06.06.2015 Views

Fractional Chern Insulators - Institute of Condensed Matter Theory at ...

Fractional Chern Insulators - Institute of Condensed Matter Theory at ...

Fractional Chern Insulators - Institute of Condensed Matter Theory at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fractional</strong> <strong>Chern</strong> <strong>Insul<strong>at</strong>ors</strong><br />

Titus Neupert<br />

<strong>Condensed</strong> <strong>M<strong>at</strong>ter</strong> <strong>Theory</strong> Group<br />

Paul Scherrer Institut, Switzerland<br />

Christopher Mudry, PSI<br />

Claudio Chamon, Boston U<br />

Shinsei Ryu, UIUC<br />

Luiz Santos, Perimeter <strong>Institute</strong><br />

Adolfo G. Grushin, CSIC Madrid


Outline<br />

1.<br />

<strong>Chern</strong> insul<strong>at</strong>ors<br />

Haldane’s model<br />

noncommut<strong>at</strong>ive geometry<br />

2. <strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors (FCI)<br />

C=1 exact diagonaliz<strong>at</strong>ion results<br />

C=2<br />

3.<br />

spontaneous form<strong>at</strong>ion <strong>of</strong> FCI in<br />

Z2 topological insul<strong>at</strong>ors


Quantum Hall effect: Landau levels<br />

energy scale ! c = eB m<br />

length scale `2B<br />

= ~c<br />

eB<br />

energy degeneracy N = A<br />

2⇡`2B<br />

=<br />

0<br />

B<br />

DOS


Quantum Hall effect: Landau levels<br />

energy scale ! c = eB m<br />

length scale `2B<br />

= ~c<br />

eB<br />

energy degeneracy N = A<br />

2⇡`2B<br />

=<br />

0<br />

B<br />

µ<br />

Integer quantum Hall effect<br />

xy = e2<br />

h n<br />

DOS


Quantum Hall effect: Landau levels<br />

energy scale ! c = eB m<br />

length scale `2B<br />

= ~c<br />

eB<br />

energy degeneracy N = A<br />

2⇡`2B<br />

=<br />

0<br />

B<br />

µ<br />

<strong>Fractional</strong> quantum Hall effect<br />

xy = e2<br />

h ⌫<br />

DOS


B<br />

Are there other systems in which a<br />

quantum Hall effect appears?<br />

Can we dispose <strong>of</strong> the large magnetic field?


B<br />

Answer for integer<br />

quantum Hall effect:<br />

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)<br />

Are there other systems in which a<br />

quantum Hall effect appears?<br />

Can we dispose <strong>of</strong> the large magnetic field?<br />

Yes<br />

Yes


Cit<strong>at</strong>ions: Haldane’s model<br />

fractional<br />

<strong>Chern</strong> insul<strong>at</strong>ors<br />

topological<br />

insul<strong>at</strong>ors<br />

F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)


<strong>Chern</strong> insul<strong>at</strong>or: Haldane’s model<br />

spinless fermions on honeycomb l<strong>at</strong>tice<br />

complex NNN hoppings open mass gap<br />

in graphene spectrum<br />

“<strong>Chern</strong> insul<strong>at</strong>or”<br />

xy = e2<br />

h C`B<br />

C = ±1<br />

! a


<strong>Chern</strong> insul<strong>at</strong>or: Haldane’s model<br />

spinless fermions on honeycomb l<strong>at</strong>tice<br />

complex NNN hoppings open mass gap<br />

in graphene spectrum<br />

“<strong>Chern</strong> insul<strong>at</strong>or”<br />

xy = e2<br />

h C`B<br />

C = ±1<br />

! a


<strong>Chern</strong> insul<strong>at</strong>or: Haldane’s model<br />

spinless fermions on honeycomb l<strong>at</strong>tice<br />

complex NNN hoppings open mass gap<br />

in graphene spectrum<br />

“<strong>Chern</strong> insul<strong>at</strong>or”<br />

xy = e2<br />

h C`B<br />

C = ±1<br />

! a


<strong>Chern</strong> insul<strong>at</strong>or: Haldane’s model<br />

spinless fermions on honeycomb l<strong>at</strong>tice<br />

complex NNN hoppings open mass gap<br />

in graphene spectrum<br />

“<strong>Chern</strong> insul<strong>at</strong>or”<br />

xy = e2<br />

h C`B<br />

C = ±1<br />

! a<br />

Just like a<br />

Landau<br />

level?


3 functions th<strong>at</strong> are constant in the Landau level<br />

... but not in a generic <strong>Chern</strong> insul<strong>at</strong>or<br />

1.<br />

Dispersion<br />

"(k)<br />

2.<br />

3.<br />

Quantum metric<br />

Berry curv<strong>at</strong>ure<br />

g µ⌫ (k)<br />

F µ⌫ (k)


3 functions th<strong>at</strong> are constant in the Landau level<br />

... but not in a generic <strong>Chern</strong> insul<strong>at</strong>or<br />

1.<br />

Dispersion<br />

"(k)<br />

2.<br />

3.<br />

Quantum metric<br />

Berry curv<strong>at</strong>ure<br />

g µ⌫ (k)<br />

F µ⌫ (k)<br />

Berry connection A µ (k) :=hu(k)|@ µ |u(k)i<br />

F µ⌫ (k) =@ µ A ⌫ (k) @ ⌫ A µ (k) C = i Z<br />

2⇡<br />

d 2 k F 12 (k)


3 functions th<strong>at</strong> are constant in the Landau level<br />

... but not in a generic <strong>Chern</strong> insul<strong>at</strong>or<br />

1.<br />

Dispersion<br />

"(k)<br />

2.<br />

3.<br />

Quantum metric<br />

Berry curv<strong>at</strong>ure<br />

g µ⌫ (k)<br />

F µ⌫ (k)<br />

Berry connection A µ (k) :=hu(k)|@ µ |u(k)i<br />

F µ⌫ (k) =@ µ A ⌫ (k) @ ⌫ A µ (k) C = i Z<br />

2⇡<br />

d 2 k F 12 (k)<br />

h (k)| b X µ<br />

b X⌫ | (k)i = g µ⌫ (k)+F µ⌫ (k)<br />

projected<br />

real, imaginary,<br />

position oper<strong>at</strong>or<br />

symmetric antisymmetric<br />

[ X b µ , X b ⌫ ](k) =2F µ⌫ (k) noncommut<strong>at</strong>ive geometry


Density algebra<br />

Landau level<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

b⇢ q+q 0<br />

b⇢ q = e<br />

iq· bX<br />

S. M. Girvin et al., Phys. Rev. Lett. 54, 581 (1985)<br />

<strong>Chern</strong> insul<strong>at</strong>or


Density algebra<br />

Landau level<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

b⇢ q+q 0<br />

b⇢ q = e<br />

iq· bX<br />

S. M. Girvin et al., Phys. Rev. Lett. 54, 581 (1985)<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

e q µg µ⌫<br />

q 0 ⌫ b⇢q+q 0<br />

if F and g const.<br />

R. Roy, arXiv:1208.2055


Density algebra<br />

Landau level<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

b⇢ q+q 0<br />

b⇢ q = e<br />

iq· bX<br />

S. M. Girvin et al., Phys. Rev. Lett. 54, 581 (1985)<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

e q µg µ⌫<br />

q 0 ⌫ b⇢q+q 0<br />

if F and g const.<br />

R. Roy, arXiv:1208.2055<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i<br />

b⇢ q+q 0 + O(q 3 )<br />

if F const.<br />

S. Parameswaran et al., arXiv:1106.4025<br />

T. Neupert et al., Phys. Rev B 86, 035125 (2012)<br />

B. Estienne et al., arXiv:1202.5543


Density algebra<br />

Landau level<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

b⇢ q+q 0<br />

b⇢ q = e<br />

iq· bX<br />

S. M. Girvin et al., Phys. Rev. Lett. 54, 581 (1985)<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i sin<br />

e q µg µ⌫<br />

q 0 ⌫ b⇢q+q 0<br />

if F and g const.<br />

R. Roy, arXiv:1208.2055<br />

✓`2<br />

B<br />

2 q ^ q0 ◆<br />

[b⇢ q , b⇢ q 0]=<br />

2i<br />

b⇢ q+q 0 + O(q 3 )<br />

if F const.<br />

Z<br />

S. Parameswaran et al., arXiv:1106.4025<br />

T. Neupert et al., Phys. Rev B 86, 035125 (2012)<br />

B. Estienne et al., arXiv:1202.5543<br />

[b⇢ q , b⇢ q 0]=<br />

q µ q 0 ⌫<br />

d 2 k|u(k)iF µ⌫ (k)hu(k + q + q 0 )| + O(q 3 )


Outline<br />

1.<br />

<strong>Chern</strong> insul<strong>at</strong>ors<br />

Haldane’s model<br />

noncommut<strong>at</strong>ive geometry<br />

2. <strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors (FCI)<br />

C=1 exact diagonaliz<strong>at</strong>ion results<br />

C=2<br />

3.<br />

spontaneous form<strong>at</strong>ion <strong>of</strong> FCI in<br />

Z2 topological insul<strong>at</strong>ors


B<br />

Are there other systems in which a<br />

quantum Hall effect appears?<br />

Can we dispose <strong>of</strong> the large magnetic field?


B<br />

Answer for fractional<br />

quantum Hall effect:<br />

T. Neupert et al., Phys. Rev. Lett. 106 236804 (2011)<br />

Are there other systems in which a<br />

quantum Hall effect appears?<br />

Can we dispose <strong>of</strong> the large magnetic field?<br />

Yes<br />

Yes


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Need<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

reasonably fl<strong>at</strong> band with C≠0<br />

(requires some longer range hopping)<br />

add short-range repulsive interactions<br />

band gap<br />

band width<br />

interaction<br />

W<br />

U


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Need<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

reasonably fl<strong>at</strong> band with C≠0<br />

(requires some longer range hopping)<br />

add short-range repulsive interactions<br />

band gap<br />

band width<br />

interaction<br />

W<br />

U<br />

with hierarchy <strong>of</strong> energy scales E. Tang et al., Phys. Rev. Lett., 106, 236802 (2011).<br />

U W<br />

K. Sun et al., Phys. Rev. Lett., 106, 236803 (2011).<br />

T. Neupert et al., Phys. Rev. Lett. 106 236804 (2011)


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Need<br />

<strong>Chern</strong> insul<strong>at</strong>or<br />

reasonably fl<strong>at</strong> band with C≠0<br />

(requires some longer range hopping)<br />

add short-range repulsive interactions<br />

band gap<br />

band width<br />

interaction<br />

W<br />

U<br />

with hierarchy <strong>of</strong> energy scales E. Tang et al., Phys. Rev. Lett., 106, 236802 (2011).<br />

U W<br />

K. Sun et al., Phys. Rev. Lett., 106, 236803 (2011).<br />

T. Neupert et al., Phys. Rev. Lett. 106 236804 (2011)<br />

Strongly correl<strong>at</strong>ed many-body problem, no perturb<strong>at</strong>ive<br />

approaches<br />

exact numerical diagonaliz<strong>at</strong>ion<br />

<strong>of</strong> small systems


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Model<br />

square l<strong>at</strong>tice,<br />

spin 1/2 d.o.f. per site<br />

it 1 + h 1 3<br />

h 4 3 it 2 + h 2 3<br />

m (ij) =( 1) i h 1 +( 1) j h 2 +( 1) i+j 2 h 4<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Model<br />

square l<strong>at</strong>tice,<br />

spin 1/2 d.o.f. per site<br />

it 1 + h 1 3<br />

h 4 3 it 2 + h 2 3<br />

m (ij) =( 1) i h 1 +( 1) j h 2 +( 1) i+j 2 h 4<br />

C = 1 X<br />

( 1) i+j sgn m (ij) takes values 0, 1, 2<br />

2<br />

i,j=0,1<br />

repulsive density-density interactions,<br />

twisted boundary conditions<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

C = 1 <strong>at</strong> 1/3 and 2/3 filling<br />

Q y<br />

4 x 6 l<strong>at</strong>tice<br />

many-body<br />

c.o.m. BZ<br />

Q x<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

C = 1 <strong>at</strong> 1/3 and 2/3 filling<br />

Q y<br />

4 x 6 l<strong>at</strong>tice<br />

many-body<br />

c.o.m. BZ<br />

Q x<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

C = 2 <strong>at</strong> 1/5 and 4/5 filling<br />

5<br />

5 x 4 l<strong>at</strong>tice<br />

5 x 5 l<strong>at</strong>tice<br />

5 x 6 l<strong>at</strong>tice<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

C = 2 <strong>at</strong> 1/5 and 4/5 filling<br />

5<br />

5 x 4 l<strong>at</strong>tice<br />

5 x 5 l<strong>at</strong>tice<br />

5 x 6 l<strong>at</strong>tice<br />

A. G. Grushin et al., arXiv:1207.4097


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es<br />

⌫ g<br />

fe<strong>at</strong>ureless<br />

CDW in thin-torus limit<br />

A. G. Grushin et al., arXiv:1207.4097<br />

B. A. Bernevig et al., arXiv:1204.5682


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Aside: Detecting broken transl<strong>at</strong>ional symmetry<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

quasi-degener<strong>at</strong>e ground st<strong>at</strong>es | ii, i =1,<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es ⌫ g ··· ,N<br />

m<strong>at</strong>rix h i|⇢ r | ji has transl<strong>at</strong>ional invariant<br />

fe<strong>at</strong>ureless spectrum, but r dependent eigenvectors<br />

v r,i<br />

map out<br />

CDW in thin-torus limit<br />

A. G. Grushin et al., arXiv:1207.4097<br />

f r = v ⇤ r 0 ,ih i|⇢ r | jiv r0 ,j<br />

B. A. Bernevig et al., arXiv:1204.5682


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es<br />

⌫ g<br />

fe<strong>at</strong>ureless<br />

CDW in thin-torus limit<br />

A. G. Grushin et al., arXiv:1207.4097<br />

B. A. Bernevig et al., arXiv:1204.5682<br />

many-body <strong>Chern</strong> number (Hall conductivity) 1/3 and 2/5<br />

T. Neupert et al., Phys. Rev. B 86 165133 (2012)


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Aside: Computing the many-body <strong>Chern</strong> number<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

Thouless: Average over boundary conditions<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es ⌫ g<br />

| ( 1 , 2)i, ( 1 , 2) 2 [0, 2⇡] 2<br />

fe<strong>at</strong>ureless<br />

C =<br />

i<br />

2⇡<br />

Z2⇡<br />

CDW in thin-torus limit<br />

0<br />

Z2⇡<br />

d 1<br />

0<br />

d 2<br />

apple⌧ @<br />

@ 1<br />

@<br />

@ 2<br />

⌧ @<br />

A. G. Grushin et al., arXiv:1207.4097<br />

@ 2<br />

B. A. Bernevig et al., arXiv:1204.5682<br />

many-body <strong>Chern</strong> number (Hall conductivity) 1/3 and 2/5<br />

T. Neupert et al., Phys. Rev. B 86 165133 (2012)<br />

@<br />

@ 1


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Aside: Computing the many-body <strong>Chern</strong> number<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

Thouless: Average over boundary conditions<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es ⌫ g<br />

| ( 1 , 2)i, ( 1 , 2) 2 [0, 2⇡] 2<br />

fe<strong>at</strong>ureless<br />

C =<br />

i<br />

2⇡<br />

Z2⇡<br />

CDW in thin-torus limit<br />

0<br />

Z2⇡<br />

d 1<br />

0<br />

d 2<br />

apple⌧ @<br />

@ 1<br />

@<br />

@ 2<br />

⌧ @<br />

A. G. Grushin et al., arXiv:1207.4097<br />

@ 2<br />

B. A. Bernevig et al., arXiv:1204.5682<br />

In thermodynamic limit, if<br />

many-body <strong>Chern</strong> - only number st<strong>at</strong>es in (Hall one band conductivity) occupied1/3 and 2/5<br />

- no spontaneous symmetry breaking<br />

one can show<br />

xy = e2<br />

h<br />

Z<br />

d 2 k n(k) F (k)<br />

T. Neupert et al., Phys. Rev. B 86 165133 (2012)<br />

@<br />

@ 1<br />

n(k) :=h |<br />

† (k) (k)| i


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

N<strong>at</strong>ure <strong>of</strong> incompressible st<strong>at</strong>es: FQH st<strong>at</strong>es<br />

quasi-degeneracy <strong>of</strong> topologically ordered st<strong>at</strong>es<br />

⌫ g<br />

fe<strong>at</strong>ureless<br />

CDW in thin-torus limit<br />

A. G. Grushin et al., arXiv:1207.4097<br />

B. A. Bernevig et al., arXiv:1204.5682<br />

many-body <strong>Chern</strong> number (Hall conductivity) 1/3 and 2/5<br />

T. Neupert et al., Phys. Rev. B 86 165133 (2012)<br />

level counting in the entanglement spectrum<br />

mapping to Landau level Laughlin st<strong>at</strong>e<br />

with high overlap, continuous deform<strong>at</strong>ion<br />

B.A. Bernevig et al., Phys. Rev. B 85 075128 (2012)<br />

X.-L. Qi, Phys,Rev. Lett. 107, 126803 (2011)<br />

Y.-L. Wu, et al., Phys. Rev. B 86, 085129 (2012)<br />

Z. Liu et al., arXiv:1209.5310.<br />

Y.-L. Wu, et al., arXiv:1210.6356.


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or<br />

Abelian st<strong>at</strong>es comp<strong>at</strong>ible with hierarchical CS description<br />

non-Abelian st<strong>at</strong>es (Moore-Read, Zk Read-Rezayi) with<br />

3-body and 4-body interaction<br />

B.A. Bernevig et al., Phys. Rev. B 85, 075128 (2012)<br />

Y.-F. Wang et al., Phys Rev. Lett 108 126805<br />

Y.-L. Wu et al., Phys. Rev. B 85, 075116 (2012)<br />

series <strong>of</strong> st<strong>at</strong>es <strong>at</strong> higher <strong>Chern</strong> number ⌫ =<br />

k<br />

1+2C<br />

A.M. Läuchli arXiv:1207.6094<br />

A. Sterdyniak et al., arXiv:1207.6385


h4/t<br />

h4/t<br />

(E − E0)/U<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or: Effect <strong>of</strong> bandwidth<br />

"(k) g µ⌫ (k) F µ⌫ (k)<br />

The fl<strong>at</strong>ter the better?<br />

some model parameter<br />

(a)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

gap Δ/U<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

0.05<br />

0<br />

(b)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Δ/δ<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

10<br />

0<br />

spectrum <strong>at</strong> h4 = 1.05<br />

(c) -------------<br />

- - - ------<br />

0.07<br />

- - -<br />

------ --------<br />

- -<br />

--- -- - - -<br />

--<br />

----- --- - - -<br />

------ - -<br />

0.06<br />

- - - --- - ------ - - -<br />

0.05 - -------------- ------------<br />

-<br />

- -<br />

- -- - ------ 0.04<br />

-<br />

-<br />

- -<br />

-<br />

0.03<br />

- Δ<br />

-<br />

-<br />

-<br />

0.02<br />

-<br />

-<br />

-<br />

- -<br />

0.01<br />

-- -<br />

-<br />

- -<br />

--- --- - -<br />

δ<br />

0.00 --- --------------<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

bandwidth


h4/t<br />

h4/t<br />

(E − E0)/U<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or: Effect <strong>of</strong> bandwidth<br />

"(k) g µ⌫ (k) F µ⌫ (k)<br />

The fl<strong>at</strong>ter the better?<br />

some model parameter<br />

(a)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

gap Δ/U<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

0.05<br />

0<br />

(b)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Δ/δ<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

10<br />

0<br />

spectrum <strong>at</strong> h4 = 1.05<br />

(c) -------------<br />

- - - ------<br />

0.07<br />

- - -<br />

------ --------<br />

- -<br />

--- -- - - -<br />

--<br />

----- --- - - -<br />

------ - -<br />

0.06<br />

- - - --- - ------ - - -<br />

0.05 - -------------- ------------<br />

-<br />

- -<br />

- -- - ------ 0.04<br />

-<br />

-<br />

- -<br />

-<br />

0.03<br />

- Δ<br />

-<br />

-<br />

-<br />

0.02<br />

-<br />

-<br />

-<br />

- -<br />

0.01<br />

-- -<br />

-<br />

- -<br />

--- --- - -<br />

δ<br />

0.00 --- --------------<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

λ<br />

bandwidth<br />

Some dispersion can help to stabilize the st<strong>at</strong>e!


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or: Effect <strong>of</strong> quantum distance<br />

Projected interaction:<br />

X<br />

H :=<br />

k 1<br />

,k 2<br />

,k 3<br />

,k 4<br />

V k1 k 2<br />

k 3<br />

k 4<br />

†<br />

k 1<br />

†<br />

k 2<br />

k 3<br />

k 4<br />

overlaps <strong>of</strong> singleparticle<br />

st<strong>at</strong>es<br />

V k1 k 2<br />

k 3<br />

k 4<br />

= v k1 k 3<br />

h k1<br />

| k 3<br />

ih k2<br />

| k 4<br />

i k1 +k 2<br />

,k 3<br />

+k 4


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or: Effect <strong>of</strong> quantum distance<br />

Projected interaction:<br />

X<br />

H :=<br />

k 1<br />

,k 2<br />

,k 3<br />

,k 4<br />

V k1 k 2<br />

k 3<br />

k 4<br />

†<br />

k 1<br />

†<br />

k 2<br />

k 3<br />

k 4<br />

overlaps <strong>of</strong> singleparticle<br />

st<strong>at</strong>es<br />

V k1 k 2<br />

k 3<br />

k 4<br />

= v k1 k 3<br />

h k1<br />

| k 3<br />

ih k2<br />

| k 4<br />

i k1 +k 2<br />

,k 3<br />

+k 4<br />

q<br />

Quantum distance<br />

d(k, k 0 ):= 1 |h (k)| (k 0 )i|<br />

enters interaction<br />

Z r<br />

connects to<br />

d(k<br />

Fubini-Study metric 1 , k 2 )=inf<br />

1,2<br />

d`<br />

1,2<br />

g µ⌫ (k) dkµ<br />

d`<br />

dk ⌫<br />

d`


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>or: Effect <strong>of</strong> quantum distance<br />

Projected interaction:<br />

X<br />

H :=<br />

k 1<br />

,k 2<br />

,k 3<br />

,k 4<br />

V k1 k 2<br />

k 3<br />

k 4<br />

†<br />

k 1<br />

†<br />

k 2<br />

k 3<br />

k 4<br />

overlaps <strong>of</strong> singleparticle<br />

st<strong>at</strong>es<br />

V k1 k 2<br />

k 3<br />

k 4<br />

= v k1 k 3<br />

h k1<br />

| k 3<br />

ih k2<br />

| k 4<br />

i k1 +k 2<br />

,k 3<br />

+k 4<br />

q<br />

Quantum distance<br />

d(k, k 0 ):= 1 |h (k)| (k 0 )i|<br />

enters interaction<br />

Z r<br />

connects to<br />

d(k<br />

Fubini-Study metric 1 , k 2 )=inf<br />

1,2<br />

d`<br />

1,2<br />

g µ⌫ (k) dkµ<br />

d`<br />

dk ⌫<br />

d`<br />

Particle-hole transform<strong>at</strong>ion + normal ordering<br />

eH =<br />

X<br />

X<br />

† †<br />

V k1 , k 2<br />

, k 3<br />

, k 4 k 3<br />

k 4<br />

k 1<br />

k 2<br />

k 1<br />

,k 2<br />

,k 3<br />

,k 4<br />

k<br />

" k<br />

†<br />

k<br />

k + constant<br />

effective dispersion " k = X k 0 v k k<br />

0 + v k<br />

0<br />

k<br />

⇥<br />

1 d 2 (k, k 0 ) ⇤ 2<br />

.


Outline<br />

1.<br />

<strong>Chern</strong> insul<strong>at</strong>ors<br />

Haldane’s model<br />

noncommut<strong>at</strong>ive geometry<br />

2. <strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors (FCI)<br />

C=1 exact diagonaliz<strong>at</strong>ion results<br />

C=2<br />

3.<br />

spontaneous form<strong>at</strong>ion <strong>of</strong> FCI in<br />

Z2 topological insul<strong>at</strong>ors


(2+1)D topological insul<strong>at</strong>or<br />

topological band insul<strong>at</strong>ors in (2+1)D: Z IQHE (class A)<br />

Z2 TI (class AII)<br />

Gedanken experiment: filled Landau level with opposite<br />

chirality (magnetic field) for up-spin and down-spin electrons<br />

time-reversal symmetric<br />

with Sz conserv<strong>at</strong>ion: quantum spin Hall effect<br />

B<br />

H =0<br />

sH = e<br />

2⇡<br />

B<br />

Physical realiz<strong>at</strong>ion?


(2+1)D topological insul<strong>at</strong>or<br />

topological band insul<strong>at</strong>ors in (2+1)D: Z IQHE (class A)<br />

Z2 TI (class AII)<br />

Gedanken experiment: filled Landau level with opposite<br />

chirality (magnetic field) for up-spin and down-spin electrons<br />

time-reversal symmetric<br />

with Sz conserv<strong>at</strong>ion: quantum spin Hall effect<br />

B<br />

H =0<br />

sH = e<br />

2⇡<br />

B<br />

Physical realiz<strong>at</strong>ion?<br />

Yes<br />

C. L. Kane et al., Phys. Rev. Lett. 95, 226801 & 146802 (2005).<br />

B. A. Bernevig et al., Science 314, 1757 (2006)<br />

M. König et al., Science 318, 766 (2007)


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Gedanken experiment:<br />

take two fractional quantum Hall layers with opposite field<br />

with Sz conserv<strong>at</strong>ion<br />

B<br />

⌫ " =1/n<br />

⌫ # =1/n<br />

M. Levin et al., Phys. Rev. Lett. 103, 196803 (2009)<br />

B<br />

Is this there a physical setting for the fractional<br />

quantum spin Hall effect to appear?


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Gedanken experiment:<br />

take two fractional quantum Hall layers with opposite field<br />

with Sz conserv<strong>at</strong>ion<br />

B<br />

⌫ " =1/n<br />

⌫ # =1/n<br />

M. Levin et al., Phys. Rev. Lett. 103, 196803 (2009)<br />

B<br />

Is this there a physical setting for the fractional<br />

quantum spin Hall effect to appear?<br />

?, but ...<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Need<br />

Quantum spin Hall insul<strong>at</strong>or (TI)<br />

reasonably fl<strong>at</strong> nontrivial Kramers<br />

pair <strong>of</strong> band<br />

add short-range repulsive interactions<br />

band gap<br />

band width<br />

interaction<br />

W<br />

U<br />

with hierarchy <strong>of</strong> energy scales<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

U<br />

W


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Need<br />

Quantum spin Hall insul<strong>at</strong>or (TI)<br />

reasonably fl<strong>at</strong> nontrivial Kramers<br />

pair <strong>of</strong> band<br />

add short-range repulsive interactions<br />

band gap<br />

band width<br />

interaction<br />

W<br />

U<br />

with hierarchy <strong>of</strong> energy scales<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

U<br />

W<br />

Model<br />

H =CI # +CI ⇤ " + U X i<br />

n # i n" i + V X (i,j)<br />

⇣<br />

n # i n# j + n" i n" j +2 n# i n" j<br />


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Result<br />

Fl<strong>at</strong>band Stoner magnetism preempts form<strong>at</strong>ion <strong>of</strong> fractional<br />

topological insul<strong>at</strong>or<br />

Z<br />

H = e2<br />

h<br />

d 2 k [n " (k) F " (k)+n # (k) F # (k)]<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

F " (k) = F # ( k)<br />

H =CI # +CI ⇤ " + U X i<br />

n # i n" i + V X (i,j)<br />

⇣<br />

n # i n# j + n" i n" j +2 n# i n" j<br />


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Result<br />

Fl<strong>at</strong>band Stoner magnetism preempts form<strong>at</strong>ion <strong>of</strong> fractional<br />

topological insul<strong>at</strong>or<br />

Z<br />

H = e2<br />

h<br />

in favor <strong>of</strong> fractional <strong>Chern</strong> insul<strong>at</strong>or<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

d 2 k [n " (k) F " (k)+n # (k) F # (k)]<br />

1/3 -1/3<br />

2/3 0<br />

F " (k) = F # ( k)<br />

H =CI # +CI ⇤ " + U X i<br />

n # i n" i + V X (i,j)<br />

⇣<br />

n # i n# j + n" i n" j +2 n# i n" j<br />


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Result<br />

Fl<strong>at</strong>band Stoner magnetism preempts form<strong>at</strong>ion <strong>of</strong> fractional<br />

topological insul<strong>at</strong>or<br />

Z<br />

H = e2<br />

h<br />

spin-isotropic<br />

interaction<br />

in favor <strong>of</strong> fractional <strong>Chern</strong> insul<strong>at</strong>or<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

d 2 k [n " (k) F " (k)+n # (k) F # (k)]<br />

1/3 -1/3<br />

2/3 0<br />

F " (k) = F # ( k)<br />

only intra-species<br />

repulsion<br />

H =CI # +CI ⇤ " + U X i<br />

n # i n" i + V X (i,j)<br />

⇣<br />

n # i n# j + n" i n" j +2 n# i n" j<br />


<strong>Fractional</strong> topological insul<strong>at</strong>or<br />

Result<br />

Fl<strong>at</strong>band Stoner magnetism preempts form<strong>at</strong>ion <strong>of</strong> fractional<br />

topological insul<strong>at</strong>or<br />

Z<br />

H = e2<br />

h<br />

spin-isotropic<br />

interaction<br />

in favor <strong>of</strong> fractional <strong>Chern</strong> insul<strong>at</strong>or<br />

T. Neupert et al., Phys. Rev. B 84, 165107 (2011)<br />

d 2 k [n " (k) F " (k)+n # (k) F # (k)]<br />

1/3 -1/3<br />

2/3 0<br />

TRS<br />

fractional TI<br />

F " (k) = F # ( k)<br />

spontaneous<br />

FCI<br />

only intra-species<br />

repulsion<br />

H =CI # +CI ⇤ " + U X i<br />

n # i n" i + V X (i,j)<br />

⇣<br />

n # i n# j + n" i n" j +2 n# i n" j<br />


Fl<strong>at</strong>band topological insul<strong>at</strong>ors: Towards a physical system<br />

...<br />

models for transition metal<br />

oxide heterostructures<br />

2D indium-phenylene<br />

organometallic framework<br />

D. Xiao et al., N<strong>at</strong>ure Comm. 2, 596 (2011)<br />

Zheng Liu et al., arXiv:1210.1826


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors: Why do we care?<br />

Wh<strong>at</strong> is <strong>at</strong> the heart <strong>of</strong> the FQHE?<br />

many-body gap ≈ U gives high-temper<strong>at</strong>ure effect<br />

<strong>at</strong> 1/2 filling: full magnetiz<strong>at</strong>ion gives quantum<br />

anomalous Hall effect.<br />

low dissip<strong>at</strong>ive conductor <strong>at</strong> room temper<strong>at</strong>ure<br />

T. Neupert et al., Phys. Rev. Lett. 108 046806 (2011)


<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors: Why do we care?<br />

Wh<strong>at</strong> is <strong>at</strong> the heart <strong>of</strong> the FQHE?<br />

many-body gap ≈ U gives high-temper<strong>at</strong>ure effect<br />

<strong>at</strong> 1/2 filling: full magnetiz<strong>at</strong>ion gives quantum<br />

anomalous Hall effect.<br />

low dissip<strong>at</strong>ive conductor <strong>at</strong> room temper<strong>at</strong>ure<br />

⇢ xx ⇡ R K e<br />

/T<br />

gap <strong>of</strong> ~0.2eV comparable to copper per <strong>at</strong>omic layer<br />

gap <strong>of</strong> ~0.3eV already three orders <strong>of</strong> magnitude better<br />

T. Neupert et al., Phys. Rev. Lett. 108 046806 (2011)


Conclusions/Program<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors in <strong>Chern</strong> bands<br />

- numerics, zoo <strong>of</strong> st<strong>at</strong>es and models<br />

- well understood in close analogy to FQH st<strong>at</strong>es<br />

- wave function mapping<br />

- departing from FQHE in higher <strong>Chern</strong>-number bands<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors in Z2 topological insul<strong>at</strong>ors<br />

- more powerful numerical tools needed<br />

- Most likely condensed m<strong>at</strong>ter realiz<strong>at</strong>ion?<br />

3D fractionalized phases<br />

- advances in field theory<br />

- open problem for microscopic l<strong>at</strong>tice models


Conclusions/Program<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors in <strong>Chern</strong> bands<br />

- numerics, zoo <strong>of</strong> st<strong>at</strong>es and models<br />

- well understood in close analogy to FQH st<strong>at</strong>es<br />

- wave function mapping<br />

- departing from FQHE in higher <strong>Chern</strong>-number bands<br />

<strong>Fractional</strong> <strong>Chern</strong> insul<strong>at</strong>ors in Z2 topological insul<strong>at</strong>ors<br />

- more powerful numerical tools needed<br />

- Most likely condensed m<strong>at</strong>ter realiz<strong>at</strong>ion?<br />

3D fractionalized phases<br />

- advances in field theory<br />

- open problem for microscopic l<strong>at</strong>tice models<br />

Thank<br />

you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!