04.06.2015 Views

Open Channel Hydraulics

Open Channel Hydraulics

Open Channel Hydraulics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CE 642<br />

HYDRAULICS<br />

Dr. Emre Can<br />

1


HYDRAULICS<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Tentative Course Outline<br />

Introduction<br />

Pipe Flow<br />

<strong>Open</strong> <strong>Channel</strong> Flows<br />

Uniform Flow<br />

Non-Uniform Flow<br />

Local Changes in Water Levels<br />

<strong>Channel</strong> Controls<br />

Sedimentation in <strong>Open</strong> <strong>Channel</strong>s and Rivers<br />

Dimensional Analysis & Theory of Models


EXAM SCHEDULE<br />

31 March 15:00 Midterm exam 1<br />

12 May 15:00 Midterm exam 2<br />

<br />

The exams will always be closed book,<br />

(however formula sheets will be provided)<br />

<br />

<br />

Questions will be in English and there will be no<br />

translation of questions into Turkish,<br />

Answers to all the questions should be in English.


REFERENCES:<br />

HYDRAULICS<br />

<br />

Chow, V.T., <strong>Open</strong> <strong>Channel</strong> <strong>Hydraulics</strong>, , Mc Graw Hill,<br />

New York, 1959.<br />

Henderson, F.M., <strong>Open</strong> <strong>Channel</strong> Flow, Macmillan Co, 1966.<br />

<br />

<br />

Vennard, J.K. & Street, R.L., Elementary Fluid Mechanics,<br />

John Wiley & Sons, 1977.<br />

Linsley, R.K. & Franzini, J.B., Water Resources Engineering,<br />

McGraw Hill, Newyork, 1972


HYDRAULICS<br />

<br />

<br />

<br />

REFERENCES:<br />

Sümer, B.M, Ünsal, İ. & Bayazıt M. Hidrolik,<br />

Birsen yayınevi<br />

Yanmaz, A. Melih, Applied Water Resources<br />

Engineering, Metu Press, 3 rd edition, 2006<br />

CE 372 Hydromechanics Lecture Notes, Middle<br />

East Technical University, Civil Engineering Department<br />

<br />

UTAH STATE UNIVERSITY <strong>Open</strong> Courseware<br />

http://ocw.usu.edu/Civil_and_Environmental_Engineering/Fluid_Mechanics


Scope of the Course<br />

<br />

<br />

<br />

<br />

<br />

In many water systems, transportation of<br />

water from one location to another is the<br />

main concern.<br />

Two main modes of transportation are:<br />

Closed conduits with pressurized flow inside<br />

<strong>Open</strong> conduits with free surface flow inside<br />

The main objective in this course is to study<br />

the flow in closed conduits (mainly pipes)<br />

and in open channels


Examples include:<br />

Water distribution networks in urban areas<br />

Water transmission line from Çamlıdere Dam to<br />

İvedik Water Treatment Plant<br />

(φ = 3.4 m, L = 15.5 km)<br />

Urfa Tunnels from Atatürk Dam to Harran Plain<br />

(φ = 7.62 m, L = 2 x 26.4 km)<br />

Main irrigation canal in Harran Plain<br />

<br />

(L=118 km, Q = 80 m 3 /s)


The View of Atatürk Dam


GAP WATER RESOURCES ROJECTS<br />

Total 22 dams, 19 HPP<br />

1.7 million ha, 7485 MW, 27 billion kWh


Urfa Tunnels from<br />

Atatürk Dam to Harran Plain<br />

φ = 7.62 m,<br />

L = 2 x 26.4 km<br />

Q=80 m 3 /s


Main irrigation canal in Harran Plain<br />

(L=118 km, Q = 80 m3/s)


Before 1995


HARRAN PLAIN


YEŞİ<br />

ŞİLÇAY SYSTEM<br />

BLACKSEA<br />

AĞVA<br />

YEŞİLÇAY REG.<br />

KABAKOZ<br />

DAM<br />

DARLIK<br />

DAM<br />

İSAKÖY<br />

DAM<br />

SUNGURLU<br />

DAM<br />

ÖMERLİ<br />

DAM<br />

EMİRLİ TREATMENT<br />

STORAGE<br />

M A R M A R A SEA


YEŞİLÇAY SYSTEM CHARACTERISTICS<br />

Length of transmission lines: 723 712 m<br />

Length of water Network : 11 738 km<br />

Volume of water reservoir : 914 000 m 3<br />

Water Supplied (2003) : 920 million m 3 /year<br />

Water treatment capacity : 3.5 million m 3 /day


Ø3 000 mm Prestressed Concrete Cylinder Pipes


BLACKSEA<br />

GREATER MELEN PROJECT<br />

OF ISTANBUL<br />

Cumhuriyet<br />

Pompa<br />

İstasyonu<br />

Hüseyinli Su Su<br />

Arıtma Tesisi<br />

Şile-Alaçalı<br />

Melen<br />

700 000 m³/gün<br />

Tünel<br />

Pompa<br />

3.5 km<br />

İstasyonu<br />

Melen<br />

Regülatörü<br />

8.5 m 33 /s /s<br />

Boğaz<br />

Bekleme<br />

Tüneli<br />

Tüneli<br />

5.5<br />

1.3 km<br />

km<br />

Beykoz<br />

Tüneli<br />

Osmankuyu<br />

Ayazağa<br />

2.6 km<br />

Su Su deposu<br />

Tüneli<br />

2.8 km<br />

Ortaçeşme<br />

Tüneli<br />

0.8 km<br />

MARMARA SEA<br />

Alaçalı<br />

Barajı<br />

Hamidiye<br />

Tüneli 5.2<br />

km<br />

Ömerli Barajı<br />

(mevcut)<br />

Alaçalı-Ömerli<br />

Hattı<br />

Melen-Alaçalı<br />

İsale Hattı<br />

131 km<br />

Boğaz Tüneli<br />

Profili<br />

Melen Barajı<br />

(ileri aşama)<br />

Boğaz<br />

Tüneli<br />

Boğaz Tüneli<br />

Ø=4.0-3.6 m<br />

L=5.5 km


Great Melen Project Technical Specifications<br />

System Length : 185 600 m<br />

Ø 2 500 mm Steel Pipe : 163 950 m<br />

Ø 4 500 mm tunnel length : 8 700 m<br />

Ø 4 000 mm tunnel length : 11 550 m<br />

Ø 3 600 mm tunnel length : 1 400 m


Examples of Fluid Mechanics System


Physical Properties of Fluids<br />

Density<br />

Specific weight<br />

Specific Gravity<br />

Specific Volume<br />

Viscosity<br />

Surface Tension<br />

Vapor Pressure<br />

Compressibility


Density, ρ<br />

Mass per unit volume<br />

ρ = m/∀<br />

[ρ]=ML-3


Specific Weight, γ:<br />

Weight per unit volume<br />

γ = W/∀<br />

[γ]=FL-3<br />

γ = ρg


Specific Gravity, SG<br />

The ratio of the density of the fluid to the<br />

density of water (or air) at standard<br />

conditions<br />

(SG) liquid<br />

=<br />

ρ<br />

ρ<br />

w<br />

(SG) gas<br />

=<br />

ρ<br />

ρ<br />

air


Density and Specific Weights of<br />

some fluids (g=9.81m/s2)<br />

Fluid<br />

Liquids<br />

Gases<br />

G<br />

as<br />

es<br />

Temperature<br />

°<br />

C<br />

Density<br />

kg/m 3<br />

Specific Weight<br />

N/m 3<br />

Water 4.0 1000. 9810.<br />

Mercury 20.0 13600. 133416.<br />

Gasoline 15.6 680. 6671.<br />

Alcohol 20.0 789. 7740.<br />

Air 15.0 1.23 12.0<br />

Oxygen 20.0 1.33 13.0<br />

Hydrogen 20.0 0.0838 0.822<br />

Methane 20.0 0.667 6.54


Deformation of fluid for a short time interval ∆t<br />

U p<br />

∝<br />

hF<br />

A<br />

=<br />

hτ<br />

∆S<br />

B B ’<br />

τ<br />

U p<br />

F<br />

τ ∝<br />

U p<br />

h<br />

h<br />

A<br />

∆θ<br />

y<br />

u(y)<br />

x<br />

τ ∝<br />

dθ<br />

dt<br />

Shear stress is<br />

proportional to the rate<br />

of angular deformation


Newton’s Law of Viscosity<br />

For the linear velocity profile<br />

du U d<br />

=<br />

p =<br />

θ<br />

dy h dt<br />

u(y)<br />

τ<br />

=<br />

U<br />

h<br />

p<br />

y<br />

du<br />

= µ<br />

dy<br />

Newton’s<br />

Law of<br />

viscosity<br />

τ ∝<br />

du<br />

dy<br />

U p =<br />

h<br />

u(y)<br />

y<br />

The proportionality constant µ is known as<br />

dynamic viscosity of the fluid.


Dynamic and Kinematic Viscosity<br />

ν =<br />

µ<br />

ρ<br />

Viscosity can be made independent<br />

of fluid density; kinematic viscosity<br />

is defined as the ratio<br />

µ Dynamic Viscosity : N⋅s/m 2 N (Mass/Length/Time)<br />

ν Kinematic Viscosity :<br />

(m 2 /s) (Length 2 /Time)


Viscosities of air and water<br />

Fluid<br />

Temperature<br />

(°C)<br />

µ<br />

(N⋅s/m 2 )<br />

ν<br />

(m 2 /s)<br />

Water 20 1.00E-03 1.01E-06<br />

Air 20 1.80E-05 1.51E-05


Reynolds Experiment<br />

Dye<br />

pipe<br />

D<br />

Q=VA<br />

Dye streak<br />

Smooth well-rounded entrance


Characteristics of Turbulent Flow


Velocity components in a turbulent pipe flow: (a) x-component<br />

velocity; (b) r-component velocity; (c) θ-component velocity.


Type of Flow<br />

Re…Dimensionless number<br />

f( velocity, diameter, viscosity)<br />

R e<br />

VD<br />

=<br />

ν<br />

4Q<br />

=<br />

πDν<br />

Laminar flow: Re < 2000<br />

Transitional flow: 2000 < Re < 4000<br />

Turbulent flow: Re > 4000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!