06.06.2015 Views

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quantum</strong> <strong>Hall</strong> <strong>Effect</strong> <strong>in</strong><br />

<strong>Graphene</strong> p-n <strong>Junctions</strong><br />

Dima Aban<strong>in</strong> (MIT)<br />

Collaboration: Leonid Levitov, Patrick Lee,<br />

Harvard and Columbia groups<br />

UIUC<br />

January 14, 2008


Electron transport <strong>in</strong><br />

graphene monolayer<br />

New 2d electron system (Manchester 2004):<br />

Nanoscale system with tunable transport properties;<br />

Field-effect enabled by gat<strong>in</strong>g:<br />

conductivity l<strong>in</strong>ear <strong>in</strong> density,<br />

mobility, density vs gate voltage<br />

holes<br />

electrons<br />

Andrey Geim<br />

Monolayer<br />

graphene<br />

Philip Kim<br />

Novoselov et al, 2004, Zhang et al, 2005


Electronic Properties<br />

Semimetal (zero bandgap)<br />

Massless Dirac electrons<br />

K<br />

position space<br />

momentum space<br />

K'<br />

1) Two species of Dirac fermions – valleys K, K';<br />

2) Components of Dirac sp<strong>in</strong>or=amplitudes on sublattices A and B.


The “half-<strong>in</strong>teger” QHE <strong>in</strong> graphene<br />

S<strong>in</strong>gle-layer graphene:<br />

QHE plateaus observed at<br />

Double-layer<br />

(non-Dirac):<br />

one layer (Dirac):<br />

4=2x2 sp<strong>in</strong> and valley degeneracy<br />

Manifestation of Dirac<br />

nature of excitations!<br />

Particle-hole symmetry<br />

Novoselov et al, 2005, Zhang et al, 2005


QHE <strong>in</strong> graphene: Landau<br />

levels<br />

To obta<strong>in</strong> LL's use relation HPauli-Schroed<strong>in</strong>ger =2m(HDirac)^2


Some <strong>in</strong>terest<strong>in</strong>g aspects of<br />

QHE <strong>in</strong> graphene<br />

1) Electron-hole symmetric zeroth LL;<br />

2) Atomically sharp edge;<br />

3) Valley+sp<strong>in</strong> spontaneous symmetry break<strong>in</strong>g<br />

(similarity to QH bilayers);<br />

4) Large gaps between Landau levels --> room-T QHE<br />

5) Possibly new electron QHE phases (fractional,stripe...)


Plan<br />

1) <strong>Quantum</strong> <strong>Hall</strong> edge states <strong>in</strong> graphene<br />

2) Sp<strong>in</strong>-filtered edge states at the Dirac po<strong>in</strong>t:<br />

transport properties<br />

3) Fractional conductance quantization <strong>in</strong> gated<br />

graphene devices


QHE: edge transport (rem<strong>in</strong>der)<br />

Chiral dynamics<br />

along edge<br />

(unidirectional)


<strong>Graphene</strong> QHE: edge states<br />

Counter-propagat<strong>in</strong>g electron<br />

and hole states;<br />

Symmetric splitt<strong>in</strong>g of n=0 LL<br />

Universality, same for<br />

other edge types;<br />

The odd numbers of edge modes<br />

result <strong>in</strong> half-<strong>in</strong>teger QHE<br />

armchair edge<br />

Edge states from 2d Dirac model<br />

DA, Lee, Levitov, PRL 96, 176803 (2006)<br />

Also: Peres, Gu<strong>in</strong>ea, Castro-Neto, 2005, Brey and Fertig, 2006<br />

zigzag<br />

edge<br />

(similar,<br />

+surface<br />

states)


Sp<strong>in</strong>-filtered edge states for<br />

Zeeman-split Landau levels<br />

Near ν=0, E=0:<br />

(i) Two chiral counter-propagat<strong>in</strong>g<br />

edge states with opposite sp<strong>in</strong><br />

polarizations<br />

(ii) No charge QHE, but<br />

quantized sp<strong>in</strong> <strong>Hall</strong> effect.<br />

DA, Lee, Levitov, PRL 96, 176803 (2006); Solid State Comm. 143, 77 (2007).


Estimate of the sp<strong>in</strong> gap<br />

Exchange <strong>in</strong> sp<strong>in</strong>-degenerate LL's at ν=0, E=0:<br />

Coulomb <strong>in</strong>teraction favors sp<strong>in</strong> polarization;<br />

Fully antisymmetric spatial many-electron wavefunction;<br />

Sp<strong>in</strong> gap dom<strong>in</strong>ated by the exchange<br />

somewhat reduced by correlation energy:<br />

correlation<br />

Gives sp<strong>in</strong> gap ~100K much larger than Zeeman energy (10K)<br />

Exchange-enhanced gap not observed (Yet?)


Sp<strong>in</strong>tronics <strong>in</strong> graphene: chiral<br />

sp<strong>in</strong> edge transport<br />

Charge current<br />

Sp<strong>in</strong> current<br />

(Landauer-Buttiker)<br />

A 4-term<strong>in</strong>al device,<br />

full sp<strong>in</strong> mix<strong>in</strong>g <strong>in</strong> contacts<br />

In an ideal clean system (no <strong>in</strong>ter-edge sp<strong>in</strong>-flip scatter<strong>in</strong>g):<br />

charge current along V, sp<strong>in</strong> current transverse to V:<br />

Quantized sp<strong>in</strong> <strong>Hall</strong> conductance


Sp<strong>in</strong>-filtered transport<br />

Asymmetric backscatter<strong>in</strong>g filters one sp<strong>in</strong> polarization,<br />

creates longitud<strong>in</strong>al sp<strong>in</strong> current:<br />

<strong>Hall</strong> voltage measures sp<strong>in</strong> not charge current!<br />

Applications: (i) sp<strong>in</strong> <strong>in</strong>jection; (ii) sp<strong>in</strong> current detection.<br />

Sp<strong>in</strong> current without ferromagnetic contacts


Sp<strong>in</strong>-flip scatter<strong>in</strong>g of edge<br />

states<br />

Can be due to potential edge disorder+SO:<br />

--Sp<strong>in</strong>-orbit:<strong>in</strong>tr<strong>in</strong>sic+Rashba<br />

-Only Rashba term (~1K) is effective<br />

-Edge disorder with length scale d~1nm<br />

-Gives mean free path:<br />

where is detun<strong>in</strong>g from cross<strong>in</strong>g<br />

-Typical values l~10 m at 10 K comparable to sample size


What symmetry protects gapless<br />

edge states?<br />

Gapless states, e.g. sp<strong>in</strong>-split<br />

Gapped states, e.g. valley-split<br />

Special Z2 symmetry requirements (Fu, Kane, Mele, 2006):<br />

<strong>in</strong> our case, the Z2 <strong>in</strong>variant is Sz that commutes with H;


Manifestations <strong>in</strong> transport<br />

near the neutrality po<strong>in</strong>t<br />

Gapless sp<strong>in</strong>-polarized states:<br />

a) Longitud<strong>in</strong>al transport of 1d character;<br />

b) Conductance of order e^2/h<br />

at weak backscatter<strong>in</strong>g (SO-<strong>in</strong>duced sp<strong>in</strong> flips);<br />

c) No <strong>Hall</strong> effect at ν=0<br />

Gapped states:<br />

a) Transport dom<strong>in</strong>ated by bulk resistivity;<br />

b) Gap-activated temperature dependent resistivity;<br />

c) Hopp<strong>in</strong>g transport, <strong>in</strong>sulator-like T-dependence<br />

d) Zero <strong>Hall</strong> plateau


Chiral sp<strong>in</strong> edge states summary<br />

PRL 96, 176803 (2006) and PRL 98, 196806 (2007)<br />

Counter-propagat<strong>in</strong>g states with opposite sp<strong>in</strong> polarization<br />

at ν=0, E=0;<br />

Large sp<strong>in</strong> gap dom<strong>in</strong>ated by Coulomb correlations<br />

and exchange<br />

Gapless edge states at ν=0 present a constra<strong>in</strong>t for<br />

theoretical models<br />

Novel sp<strong>in</strong> transport regimes at the edge (no experimental<br />

evidence yet)


QHE <strong>in</strong> p-n and p-n-p lateral<br />

junctions:<br />

Edge state mix<strong>in</strong>g --><br />

Fractionally-quantized QHE<br />

DA & Levitov, Science 317, 641 (2007)


Gated graphene devices<br />

Local density control (gat<strong>in</strong>g)--><br />

p-n and p-n-p junctions<br />

(Stanford, Harvard, Columbia)<br />

--Deposit th<strong>in</strong> layer of<br />

dielectric on the surface<br />

--Local gate on top, ~30nm<br />

above the sample<br />

Equal or opposite polarities<br />

of charge carriers <strong>in</strong><br />

the same<br />

system (electrons and<br />

holes coexist)


Fractional QHE <strong>in</strong> p-n junctions<br />

Integer and fractional conductance quantization:<br />

(i) g=2,6,10..., unipolar regime, (ii) g=1,3/2..., bipolar regime<br />

np<br />

B=0<br />

nn<br />

B>0<br />

pp<br />

pn<br />

Williams, DiCarlo, Marcus, Science 28 June 2007


QHE <strong>in</strong> p-n junctions: bipolar<br />

regime<br />

p-n<br />

-Edge states from reservoirs propagate together along p-n boundary<br />

-Assume full mix<strong>in</strong>g ---> resistors <strong>in</strong> series<br />

Expla<strong>in</strong>s observed fractional values


QHE <strong>in</strong> p-n junctions:unipolar<br />

regime<br />

p-n<br />

n-n, p-p<br />

-Some edge states propagate<br />

through the entire system<br />

-Conductance determ<strong>in</strong>ed by<br />

the smaller density:<br />

Predicted conductance<br />

pattern agrees with<br />

experiment<br />

-Comb<strong>in</strong>e with result<br />

for bipolar regime,<br />

DA & Levitov, Science 317, 641 (2007)


QHE <strong>in</strong> p-n junctions: UCF suppressed<br />

p-n<br />

-Similar to chaotic quantum dots, but<br />

no UCF<br />

-Several possibilities:<br />

decoherence, thermalization, energy relaxation,<br />

self-averag<strong>in</strong>g (e.g., noisy gates)<br />

Which transport mechanism is realized?<br />

F>0<br />

F=0<br />

Shot noise:<br />

-quantized and nonzero for p-n<br />

-no noise for p-p or n-n<br />

F>0<br />

F=0<br />

Quantized shot noise (fractional F=S/I)<br />

DA & Levitov, Science 317, 641 (2007)


Fractional QHE <strong>in</strong> p-n-p junctions<br />

B=0<br />

B>0<br />

Little or no mesoscopic fluctuations<br />

Ozyilmaz et al, PRL 99, 166804 (2007)


Stability of fractional<br />

plateaus: model<br />

Why are some fractional plateaus more robust?<br />

Gat<strong>in</strong>g central region can lead to backscatter<strong>in</strong>g ---> nonzero xx<br />

The model (based on Rendell, Girv<strong>in</strong>, PRB 23, 6610 (1985)<br />

Dissipation only <strong>in</strong> the central region<br />

solve us<strong>in</strong>g conformal mapp<strong>in</strong>g


Stability of fractional<br />

plateaus: results<br />

2D transport vs edge transport: results are identical at xx=0<br />

Plateaus with small ' less stable w.r.p.t. f<strong>in</strong>ite xx than other plateaus<br />

(<strong>in</strong> agreement with experiment)<br />

In experiment conductance at<br />

v=' is ~1.7e^2/h<br />

(no dissipation gives 2e^2/h);<br />

Extract diagonal conductivity<br />

xx ~0.5e^2/h <strong>in</strong> the central region<br />

us<strong>in</strong>g our model;<br />

D<br />

DA, Levitov, <strong>in</strong> prep.


Summary<br />

QHE <strong>in</strong> p-n junctions <strong>in</strong>terpreted <strong>in</strong> terms of<br />

edge transport<br />

Fractional conductance plateaus, result<strong>in</strong>g<br />

from edge states mix<strong>in</strong>g at p-n <strong>in</strong>terfaces<br />

Manifestations of mix<strong>in</strong>g: noiseless vs. noisy<br />

transport<br />

Stability of fractional plateaus understood <strong>in</strong><br />

terms of backscatter<strong>in</strong>g <strong>in</strong> the gated region


The End


Sp<strong>in</strong>-flip scatter<strong>in</strong>g of edge<br />

states<br />

--Sp<strong>in</strong>-orbit:<br />

Can be due to potential edge disorder+SO:<br />

-Only Rashba term (~1K) is effective<br />

-Edge disorder with length scale d~1nm<br />

-Gives mean free path:<br />

where is detun<strong>in</strong>g from cross<strong>in</strong>g<br />

-Typical values l~10 m at 10 K comparable to sample size


Lutt<strong>in</strong>ger liquid on graphene<br />

edge: the problem (<strong>in</strong> progress)<br />

<strong>Effect</strong> of Coulomb <strong>in</strong>teractions on edge modes?<br />

1) Left-movers carry sp<strong>in</strong> up, right-movers sp<strong>in</strong> down, described<br />

by general Hamiltonian:<br />

2) Novel type of Lutt<strong>in</strong>ger liquid;<br />

3) What are sp<strong>in</strong> and charge conductances? Are they universal?<br />

4) <strong>Effect</strong>s of disorder? Similarity to edge reconstruction at 2/3<br />

fractional QHE state?<br />

......work <strong>in</strong> progress....<br />

Related to quantum SHE edge states by Kane&Mele, but gap here is large, ~100 K


Lutt<strong>in</strong>ger liquid on graphene<br />

edge: approach (<strong>in</strong> progress)<br />

How can one obta<strong>in</strong> the Lutt<strong>in</strong>ger Hamiltonian explicitly?<br />

Simplify the problem: consider doma<strong>in</strong> wall between sp<strong>in</strong>-up and<br />

sp<strong>in</strong>-down polarized states:<br />

......work <strong>in</strong> progress....<br />

-order parameter varies<br />

z<br />

smoothly from to<br />

i<br />

g<br />

-the polar z angle is arbitrarya<br />

-gapless g charged textures<br />

whenvaries from<br />

0 to e<br />

charge d e! (sp<strong>in</strong> sphere<br />

covered g once, similar to<br />

skyrmions) e<br />

(


The half-<strong>in</strong>teger quantization<br />

from Berry's phase<br />

Quasiclassical Landau levels (nonrelativistic):<br />

Bohr-Sommerfeld quantization for electron energy<br />

<strong>in</strong> terms of <strong>in</strong>teger flux n enclosed by a cyclotron orbit<br />

For chiral massless relativistic particles (pseudo)sp<strong>in</strong> is<br />

parallel to velocity, subtends solid angle 2 upon go<strong>in</strong>g<br />

over the orbit, thus quantization condition modified as<br />

n+1/2)<br />

n<br />

Half-period shift of Shubnikov-deHaas oscillation<br />

Translates <strong>in</strong>to half-<strong>in</strong>teger QHE <strong>in</strong> quantiz<strong>in</strong>g fields


“Half-<strong>in</strong>teger” <strong>Quantum</strong> <strong>Hall</strong> <strong>Effect</strong><br />

S<strong>in</strong>gle-layer graphene:<br />

QHE plateaus observed at<br />

bilayer<br />

monolayer<br />

4=2x2 sp<strong>in</strong> and valley degeneracy<br />

Manifestation of relativistic Dirac<br />

electron properties<br />

Landau level spectrum<br />

with very high cyclotron<br />

energy (1000K)<br />

Recently: QHE at T=300K<br />

Novoselov et al, 2005, Zhang et al, 2005


Sp<strong>in</strong> filtered edge states<br />

DA, Lee & Levitov PRL 96, 176803 (2006)


Dissipative <strong>Quantum</strong> <strong>Hall</strong> effect<br />

DA et al., PRL 98, 196806 (2007)


Dissipative QHE near ν=0<br />

Longitud<strong>in</strong>al and <strong>Hall</strong> resistance,<br />

T=4K, B=30T<br />

Features:<br />

a) Peak <strong>in</strong> ρxx with metallic<br />

T-dependence;<br />

b) Resistance at peak ~h/e^2<br />

c) Smooth sign-chang<strong>in</strong>g ρxy<br />

no plateau;<br />

d) Quasi-plateau <strong>in</strong> calculated<br />

<strong>Hall</strong> conductivity, double peak<br />

<strong>in</strong> longitud<strong>in</strong>al conductivity<br />

Novoselov, Geim et al, 2006


Edge transport model<br />

Ideal edge states, contacts with full sp<strong>in</strong> mix<strong>in</strong>g:<br />

voltage drop along the edge across each contact<br />

universal resistance value<br />

Dissipative edge, unlike conventional QHE!<br />

Backscatter<strong>in</strong>g (sp<strong>in</strong>-flips), nonuniversal resistance<br />

Estimate mean free path ~0.5 μm


Transport coefficients versus<br />

fill<strong>in</strong>g factor<br />

Broadened, sp<strong>in</strong>-split<br />

Landau levels<br />

Bulk conductivity<br />

short-circuits edge:<br />

a) peak <strong>in</strong> ρxx at ν=0;<br />

b) smooth ρxy,<br />

sign change, no plateau<br />

c) quasi-plateau <strong>in</strong><br />

Gxy=ρxy/(ρxy^2+ρxx^2);<br />

d) double peak <strong>in</strong><br />

Gxx=ρxx/(ρxy^2+ρxx^2)<br />

Model expla<strong>in</strong>s all general features of the data near ν=0<br />

The roles of bulk and edge transport <strong>in</strong>terchange (cf. usual QHE):<br />

longitud<strong>in</strong>al resistivity due to edge transport, <strong>Hall</strong> resistivity due to bulk.


Work <strong>in</strong> progress: Lutt<strong>in</strong>ger<br />

liquid on graphene edge?


<strong>Quantum</strong> <strong>Hall</strong> Ferromagnetism


Gapless excitations on the<br />

edge


c=1 for Abelian gauge field<br />

The half-<strong>in</strong>teger QHE:<br />

Field-Theoretic Parity Anomaly<br />

R. Jackiw, Phys.Rev D29, 2377 (1984)<br />

Recognize Lorentz-<strong>in</strong>variant<br />

QHE relation<br />

j=xyE, where xy=1/2


Anomaly: relation to fractional<br />

quantum numbers<br />

Each zero-energy state filled (unfilled)<br />

contributes +1/2(-1/2) of an electron<br />

macroscopically: (1/2)*LL density

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!