -1<br />

Γ<br />

Winding # is +1<br />

Kz<br />

Ref. <strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong> (2011)


“Top. Ins.”-based Weyl semimetals<br />

Insul<strong>at</strong>or<br />

Insul<strong>at</strong>or<br />

M<br />

m<br />

a. Top. Ins. – Triv. Ins.<br />

transition ≈ a fourcomponent<br />

Dirac<br />

fermion.<br />

b. A four-component<br />

Dirac fermion can<br />

be “splitted” into a<br />

pair <strong>of</strong> twocomponent<br />

Weyl<br />

fermions<br />

M<strong>at</strong>erial: Fe- or Cr- doped TlBi Se 1−x S x 2<br />

Ref. <strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong> (2011)


Superconductivities <strong>of</strong><br />

doped Weyl semimetal?<br />

Fermi surfaces due to doping<br />

+<br />

Attractive interactions<br />

between <strong>the</strong> electrons


Why superconductivities?<br />

GY <strong>Cho</strong>, J Bardarson, YM Lu, and JE Moore, Phys. Rev. B. 86, 214514 (2012)<br />

I. Strong spin-orbit coupling<br />

e.g. A doped topological Insul<strong>at</strong>or can<br />

become a topological superconductor<br />

II. Topological Winding # around Weyl nodes<br />

III. Disconnected Fermi pockets<br />

for small doping


GY <strong>Cho</strong>, J Bardarson, YM Lu, and JE Moore, Phys. Rev. B. 86, 214514 (2012)<br />

In this talk:<br />

Study possible superconducting<br />

st<strong>at</strong>es emerging from a doped<br />

Weyl semimetal


Our approach is…<br />

Following <strong>the</strong> spirit <strong>of</strong> Fu and Berg (2010)<br />

A. Consider a “minimal” model for a Weyl<br />

semimetal & dope <strong>the</strong> model slightly<br />

B. Add a “phenomenological” <strong>at</strong>tractive<br />

interaction to <strong>the</strong> model<br />

C. Classify possible superconductivities<br />

D. Compare energies <strong>of</strong> SC st<strong>at</strong>es


Minimal L<strong>at</strong>tice model for Weyl semimetals<br />

Ref. Yang et.al (2011)<br />

A. The minimal model has two bands touching each o<strong>the</strong>r <strong>at</strong> two Weyl points<br />

E<br />

It can be modeled with “spin-ful”<br />

electrons c ↑,↓ with spin-orbit coupling in<br />

a cubic l<strong>at</strong>tice :<br />

Γ<br />

Kz<br />

c i,↑<br />

c j,↓<br />

site i<br />

site j<br />

H = −iλ SOI<br />

{ c i,α ∗ σ x αβ c i+x,β + c i,α<br />

∗<br />

σ y αβ c i+y,β } + h. c<br />

+M c i,α ∗ (σ z )c i,β − t {c i,↑ ∗ c j,↑ − c i,↓ ∗ c j,↓ }<br />

- Pauli m<strong>at</strong>rices σ a acts on <strong>the</strong> spin index ↑, ↓ <strong>of</strong> <strong>the</strong> electron c ↑/↓


Minimal L<strong>at</strong>tice model for Weyl semimetals<br />

Ref. Yang et.al (2011)<br />

Minimal model on cubic l<strong>at</strong>tice (broken time-reversal symmetry)<br />

H = H 1 k x , k y , M + H 2 (k z , m)<br />

H 1 k x , k y , M = σ x sin k x + σ y sin k y + Mσ z (2 − cos k x − cos k y )<br />

H 2 k z , m<br />

= mσ z (cos k z − cos Q)<br />

Important properties <strong>of</strong> <strong>the</strong> Hamiltonian<br />

I. Two Weyl nodes <strong>at</strong> k z = ±Q and k x = k y = 0<br />

II. no spin rot<strong>at</strong>ional symmetry ( spin~〈σ a 〉 )<br />

(~ strong spin-orbit coupling)<br />

III. symmetry = l<strong>at</strong>tice symmetry C 4h<br />

(~ pairing should be classified by C 4h )


Doping <strong>the</strong> minimal model<br />

A. There are two “fermi pockets” around <strong>the</strong> nodes with<br />

“spin-momentum locking”<br />

e.g. near <strong>the</strong> upper node<br />

H + = σ x k x + σ y k y + σ z (k z −Q) − μ<br />

Note: winding around <strong>the</strong> node is ±1<br />

B. To study a superconducting instabilities, we<br />

add a “simplest” on-site <strong>at</strong>tractive interaction<br />

δH = −V 0<br />

r<br />

n ↑ (r)n ↓ (r)<br />

e.g. phonon-medi<strong>at</strong>ed <strong>at</strong>tractive interaction


Possible BCS superconducting st<strong>at</strong>es<br />

A. The interaction is completely “local” and thus<br />

<strong>the</strong> electrons are paired in “singlet” channel<br />

(due to Pauli’s exclusion principle).<br />

Pairing interaction is local in real space<br />

= pairing gap is constant in momentum space<br />

B. So <strong>the</strong> mean-field st<strong>at</strong>e should be “singlet” BCS pairing<br />

δH = Δ ψ ∗ u k ψ∗ d<br />

−k + h. c.<br />

note: <strong>the</strong> total momentum carried by <strong>the</strong> pairing is zero;<br />

so it should be “inter”-nodal pairing


Possible BCS superconducting st<strong>at</strong>es<br />

BCS st<strong>at</strong>e: “inter-nodal” + “singlet” (trivial rep <strong>of</strong> <strong>the</strong> l<strong>at</strong>tice sym.)<br />

Note: To be paired in singlet channel, spins need to be anti-parallel<br />

The nodes are “Weyl” nodes !


Possible FFLO superconducting st<strong>at</strong>es<br />

A. There is ano<strong>the</strong>r competing superconducting st<strong>at</strong>e<br />

for <strong>the</strong> doped Weyl semimetal ~ FFLO pairing<br />

(FFLO st<strong>at</strong>e: “intra-nodal” + “singlet” )<br />

δH = Δ ± ψ ∗ u ±Q + k ψ∗ d<br />

±Q − k + h. c.<br />

note: <strong>the</strong> pairing “Δ ± ” carry<br />

crystal momenta ±2Q<br />

note: this FFLO is fully gapped<br />

B. Why this st<strong>at</strong>e can be better than BCS st<strong>at</strong>e?<br />

- <strong>the</strong> effective “DOS” particip<strong>at</strong>ing to <strong>the</strong> BCS<br />

pairing is reduced because <strong>the</strong> spin st<strong>at</strong>es <strong>at</strong> k<br />

and −k are not anti-parallel.<br />

- However, FFLO st<strong>at</strong>e connects anti-parallel<br />

spins


Mean-field Energy <strong>of</strong> superconducting st<strong>at</strong>es


So..<br />

FFLO st<strong>at</strong>e wins against BCS st<strong>at</strong>e<br />

in <strong>the</strong> doped Weyl semimetal


Physical properties <strong>of</strong><br />

FFLO superconductivity in WSM<br />

??


FFLO superconducting st<strong>at</strong>es<br />

A. We have two independent pairings “Δ ± ” for each node<br />

δH = Δ ± ψ ∗ u ±Q + k ψ∗ d<br />

±Q − k + h. c.<br />

which can be compactly written as a wave in real space<br />

Δ r<br />

= Δ cos(2Q ⋅ r + δφ)<br />

a. so <strong>the</strong>re should be “density modul<strong>at</strong>ion” in FFLO st<strong>at</strong>e<br />

b. center <strong>of</strong> momentum is fixed by <strong>the</strong> positions <strong>of</strong> Weyl nodes<br />

(in <strong>the</strong> irid<strong>at</strong>es, we have 24 Weyl nodes)<br />

B. FFLO st<strong>at</strong>e has a half-quantum vortex and a usual full quantum vortex<br />

half-quantum vortex : a unit winding in only one <strong>of</strong> <strong>the</strong> two pairings<br />

full quantum vortex: a composite <strong>of</strong> two half-quantum vortices<br />

Any “exotic” interesting bound st<strong>at</strong>e to <strong>the</strong>se vortices?


Lesson From superconducting doped Top. Ins.<br />

Any interesting bound mode to vortex?<br />

Ref. Fu and Berg (2010)<br />

Example. Topological SC from a doped Topological Insul<strong>at</strong>or CuBiSe<br />

E<br />

i) Fermi surface is two-fold<br />

degener<strong>at</strong>e, rel<strong>at</strong>ed by T-<br />

symmetry<br />

kx<br />

ii)<br />

Each fermi surface encloses a<br />

non-trivial winding # +1 or -1<br />

iii) Vortex realizes “two zero modes”<br />

rel<strong>at</strong>ed by T-symmetry, or “a<br />

helical Majorana mode”<br />

γ ↑,k = γ ∗ ↑,−k<br />

, E = +vk<br />

γ ↓,k = γ ∗ ↓,−k<br />

, E = −vk<br />

Vortex


Similarty & Difference from doped Top. Ins.<br />

Similarities<br />

i) Fermi surface encloses a winding #<br />

ii)<br />

Fully gapped (robust topological fe<strong>at</strong>ure)<br />

Differences<br />

i) No time-reversal symmetry<br />

= no helical st<strong>at</strong>e; <strong>at</strong> best chiral or gapped<br />

st<strong>at</strong>es <strong>at</strong> vortex<br />

ii)<br />

Order parameter space = S 1 × S 1 in FFLO,<br />

instead <strong>of</strong> S 1 in usual SC<br />

= more topological defect types in FFLO<br />

= half-quantum vortex in FFLO<br />

e.g. spinful p+ip superconductor; we have<br />

a direction d ∈ S 1 and a phase e iθ ∈ S 1<br />

see Ivanov (2000)


Half-quantum vortex in FFLO superconducting st<strong>at</strong>es<br />

A. Half-quantum vortex corresponds to<br />

arg(Δ + ) → arg(Δ + ) + 2π<br />

arg Δ − → arg(Δ − )<br />

i.e., only <strong>the</strong> phase <strong>of</strong> Δ + winds once<br />

B. The Fermi surface around <strong>the</strong> node carries<br />

a unit “topological” winding number<br />

C. Hence <strong>the</strong>re is ‘a zero mode’ or a chiral Majorana<br />

mode in <strong>the</strong> half-quantum vortex.<br />

(i.e., γ k = γ ∗ , E = +vk)<br />

−k<br />

A quick way to see a chiral zero mode in <strong>the</strong> vortex:<br />

One node <strong>of</strong> <strong>the</strong> doped Weyl semimetal is “half” <strong>of</strong><br />

<strong>the</strong> “topological superconductor”


Possible Majorana mode <strong>at</strong> a full vortex<br />

A. Bring two half-quantum vortices with opposite chiral Majorana modes<br />

Half-quantum vortices<br />

B. In <strong>the</strong> vortex, we have a “helical” Majorana mode which is not protected<br />

C. The helical Majorana mode will be gapped<br />

D. There are two possibilities for <strong>the</strong> gapped phase;<br />

weak pairing and strong pairing phases<br />

ref. Kitaev (2000)<br />

E. In <strong>the</strong> weak pairing phase, we have a bound Majorana zero mode<br />

<strong>at</strong> <strong>the</strong> end <strong>of</strong> <strong>the</strong> vortex<br />

A dangling<br />

Majorana<br />

mode<br />

Full quantum vortex


Conclusion<br />

I. We found FFLO st<strong>at</strong>e is competing with BCS<br />

st<strong>at</strong>e (FFLO is energetically better than BCS<br />

in our model)<br />

II. FFLO st<strong>at</strong>e<br />

I. Density modul<strong>at</strong>ion with <strong>the</strong> momenta fixed by<br />

position <strong>of</strong> Weyl nodes<br />

II.<br />

Chiral Majorana mode <strong>at</strong> half-quantum vortex<br />

III. Possible Majorana zero mode <strong>at</strong> full vortex


UIUC, Feb 5 th (2013)<br />

Part 2.<br />

II. Proxim<strong>at</strong>e phases<br />

<strong>of</strong> Z 2 spin liquid on Kagome l<strong>at</strong>tice<br />

(<strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong>, Yuan-Ming Lu and Ashvin Vishwan<strong>at</strong>h, in prepar<strong>at</strong>ion)<br />

Yuan-Ming<br />

Lu<br />

Ashvin<br />

Vishwan<strong>at</strong>h


Z 2 spin liquid on Kagome l<strong>at</strong>tice<br />

• Heisenberg interaction on Kagome l<strong>at</strong>tice :<br />

M<strong>at</strong>erials: dMIT, Herbertsmithite<br />

DMRG studies found a Z2 spin liquid!<br />

A. Gapped<br />

B. Topological Entanglement Entropy<br />

Ref. Yan Huse and White (2011)<br />

Jiang Wang and Balents (2012)


Which Spin liquid ?<br />

Ref. Hastings (2000)<br />

Ran, Hermele, Lee, and Wen (2007)<br />

Hermele, Ran, Lee, and Wen (2008)<br />

• Many different spin liquids from <strong>the</strong> fermionic rep. <strong>of</strong> spin-1/2<br />

The (rel<strong>at</strong>ively) low energy st<strong>at</strong>e<br />

is, “U(1) Dirac spin liquid“<br />

(among <strong>the</strong> fermionic SL ans<strong>at</strong>z)<br />

This st<strong>at</strong>e fe<strong>at</strong>ures:<br />

A. Dirac spectrum for fermions<br />

B. U(1) Gauge <strong>the</strong>ory<br />

Not consistent with DMRG result


Is <strong>the</strong>re a Z2 spin liquid near <strong>the</strong> U(1)<br />

Dirac spin liquid?<br />

Ref. Lu, Ran, and Lee (2011)<br />

Requirement 1: gauge <strong>the</strong>ory should be broken from U(1) to Z2<br />

Pairing <strong>of</strong> Dirac fermions!<br />

Requirement 2: Invariant under <strong>the</strong> l<strong>at</strong>tice symmetry oper<strong>at</strong>ion<br />

+ Invariant under <strong>the</strong> spin rot<strong>at</strong>ion oper<strong>at</strong>ion<br />

Requirement 3: Pairing should gap out <strong>the</strong> Dirac fermion<br />

There is one and only one such<br />

pairing s<strong>at</strong>isfying <strong>the</strong> requirements!<br />

s-wave pairing <strong>of</strong> Dirac fermion


Wh<strong>at</strong> can we tell about this Z2 st<strong>at</strong>e?<br />

(<strong>Gil</strong> <strong>Young</strong> <strong>Cho</strong>, Yuan-Ming Lu and Ashvin Vishwan<strong>at</strong>h, in prepar<strong>at</strong>ion)<br />

Our claim is:<br />

If this Z2 spin liquid is <strong>the</strong> spin liquid found in DMRG study,<br />

it should have very specific proxim<strong>at</strong>e phases separ<strong>at</strong>ed<br />

by a continuous transition from <strong>the</strong> spin liquid.<br />

A. Q=0 non-collinear magnetic ordered st<strong>at</strong>e<br />

B. VBS phase with <strong>the</strong> very specific bond-bond correl<strong>at</strong>ion


Proxim<strong>at</strong>e phases<br />

Special 5-tuplets <strong>of</strong> masses <strong>of</strong> Dirac fermions<br />

= WZW term for 5-tuplet masses<br />

= Unconventional second order transitions<br />

Ref. Wiegmann and Abanov (2000), Senthil and Fisher (2006), Grover and Senthil<br />

(2008), Ryu, Mudry, Hou, and Chamon (2009), Herbut (2010) etc.<br />

Underlying physics <strong>of</strong> WZW term:<br />

• topological defect in one phase carries <strong>the</strong> quantum numbers<br />

rel<strong>at</strong>ed to <strong>the</strong> o<strong>the</strong>r phase<br />

• Condens<strong>at</strong>ion <strong>of</strong> <strong>the</strong> defect = destroying one ordering<br />

+ inducing <strong>the</strong> o<strong>the</strong>r order


Q=0 non-collinear magnetic order<br />

and Z2 spin liquid<br />

Monopole quantum #s <strong>of</strong> U(1) SL<br />

Vison∼ spin-1/2<br />

Q = 0 st<strong>at</strong>e


Q=0 non-collinear magnetic orders<br />

n r =<br />

V=


Result :<br />

Sachdev (1992)<br />

=<br />

Continuous transition<br />

?!


N<strong>at</strong>ure <strong>of</strong> <strong>the</strong> VBS phase<br />

Order parameters for VBS p<strong>at</strong>tern N are <strong>at</strong> M-points in BZ<br />

• At least two <strong>of</strong> M-points should particip<strong>at</strong>e<br />

• All <strong>the</strong> l<strong>at</strong>tice symmetries (except transl<strong>at</strong>ional symmetries) are broken<br />

• 12-site unit cell (“quadrupled” unit cell)<br />

e.g. Diamond p<strong>at</strong>tern found in DMRG has 12-site unit cell p<strong>at</strong>terns<br />

Two Dirac nodes<br />

BZ<br />

ky<br />

M- points<br />

kx


Ex. Bond ordering p<strong>at</strong>terns <strong>at</strong> M-points<br />

BZ


Ex. Bond ordering p<strong>at</strong>terns <strong>at</strong> M-points<br />

BZ


Conclusion<br />

I. We have studied <strong>the</strong> proxim<strong>at</strong>e symmetry<br />

broken phases <strong>of</strong> a particular Z2 spin liquid<br />

II. Q=0 non-collinear magnetic ordered st<strong>at</strong>e<br />

- This allows us to identify <strong>the</strong> fermionic Z2 spin liquid as<br />

<strong>the</strong> bosonic Q1=Q2 spin liquid<br />

III. VBS st<strong>at</strong>e<br />

- superposition <strong>of</strong> VBS p<strong>at</strong>terns <strong>at</strong> M-points<br />

- 12-site unit cell with broken l<strong>at</strong>tice symmetries<br />

IV. More direct probe?


Thanks!<br />

My previous research:<br />

(1) Topological BF <strong>the</strong>ory description <strong>of</strong> topological Insul<strong>at</strong>or (2011)<br />

(2) Quantum Phase transition and fractionaliz<strong>at</strong>ion in a topological insul<strong>at</strong>or thin<br />

film with Zeeman and excitonic masses (2011)<br />

(3) Weyl semimetal in magnetically doped topological insul<strong>at</strong>or (2011)<br />

(4) Dyon condens<strong>at</strong>ion in topological Mott insul<strong>at</strong>or (2012)<br />

(5) Gapless edge st<strong>at</strong>e <strong>of</strong> BF field <strong>the</strong>ory and Z2 spin liquids, (2012)<br />

(6) Superconductivities <strong>of</strong> doped Weyl semimetals, (2012)<br />

(7) Two dimensional symmetry protected phases with PSU(N) and time reversal<br />

symmetry, (2012)<br />

(8) Proxim<strong>at</strong>e phases <strong>of</strong> Z2 spin liquid on Kagome l<strong>at</strong>tice, in preparetion<br />

My collabor<strong>at</strong>ors:<br />

C. Xu<br />

(UCSB)<br />

J. E. Moore<br />

(UCB)<br />

Y.B. Kim<br />

(U Toronto)<br />

Y.-M. Lu<br />

(UCB)<br />

A. Vishwan<strong>at</strong>h<br />

(UCB)<br />

J.H Bardarson<br />

(UCB)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!