04.06.2015 Views

Infinitesimal Calculus of Random Walk and Poisson Processes

Infinitesimal Calculus of Random Walk and Poisson Processes

Infinitesimal Calculus of Random Walk and Poisson Processes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Gauge Institute Journal,<br />

H. Vic Dannon<br />

12.<br />

t=<br />

b<br />

∫<br />

t=<br />

a<br />

ftdB () (, ζ t)<br />

While EB [ ( ζ , t)]<br />

has unbounded Variation in [,] ab, integration<br />

with respect to<br />

B(,)<br />

ζ t<br />

is possible.<br />

Let<br />

f () t be a hyper-real function on the bounded time<br />

interval [,] ab . f () t need not be bounded.<br />

At each a ≤ t ≤ b,<br />

there is a Bernoulli <strong>R<strong>and</strong>om</strong> Variable<br />

dB(,) ζ t = B(, ζ t + dt) − B(,) ζ t = B (,) ζ t = B (,) ζ t dt.<br />

We form the Integration Sum<br />

For any dt ,<br />

t= b t= b t=<br />

b<br />

∑ ∑ ∑ <br />

f () tdB(, ζ t) = ftB () (, ζ t) = ftB () (, ζ tdt )<br />

i<br />

t= a t= a t=<br />

a<br />

(1) the First Moment <strong>of</strong> the Integration Sum is<br />

⎡t= b ⎤ t=<br />

b<br />

E f() t B(, ζ t) dt = f() t E[ B<br />

∑<br />

∑ (, ζ t)] dt = 0.<br />

<br />

⎢⎣t= a ⎥⎦<br />

t=<br />

a<br />

(2) the Second Moment <strong>of</strong> the Integration sum is<br />

i<br />

0<br />

48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!