04.06.2015 Views

Radial Delta Function, and the 3-D Fourier-Bessel - Gauge-institute ...

Radial Delta Function, and the 3-D Fourier-Bessel - Gauge-institute ...

Radial Delta Function, and the 3-D Fourier-Bessel - Gauge-institute ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

<strong>Radial</strong> <strong>Delta</strong> <strong>Function</strong> <strong>and</strong> <strong>the</strong><br />

3-D <strong>Fourier</strong>-<strong>Bessel</strong> Transform<br />

H. Vic Dannon<br />

vic0@comcast.net<br />

October, 2010<br />

Abstract In [Dan6], we have shown that<br />

δ(,, xyz) = δ()()()<br />

xδ<br />

yδ<br />

z<br />

is <strong>the</strong> 3-dimensional <strong>Fourier</strong> Transform of <strong>the</strong> function 1. Here,<br />

we show that its <strong>Radial</strong> form is <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong><br />

Transform of <strong>the</strong> function 1,<br />

ν=∞<br />

ν=<br />

0<br />

( πνr<br />

)<br />

sin 2<br />

δ( x) δ( y) δ( z) = 4∫ νdν,<br />

r<br />

2 2<br />

r = x + y + z<br />

2 .<br />

Thus,<br />

δ( x) δ( y) δ( z)<br />

is a <strong>Radial</strong>ly Symmetric <strong>Delta</strong> <strong>Function</strong> that we<br />

will denote δ r .<br />

Similarly,<br />

<strong>Radial</strong> ()<br />

ν=∞<br />

2 1<br />

δ( x −ξ) δ( y −η) δ( z − ζ) = 4 sin( 2πνr) sin( 2πνσ)<br />

rσ<br />

∫ dν<br />

ν=<br />

0<br />

is <strong>Radial</strong>ly symmetric, <strong>and</strong> defines <strong>the</strong> <strong>Radial</strong> <strong>Delta</strong> δ <strong>Radial</strong> ( r − σ)<br />

.<br />

The formulas above are exclusively Hyper-real. They cannot be<br />

derived by means of <strong>the</strong> Calculus of Limits, <strong>and</strong> are unknown in<br />

<strong>the</strong> Calculus of Limits.<br />

1


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

The <strong>Radial</strong> <strong>Delta</strong> <strong>Function</strong><br />

δ <strong>Radial</strong> (r − σ)<br />

is a Discontinuous,<br />

Hyper-real function, that spikes at r = σ , <strong>and</strong> vanishes for σ ≠ r .<br />

The <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem for <strong>Radial</strong>ly symmetric<br />

function f () r guarantees that <strong>the</strong> 3-dimesional <strong>Fourier</strong>-<strong>Bessel</strong><br />

Transform <strong>and</strong> its Inverse are well defined operations, so that<br />

inversion yields <strong>the</strong> original function that generated <strong>the</strong><br />

Transform.<br />

It is believed to hold in <strong>the</strong> Calculus of Limits under given<br />

conditions. In fact, it does not hold in <strong>the</strong> Calculus of Limits<br />

because <strong>the</strong> integration of <strong>the</strong> <strong>Fourier</strong> Integral requires <strong>the</strong><br />

ν=∞<br />

∫<br />

( ) ( )<br />

integration of sin 2πνσ sin 2πνr dν<br />

that diverges at σ = r .<br />

ν=<br />

0<br />

Only in Infinitesimal Calculus, we can integrate over<br />

singularities, <strong>and</strong> <strong>the</strong> <strong>Fourier</strong> Integral Theorem holds.<br />

⎛<br />

⎞ ⎟<br />

f () r = 4 ⎜4 f()<br />

d ⎟<br />

⎝<br />

⎠<br />

( πνσ ) ( πνr<br />

)<br />

ν=∞ σ=∞<br />

sin 2 sin 2<br />

⎜<br />

2 2<br />

σ σ σ<br />

∫ ∫ ν d<br />

νσ<br />

νr<br />

ν= 0⎜<br />

σ=<br />

0<br />

⎟<br />

σ=∞ ⎛ ν=∞<br />

⎞ 2 1<br />

2<br />

= f ( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d d<br />

rσ<br />

σ= 0<br />

⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

∫ ∫ ν σ σ<br />

σ=∞ ⎛ ν=∞<br />

⎞ 2<br />

= f ( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d d<br />

σ= 0<br />

⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

∫ ∫ ν σ.<br />

Keywords: Infinitesimal, Infinite-Hyper-real, Hyper-real,<br />

ν<br />

2


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Cardinal, Infinity. Non-Archimedean, Non-St<strong>and</strong>ard Analysis,<br />

Calculus, Limit, Continuity, Derivative, Integral,<br />

2000 Ma<strong>the</strong>matics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15;<br />

46S20; 97I40; 97I30.<br />

Contents<br />

Introduction<br />

1. Hyper-real Line<br />

2. Hyper-real Integral<br />

3. <strong>Delta</strong> <strong>Function</strong><br />

4. The <strong>Fourier</strong> Transform<br />

δ( r −r<br />

) δ( θ −θ ) δ(<br />

φ−φ<br />

0<br />

)<br />

5.<br />

0 0<br />

6. <strong>Radial</strong> <strong>Delta</strong> δ <strong>Radial</strong><br />

() r<br />

7. <strong>Radial</strong> <strong>Delta</strong> δ ( − σ)<br />

<strong>Radial</strong><br />

r<br />

8. δ<strong>Radial</strong>(<br />

r − r0<br />

) <strong>and</strong> δ( r − r0<br />

)<br />

9. 3-D <strong>Fourier</strong>-<strong>Bessel</strong> Transform<br />

10. <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem holds only in Infinitesimal<br />

Calculus<br />

References<br />

3


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Introduction<br />

It is believed that a radially symmetric f () r , satisfies <strong>the</strong> 3-<br />

dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem<br />

⎛<br />

⎞ ⎟<br />

f () r = 4 ⎜4 f()<br />

d ⎟<br />

⎝<br />

⎠<br />

( πνσ ) ( πνr<br />

)<br />

ν=∞ σ=∞<br />

sin 2 sin 2<br />

⎜<br />

2 2<br />

σ σ σ<br />

∫ ∫ ν d<br />

νσ<br />

νr<br />

ν= 0⎜<br />

σ=<br />

0<br />

⎟<br />

σ=∞ ⎛ ν=∞<br />

⎞ 2 1<br />

2<br />

= f ( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d d<br />

rσ<br />

σ= 0<br />

⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

∫ ∫ ν σ σ<br />

However, in <strong>the</strong> Calculus of Limits, at σ = r ,<br />

ν=∞<br />

ν=<br />

0<br />

( ) ( )<br />

∫ sin 2πνσ sin 2πνr dν<br />

=∞.<br />

ν<br />

Avoiding <strong>the</strong> singularity at<br />

σ = r<br />

does not recover <strong>the</strong> <strong>Fourier</strong>-<br />

<strong>Bessel</strong> Integral Theorem, because without <strong>the</strong> singularity <strong>the</strong><br />

integral equals zero.<br />

Thus, <strong>the</strong> <strong>Fourier</strong> Integral Theorem cannot be written in <strong>the</strong><br />

Calculus of Limits.<br />

In Infinitesimal Calculus [Dan4], <strong>the</strong> singularity can be integrated<br />

over, <strong>and</strong> defines <strong>the</strong> Spherical <strong>Delta</strong> <strong>Function</strong> δ <strong>Radial</strong> ( r − σ)<br />

.<br />

Then, for any Hyper-real function f () r , <strong>the</strong> <strong>Fourier</strong>-<strong>Bessel</strong><br />

Integral Theorem is <strong>the</strong> sifting property of δ <strong>Radial</strong> ( r − σ)<br />

.<br />

In <strong>the</strong> calculus of limits,<br />

δ <strong>Radial</strong> (r − σ)<br />

cannot be defined.<br />

4


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

1.<br />

Hyper-real Line<br />

Each real number α can be represented by a Cauchy sequence of<br />

rational numbers, ( r , r , r ,...) so that r → α .<br />

1 2 3<br />

The constant sequence ( ααα , , ,...) is a constant Hyper-real.<br />

In [Dan2] we established that,<br />

1. Any totally ordered set of positive, monotonically decreasing<br />

n<br />

to zero sequences<br />

infinitesimal Hyper-reals.<br />

( ι1, ι2, ι3,...)<br />

constitutes a family of<br />

2. The infinitesimals are smaller than any real number, yet<br />

strictly greater than zero.<br />

1 1 1<br />

3. Their reciprocals ( , , ,...<br />

ι 1<br />

ι 2<br />

ι 3<br />

) are <strong>the</strong> infinite Hyper-reals.<br />

4. The infinite Hyper-reals are greater than any real number,<br />

yet strictly smaller than infinity.<br />

5. The infinite Hyper-reals with negative signs are smaller<br />

than any real number, yet strictly greater than −∞.<br />

6. The sum of a real number with an infinitesimal is a<br />

non-constant Hyper-real.<br />

7. The Hyper-reals are <strong>the</strong> totality of constant Hyper-reals, a<br />

family of infinitesimals, a family of infinitesimals with<br />

5


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

negative sign, a family of infinite Hyper-reals, a family of<br />

infinite Hyper-reals with negative sign, <strong>and</strong> non-constant<br />

Hyper-reals.<br />

8. The Hyper-reals are totally ordered, <strong>and</strong> aligned along a<br />

line: <strong>the</strong> Hyper-real Line.<br />

9. That line includes <strong>the</strong> real numbers separated by <strong>the</strong> nonconstant<br />

Hyper-reals. Each real number is <strong>the</strong> center of an<br />

interval of Hyper-reals, that includes no o<strong>the</strong>r real number.<br />

10. In particular, zero is separated from any positive real<br />

by <strong>the</strong> infinitesimals, <strong>and</strong> from any negative real by <strong>the</strong><br />

infinitesimals with negative signs, −dx .<br />

11. Zero is not an infinitesimal, because zero is not strictly<br />

greater than zero.<br />

12. We do not add infinity to <strong>the</strong> Hyper-real line.<br />

13. The infinitesimals, <strong>the</strong> infinitesimals with negative<br />

signs, <strong>the</strong> infinite Hyper-reals, <strong>and</strong> <strong>the</strong> infinite Hyper-reals<br />

with negative signs are semi-groups with<br />

respect to addition. Nei<strong>the</strong>r set includes zero.<br />

14. The Hyper-real line is embedded in , <strong>and</strong> is not<br />

∞<br />

homeomorphic to <strong>the</strong> real line. There is no bi-continuous<br />

one-one mapping from <strong>the</strong> Hyper-real onto <strong>the</strong> real line.<br />

6


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

15. In particular, <strong>the</strong>re are no points on <strong>the</strong> real line that<br />

can be assigned uniquely to <strong>the</strong> infinitesimal Hyper-reals, or<br />

to <strong>the</strong> infinite Hyper-reals, or to <strong>the</strong> non-constant Hyperreals.<br />

16. No neighbourhood of a Hyper-real is homeomorphic to<br />

an<br />

n<br />

ball. Therefore, <strong>the</strong> Hyper-real line is not a manifold.<br />

17. The Hyper-real line is totally ordered like a line, but it<br />

is not spanned by one element, <strong>and</strong> it is not one-dimensional.<br />

7


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

2.<br />

Hyper-real Integral<br />

In [Dan3], we defined <strong>the</strong> Hyper-real integral of a Hyper-real<br />

<strong>Function</strong>.<br />

Let f () x be a Hyper-real function on <strong>the</strong> interval [ ab] , .<br />

The interval may not be bounded.<br />

f () x may take infinite Hyper-real values, <strong>and</strong> need not be<br />

bounded.<br />

At each<br />

a<br />

≤<br />

x<br />

≤b,<br />

<strong>the</strong>re is a rectangle with base<br />

dx dx<br />

[ x − , x + 2<br />

], height f () x , <strong>and</strong> area<br />

2<br />

f ( xdx. )<br />

We form <strong>the</strong> Integration Sum of all <strong>the</strong> areas for <strong>the</strong> x ’s that<br />

start at x = a, <strong>and</strong> end at x = b,<br />

∑ f ( xdx ) .<br />

x∈[ a, b]<br />

If for any infinitesimal dx , <strong>the</strong> Integration Sum has <strong>the</strong> same<br />

Hyper-real value, <strong>the</strong>n f () x is integrable over <strong>the</strong> interval [ ab] , .<br />

Then, we call <strong>the</strong> Integration Sum <strong>the</strong> integral of f () x from x = a,<br />

to x<br />

= b, <strong>and</strong> denote it by<br />

8


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

x=<br />

b<br />

∫ f ( xdx ) .<br />

x=<br />

a<br />

If <strong>the</strong> Hyper-real is infinite, <strong>the</strong>n it is <strong>the</strong> integral over [, ab] ,<br />

If <strong>the</strong> Hyper-real is finite,<br />

x=<br />

b<br />

∫ fxdx ( ) = real part of <strong>the</strong> hyper-real . <br />

x=<br />

a<br />

2.1 The countability of <strong>the</strong> Integration Sum<br />

In [Dan1], we established <strong>the</strong> equality of all positive infinities:<br />

We proved that <strong>the</strong> number of <strong>the</strong> Natural Numbers,<br />

Card , equals <strong>the</strong> number of Real Numbers,<br />

2 Card <br />

Card = , <strong>and</strong><br />

we have<br />

2 Card<br />

2<br />

Card <br />

Card = ( Card) = .... = 2 = 2 = ... ≡ ∞.<br />

In particular, we demonstrated that <strong>the</strong> real numbers may be<br />

well-ordered.<br />

Consequently, <strong>the</strong>re are countably many real numbers in <strong>the</strong><br />

interval [ ab] , , <strong>and</strong> <strong>the</strong> Integration Sum has countably many terms.<br />

While we do not sequence <strong>the</strong> real numbers in <strong>the</strong> interval, <strong>the</strong><br />

summation takes place over countably many f ( xdx. )<br />

9


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

The Lower Integral is <strong>the</strong> Integration Sum where f ( x ) is replaced<br />

by its lowest value on each interval<br />

2.2<br />

∑<br />

x∈[ a, b]<br />

⎛<br />

⎜⎝<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

⎞<br />

inf f ( t)<br />

dx<br />

⎠⎟<br />

x− ≤t≤ x+<br />

dx dx<br />

2 2<br />

The Upper Integral is <strong>the</strong> Integration Sum where f ( x ) is replaced<br />

by its largest value on each interval<br />

2.3<br />

∑<br />

x∈[ a, b]<br />

⎛<br />

⎜⎝<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

⎞ sup f ( t)<br />

dx<br />

⎠⎟<br />

x− ≤t≤ x+<br />

dx dx<br />

2 2<br />

If <strong>the</strong> integral is a finite Hyper-real, we have<br />

2.4 A Hyper-real function has a finite integral if <strong>and</strong> only if its<br />

upper integral <strong>and</strong> its lower integral are finite, <strong>and</strong> differ by an<br />

infinitesimal.<br />

10


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

3.<br />

<strong>Delta</strong> <strong>Function</strong><br />

In [Dan5], we defined <strong>the</strong> <strong>Delta</strong> <strong>Function</strong>, <strong>and</strong> established its<br />

properties<br />

1. The <strong>Delta</strong> <strong>Function</strong> is a Hyper-real function defined from <strong>the</strong><br />

Hyper-real line into <strong>the</strong> set of two Hyper-reals<br />

⎧<br />

⎪ 1 ⎫<br />

⎨0, ⎪<br />

⎬<br />

⎪⎩<br />

dx<br />

⎭⎪ . The<br />

Hyper-real 0 is <strong>the</strong> sequence<br />

0, 0, 0,... . The infinite Hyperreal<br />

1<br />

dx<br />

depends on our choice of dx .<br />

2. We will usually choose <strong>the</strong> family of infinitesimals that is<br />

spanned by <strong>the</strong> sequences<br />

1<br />

n , 1<br />

2<br />

n<br />

,<br />

1<br />

n<br />

3<br />

,… It is a<br />

semigroup with respect to vector addition, <strong>and</strong> includes all<br />

<strong>the</strong> scalar multiples of <strong>the</strong> generating sequences that are<br />

non-zero. That is, <strong>the</strong> family includes infinitesimals with<br />

negative sign. Therefore,<br />

1<br />

dx<br />

will mean <strong>the</strong> sequence n .<br />

Alternatively, we may choose <strong>the</strong> family spanned by <strong>the</strong><br />

sequences<br />

1<br />

2 n ,<br />

1<br />

3 n ,<br />

1<br />

4 n ,… Then, 1<br />

dx<br />

will mean <strong>the</strong><br />

11


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

sequence 2 n<br />

. Once we determined <strong>the</strong> basic infinitesimal<br />

dx , we will use it in <strong>the</strong> Infinite Riemann Sum that defines<br />

an Integral in Infinitesimal Calculus.<br />

3. The <strong>Delta</strong> <strong>Function</strong> is strictly smaller than ∞<br />

4. We define,<br />

1<br />

χ δ ( x) ≡ dx ( )<br />

,<br />

dx x<br />

dx<br />

⎡ ⎤ ,<br />

⎢−<br />

⎣ 2 2 ⎥⎦<br />

where<br />

χ ⎡<br />

⎢−<br />

⎣<br />

dx,<br />

dx<br />

2 2<br />

⎧ dx dx<br />

1, x ∈ ⎡−<br />

, ⎤<br />

( x)<br />

= ⎪ ⎢ 2 2 ⎥<br />

⎨ ⎣ ⎦ .<br />

⎪⎪ 0, o<strong>the</strong>rwise<br />

⎩<br />

⎤<br />

⎥⎦<br />

5. Hence,<br />

for x < 0 , δ ( x) = 0<br />

at<br />

for<br />

dx<br />

x =− , δ( x)<br />

jumps from 0 to<br />

2<br />

dx dx<br />

⎢ ⎣<br />

,<br />

2 2 ⎥ ⎦ , 1<br />

( x)<br />

x ∈ ⎡−<br />

⎤<br />

δ = .<br />

dx<br />

1<br />

dx ,<br />

at x = 0 ,<br />

δ (0) =<br />

1<br />

dx<br />

at<br />

dx<br />

x = , δ( x)<br />

drops from<br />

2<br />

for x > 0 , δ ( x) = 0.<br />

xδ ( x) = 0<br />

1<br />

dx to 0.<br />

6. If dx =<br />

1<br />

, ( x) = 1 1( x),2 1 1( x),3 1 1( x )...<br />

n<br />

[ − , ] [ − , ] [ − , ]<br />

δ χ χ χ<br />

2 2 4 4 6 6<br />

7. If dx =<br />

2<br />

,<br />

n<br />

1 2 3<br />

δ ( x) = , , ,...<br />

2 2 2<br />

2 cosh x 2 cosh 2x 2 cosh 3x<br />

12


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

8. If dx =<br />

1<br />

,<br />

n<br />

− x − 2x − 3x<br />

[0, ∞) [0, ∞) [0, ∞)<br />

δ( x) = e χ ,2 e χ , 3 e χ ,...<br />

x =∞<br />

∫<br />

9. δ( xdx ) = 1.<br />

x =−∞<br />

13


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

4.<br />

The <strong>Fourier</strong> Transform<br />

In [Dan6], we defined <strong>the</strong> <strong>Fourier</strong> Transform <strong>and</strong> established its<br />

properties<br />

1. F { x }<br />

δ ( ) = 1<br />

2. δ( x)<br />

= <strong>the</strong> inverse <strong>Fourier</strong> Transform of <strong>the</strong> unit function 1<br />

ω=∞<br />

1<br />

=<br />

2π<br />

∫<br />

ν=∞<br />

ω=−∞<br />

e<br />

2πix<br />

iωx<br />

dω<br />

= ∫ e dν<br />

, ω = 2πν<br />

ν=−∞<br />

3.<br />

1<br />

2π<br />

ω=∞<br />

∫<br />

ω=−∞<br />

e<br />

iωx<br />

dω<br />

x = 0<br />

=<br />

1 = an infinite Hyper-real<br />

dx<br />

ω=∞<br />

∫<br />

ω=−∞<br />

e<br />

iωx<br />

dω<br />

x ≠0<br />

=<br />

0<br />

4. <strong>Fourier</strong> Integral Theorem<br />

k =∞ ⎛ ξ=∞<br />

⎞<br />

1<br />

−ikξ<br />

f ( x) = f( ξ)<br />

e ξ<br />

2π<br />

k =−∞ ⎜<br />

⎝ξ=−∞<br />

⎠⎟<br />

ikx<br />

∫ ∫ d e dk<br />

does not hold in <strong>the</strong> Calculus of Limits, under any<br />

conditions.<br />

14


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

5. <strong>Fourier</strong> Integral Theorem in Infinitesimal Calculus<br />

If f ( x ) is Hyper-real function,<br />

Then,<br />

<strong>the</strong> Hyper-real <strong>Fourier</strong> Integral Theorem holds.<br />

x =∞<br />

−iαx<br />

∫ f ( xe ) dx converges to F( α)<br />

x =−∞<br />

<br />

1<br />

2π<br />

α=∞<br />

−iαx<br />

∫ F( α)<br />

e dα converges to f ( x )<br />

α=−∞<br />

6. 3-Dimesional <strong>Fourier</strong> Transform<br />

F<br />

{ }<br />

z=∞ y=∞ x=∞<br />

−iω x−iω y−iω<br />

z<br />

x y z<br />

f (,, xyz) fxyze (,, ) dxdydz<br />

= ∫ ∫ ∫<br />

z=−∞ y=−∞ x=−∞<br />

z=∞ y=∞ x=∞<br />

− 2 πi( ν x+ ν y+<br />

ν z)<br />

x y z<br />

= ∫ ∫ ∫ f (,, x y z) e<br />

dxdydz ,<br />

z=−∞ y=−∞ x=−∞<br />

ω<br />

ω<br />

ω<br />

x<br />

y<br />

z<br />

= 2πν<br />

= 2πν<br />

= 2πν<br />

x<br />

y<br />

z<br />

8. 3-Dimesional Inverse <strong>Fourier</strong> Transform<br />

−1<br />

ωz=∞ ωy<br />

=∞ ωx=∞<br />

1<br />

i( ωxx+ ωyy+<br />

ωzz)<br />

x y z 3<br />

x y z x y z<br />

(2 π)<br />

ω =−∞ ω =−∞ ω =−∞<br />

{ } = ∫ ∫ ∫<br />

F F( ω , ω , ω ) F( ω , ω , ω ) e<br />

dω dω dω<br />

z y x<br />

ν =∞ ν =∞ ν =∞<br />

z<br />

∫ ∫ ∫<br />

2 πi( νxx+ νyy+<br />

νzz)<br />

= F(2 πν ,2 πν ,2 πν ) e dν dν dν<br />

,<br />

ν =−∞ ν =−∞ ν =−∞<br />

z y x<br />

y<br />

x<br />

x y z x y<br />

z<br />

ω<br />

ω<br />

ω<br />

x<br />

y<br />

z<br />

= 2πν<br />

= 2πν<br />

= 2πν<br />

x<br />

y<br />

z<br />

15


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

9. 3-Dimesional <strong>Fourier</strong> Integral Theorem<br />

ωz=∞ ωy<br />

=∞ ωx=∞ ⎛ ζ=∞ η=∞ ξ=∞<br />

⎞<br />

1<br />

−iωξ x<br />

−iωη y<br />

−iωζ<br />

z<br />

fxyz (,, ) = f(, ξηζ , ) e ddd ξ ηζ<br />

3 ∫ ∫ ∫ ×<br />

(2 π)<br />

∫ ∫ ∫<br />

ω =−∞ ω =−∞ ω =−∞<br />

⎜⎝ζ=−∞ η=−∞ ξ=−∞<br />

⎠⎟<br />

z y x<br />

x<br />

i( ω x+ iω y+<br />

iω<br />

z)<br />

x y z<br />

× e d d d<br />

y<br />

ω ω ω<br />

x y z<br />

ζ=∞ η=∞ ξ=∞ ⎛ ω<br />

1 x =∞<br />

⎞ ⎛ ωy<br />

=∞<br />

⎞<br />

iω<br />

( ) 1<br />

i<br />

y( y )<br />

( , , )<br />

x<br />

x−ξ<br />

ω −η<br />

= ∫ ∫ ∫ f ξηζ e dω 2<br />

x<br />

dξ e dω 2<br />

y<br />

η×<br />

π<br />

∫ π<br />

∫ ζ=−∞ η=−∞ ξ=−∞ ⎜ d<br />

⎝ ω =−∞ ⎠⎟ ⎜⎝ ω =−∞<br />

⎠⎟<br />

⎛ ωz<br />

=∞<br />

⎞ 1<br />

iωz<br />

( z−ζ)<br />

e dω<br />

×⎜<br />

⎜<br />

z<br />

ζ<br />

2π<br />

∫<br />

d<br />

⎜<br />

⎝ ω =−∞<br />

⎠⎟<br />

ζ=∞ η=∞ ξ=∞ ⎛ νx<br />

=∞<br />

⎞ ⎛ νy<br />

=∞<br />

⎞<br />

2 πν i ( )<br />

2 i<br />

y( y )<br />

( , , )<br />

x<br />

x−ξ<br />

πν −η<br />

= ∫ ∫ ∫ f ξηζ e dν x<br />

dξ e dν y<br />

dη×<br />

∫ ∫<br />

ζ=−∞ η=−∞ ξ=−∞ ⎝⎜ ν =−∞ ⎠⎟ ⎜⎝ν<br />

=−∞<br />

⎠⎟<br />

x<br />

y<br />

z<br />

10. 3-Dimesional <strong>Delta</strong> <strong>Function</strong><br />

⎛ νz<br />

=∞<br />

⎞ 2 πν i<br />

z<br />

( z−ζ)<br />

e dν<br />

×⎜<br />

⎜<br />

z<br />

dζ<br />

∫ ,<br />

⎜⎝ν<br />

=−∞<br />

⎠⎟<br />

z<br />

ω<br />

ω<br />

ω<br />

x<br />

y<br />

z<br />

= 2πν<br />

= 2πν<br />

= 2πν<br />

x<br />

y<br />

z<br />

⎛ ωx<br />

=∞ ⎞⎛<br />

ωy<br />

=∞ ⎞⎛<br />

ωz<br />

=∞<br />

1 i 1 i 1<br />

yy<br />

( xyz , ,<br />

xx i<br />

zz<br />

)<br />

x<br />

y<br />

2 e ω<br />

d 2 e ω<br />

d 2<br />

e ω<br />

δ = ω ω<br />

π π π<br />

d ω<br />

⎝⎜<br />

ω =−∞ ⎠⎟<br />

⎜⎝<br />

ω =−∞ ⎠⎟<br />

⎝⎜<br />

ω =−∞<br />

∫ ∫ ∫ z<br />

x y z<br />

⎞<br />

⎠⎟<br />

⎛ ν<br />

ν =∞<br />

x=∞ ⎞⎛<br />

y<br />

⎞⎛<br />

νz=∞<br />

πν<br />

πν<br />

2 i πν<br />

e dν<br />

2<br />

=<br />

xx i<br />

yy<br />

e dν<br />

2 i e<br />

zz<br />

d<br />

∫<br />

⎜<br />

∫ ∫ ν<br />

⎝ν =−∞ ⎠⎟⎜<br />

⎝ν =−∞ ⎠⎟<br />

⎝⎜ν<br />

=−∞<br />

x y z<br />

x y z<br />

⎞<br />

,<br />

⎠⎟<br />

ω<br />

ω<br />

ω<br />

x<br />

y<br />

z<br />

= 2πν<br />

= 2πν<br />

= 2πν<br />

x<br />

y<br />

z<br />

16


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

5.<br />

δ( r −r<br />

) δ( θ −θ ) δ(<br />

φ −φ<br />

0<br />

)<br />

0 0<br />

5.1<br />

1<br />

δ ( r − r0 ) = χ[ dr<br />

0 , dr<br />

2 0<br />

] ( )<br />

r − r +<br />

dr r , r ≥ 0<br />

2<br />

5.2<br />

1<br />

δθ ( − θ<br />

0 ) = χ[ dθ<br />

0 , dθ<br />

2 0<br />

] ( θ)<br />

, 0 ≤ θ ≤ π<br />

θ − θ +<br />

dθ 2<br />

5.3<br />

1<br />

δφ ( − φ<br />

0 ) = χ[ dφ<br />

( )<br />

0 , dφ<br />

φ,<br />

0 ≤ φ ≤ 2π<br />

dφ φ − φ<br />

2 0+<br />

] 2<br />

The product<br />

δ( r −r<br />

) δ( θ −θ ) δ(<br />

φ−<br />

0 0<br />

0 )<br />

φ 0 )<br />

defines a <strong>Delta</strong> <strong>Function</strong><br />

that sifts along a line through its singularity at ( r , θ , φ ).<br />

0 0 0<br />

5.4<br />

0 0 0 0 0<br />

δ( r −r , θ −θ , φ−φ ) ≡ δ( r −r<br />

) δ( θ −θ ) δ(<br />

φ−<br />

φ<br />

=<br />

1 χ<br />

1 1<br />

[ dr<br />

0 , dr<br />

2 0 ] () r χ[<br />

2 0 , 2 0 ] () ()<br />

r r<br />

dθ dθ θ χ<br />

2 [ dφ 0 , dφ<br />

φ<br />

− + θ − θ +<br />

dr dθ<br />

dφ φ − φ<br />

2 0+<br />

] 2<br />

Transforming between Spherical <strong>and</strong> Cartesian Coordinates<br />

17


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

x<br />

y<br />

z<br />

= r sin θcosφ<br />

= r sin θsin<br />

φ , y = r sin θ sin φ ,<br />

= r cos θ<br />

x<br />

z<br />

= r<br />

sin θ<br />

0 0 0<br />

0 0 0<br />

= r<br />

cosθ<br />

0 0 0<br />

cosφ<br />

0<br />

0<br />

r<br />

0<br />

> 0<br />

1<br />

δ( − ) δ( − ) δ( − ) = δ( − ) δ( θ −θ ) δ(<br />

φ−φ<br />

0<br />

)<br />

5.5 x x0 y y0 z z0 r r<br />

2<br />

0 0<br />

r0 sin θ0<br />

Proof:<br />

δ( r −r ) δ( θ −θ ) δ( φ− φ ) drdθdφ = δ( x −x ) δ( y −y ) δ( z −z ) dxdydz<br />

0 0 0 0 0 0<br />

∂(,, xyz)<br />

δ( r −r0) δ( θ −θ0) δ( φ − φ0) = δ( x −x0) δ( y −y0) δ( z −z0)<br />

∂(, r θφ , )<br />

<br />

Both sides vanish unless<br />

r = r +infinitesimal ≈ r ,<br />

0 0<br />

<strong>and</strong><br />

θ = θ +infinitesimal ≈ θ<br />

0 0 .<br />

Therefore, we can replace r with , <strong>and</strong> θ with θ .<br />

r0<br />

0<br />

r<br />

2<br />

sin θ<br />

2<br />

0 0 0 0 0 0 0 φ 0 )<br />

δ( x −x ) δ( y −y ) δ( z − z ) r sin θ = δ( r −r<br />

) δ( θ −θ ) δ(<br />

φ−<br />

. <br />

x = r sin θcosφ<br />

5.6 y = r sin θsin<br />

φ ,<br />

z = r cos θ<br />

r<br />

0<br />

= 0 ⇒<br />

1<br />

δ()()() x δ y δ z = δ()<br />

r<br />

2<br />

4πr<br />

Proof:<br />

δ()()() r δ θ δ φdrdθdφ = δ()()()<br />

x δ y δ z dxdydz<br />

=<br />

4<br />

1<br />

dr dr<br />

2 2<br />

χ 2 [ − , ]<br />

πr dr<br />

() r<br />

18


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

∂(,, xyz)<br />

δ()()() r δ θ δ φ = δ()()()<br />

x δ y δ z<br />

∂(, r θφ , )<br />

<br />

r<br />

2 sin θ<br />

Since r = , φ may take any value in [0,2 π]<br />

, θ may take any<br />

0<br />

0<br />

value in [0, π]<br />

, <strong>and</strong> we integrate over <strong>the</strong>m. Then,<br />

2<br />

φ= 2π φ=<br />

2π<br />

∫<br />

r sin θdθ dφδ( x)()() δ y δ z = δ()() r δ θ dθ δ( φ)<br />

dφ<br />

2<br />

φ= 0 φ=<br />

0<br />

<br />

2π<br />

1<br />

θ= π θ=<br />

π<br />

2 πr δ( x)()() δ y δ z sin θdθ = δ() r δ()<br />

θ dθ.<br />

2<br />

∫<br />

<br />

θ= 0 θ=<br />

0<br />

θ=<br />

π<br />

− cos θ = 2<br />

θ=<br />

0<br />

∫<br />

4 πr δ( x)()() δ y δ z = δ()<br />

r .<br />

<br />

1<br />

∫<br />

<br />

19


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

6.<br />

<strong>Radial</strong> <strong>Delta</strong> δ <strong>Radial</strong> () r<br />

6.1<br />

ν=∞<br />

sin(2 πνr)<br />

δ( x) δ( y) δ( z) = 4∫<br />

νdν<br />

r<br />

ν=<br />

0<br />

Proof: By 4.10,<br />

⎛ νx=∞ ⎞⎛<br />

νy<br />

=∞ ⎞⎛<br />

νz=∞<br />

2 i 2 i<br />

yy<br />

2<br />

( ) ( ) ( ) πνxx d i<br />

zz<br />

x<br />

πν<br />

d y<br />

πν<br />

δ δ δ = ν ν d ν<br />

⎜<br />

⎝νx=−∞ ⎠⎟⎜<br />

⎝<br />

νy=−∞ ⎠⎟<br />

⎝⎜νz=−∞<br />

Substitute<br />

x = r sin θcosφ<br />

νx<br />

= νsin<br />

γcos<br />

β<br />

y = r sin θsin<br />

φ νy<br />

= νsin<br />

γsin<br />

β<br />

z = r cos θ νz<br />

= νcos<br />

γ<br />

Then,<br />

ν x + ν y + ν z<br />

x y z<br />

=<br />

∫ ∫ ∫ z<br />

{ }<br />

= νr<br />

⎡sin θsin γ cosφcos β + sin φsin β + cos θcos<br />

γ⎤<br />

⎣<br />

⎦<br />

= νr<br />

⎡sin θsin γcos( β − φ) + cosθcos<br />

γ⎤<br />

⎣<br />

⎦<br />

Integrating with respect to ν , γ , <strong>and</strong> β ,<br />

ν=∞ ⎛γ= π⎡β=<br />

2π<br />

⎤ ⎞ 2πν i r sinθsinγcos( β−φ) 2πν i r cosθcosγ<br />

2<br />

= e dβ<br />

e<br />

sin γdγ ∫ ν dν<br />

∫ ∫<br />

ν= 0⎜<br />

⎝ ⎢<br />

⎥<br />

γ= 0⎣<br />

β=<br />

0<br />

⎦<br />

⎠⎟<br />

Denoting<br />

α = β − φ,<br />

⎞<br />

⎟<br />

⎠<br />

20


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

β= 2π α= 2π−φ<br />

2πν i r sin θsin γcos( β−φ) 2πν i r sin θsin γcos<br />

α<br />

∫ e dβ<br />

= ∫ e<br />

d α<br />

β= 0<br />

α=−φ<br />

2 i r sin sin cos<br />

Since e πν θ γ α is periodic in α with period 2 π ,<br />

α=<br />

2π<br />

α=<br />

0<br />

α=<br />

2π<br />

= ∫<br />

α=<br />

0<br />

e<br />

2πν i r sin θsin γcos<br />

α<br />

dα<br />

⎛<br />

2<br />

2πν i rsinθsinγcos α (2πν i rsinθsinγcos α)<br />

⎞<br />

= 1 .<br />

∫ ⎜<br />

+ + + .. dα<br />

.<br />

⎜⎝<br />

1 2!<br />

⎠⎟<br />

The integrals of <strong>the</strong> odd powers vanish, <strong>and</strong> we have<br />

2 4<br />

(2πνr sin θ sin γ) (2πνr sin θ sin γ) (2πνr<br />

sin θ sin γ)<br />

= 2π − 2π + 2π − 2π<br />

+ ...<br />

2 2 2 2 2 2<br />

2 2 ⋅4 2 ⋅4 ⋅6<br />

6<br />

=<br />

2 πJ<br />

(2πνr<br />

sinθsinγ).<br />

0<br />

Therefore,<br />

ν=∞ ⎛γ=<br />

π<br />

⎞ 2πν i r cosθcosγ<br />

2<br />

δ( x) δ( y) δ( z) = 2 πJ0(2πνrsin θsin γ) e sin γdγ ∫ ν dν<br />

∫<br />

ν= 0<br />

⎜<br />

⎝γ=<br />

0<br />

⎠⎟<br />

Denote<br />

Then,<br />

u = cos γ ,<br />

du =−sin<br />

γdγ<br />

γ = 0 ⇒ u = 1 ,<br />

γ = π ⇒ u = −1<br />

<strong>and</strong> <strong>the</strong> γ summation becomes<br />

21


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

u=<br />

1<br />

∫<br />

u=−1<br />

0<br />

2 [2πν<br />

i r cos θ]<br />

u<br />

2 π J ([2πνr sin θ] 1 − u ) e du =<br />

u=<br />

1<br />

∫<br />

= 8 π J ([2πνr sin θ] 1 −u )cos([2πνr cos θ] u)<br />

du.<br />

u=<br />

0<br />

0<br />

2<br />

Denote<br />

Then,<br />

2<br />

u = 1 − v .<br />

v<br />

du =− dv<br />

2<br />

1 − v<br />

u = 0 ⇒ v = 1 ,<br />

u = 1 ⇒ v = 0<br />

<strong>and</strong> <strong>the</strong> u summation becomes<br />

v=<br />

1<br />

∫<br />

= 8 π J ([2πνr sin θ] v)cos([2πνrcos θ] 1 −v<br />

)<br />

v=<br />

0<br />

0<br />

2<br />

v<br />

1 − v<br />

2<br />

dv.<br />

Denoting,<br />

b<br />

c<br />

=<br />

=<br />

2πνr<br />

cosθ<br />

,<br />

2πνr<br />

sinθ<br />

v=<br />

1<br />

2 v<br />

∫ J0<br />

cv b v dv.<br />

2<br />

v=<br />

0<br />

1 − v<br />

= 8 π ( )cos( 1 − )<br />

By [Prudnikov, Vol.2, p.201, 2.12.21 #5], <strong>the</strong> γ summation equals<br />

π<br />

= 8π<br />

+ +<br />

−1<br />

2 2<br />

( ) ( )<br />

4 2 2<br />

1<br />

2 b c J b c<br />

2<br />

22


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Since 1 ( )<br />

π 1<br />

= 8π<br />

J1<br />

2 ν<br />

2 2πνr<br />

2<br />

1<br />

= 4π<br />

J1<br />

2 ν<br />

νr<br />

2<br />

( π r)<br />

( π r)<br />

2 J x = sin x , <strong>the</strong> γ summation equals<br />

2 πx<br />

= 1 2<br />

4π<br />

sin<br />

νr<br />

π2πνr<br />

2 ν<br />

( π r )<br />

Therefore,<br />

=<br />

1<br />

4 sin 2 r<br />

νr<br />

( πν )<br />

ν=∞<br />

ν=<br />

0<br />

( πνr<br />

)<br />

sin 2<br />

δ( x) δ( y) δ( z) = 4∫ νdν.<br />

<br />

r<br />

Thus,<br />

δ( x) δ( y) δ( z)<br />

is a <strong>Radial</strong>ly Symmetric <strong>Delta</strong> <strong>Function</strong> that we<br />

will denote δ r .<br />

<strong>Radial</strong> ()<br />

6.2 The <strong>Radial</strong> <strong>Delta</strong> r Definition<br />

<strong>Radial</strong> ()<br />

δ<br />

<strong>Radial</strong><br />

ν=∞<br />

sin ( 2πνr<br />

)<br />

δ<br />

() r ≡ 4∫ νdν<br />

r<br />

ν=<br />

0<br />

23


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

7.<br />

<strong>Radial</strong> <strong>Delta</strong><br />

δ <strong>Radial</strong> ( r − σ)<br />

By 6.2, we have,<br />

7.1<br />

δ<br />

<strong>Radial</strong><br />

( r −σ) ≡ 4<br />

ν=∞<br />

∫<br />

ν=<br />

0<br />

( πν r − σ )<br />

sin 2 [ ]<br />

r − σ<br />

νdν<br />

Alternatively, we may derive similarly to 6.1,<br />

ν=∞<br />

2 1<br />

7.2 δ( x −ξ) δ( y −η) δ( z − ζ) = 4 sin(2 πνr)sin(2 πνσ)<br />

ν<br />

rσ<br />

∫ d<br />

Proof: By 4.2,<br />

δ( x −ξ) δ( y −η) δ( z − ζ)<br />

=<br />

ν=<br />

0<br />

ν=∞<br />

2 1<br />

=<br />

2 ∫<br />

r<br />

ν=<br />

0<br />

4 sin(2 πνr)sin(2 πνσ)<br />

dν<br />

⎛ νx<br />

=∞ ⎞⎛<br />

νy<br />

=∞<br />

⎞⎛<br />

νz<br />

=∞<br />

e 2 πν i ( ) 2 i<br />

y<br />

( y )<br />

x<br />

x−ξ d 2 i<br />

z<br />

( z )<br />

x<br />

e πν −η<br />

d y<br />

e πν −ζ<br />

= ν<br />

ν<br />

∫ ∫ ∫ d<br />

⎜⎝ ν =−∞ ⎟⎠⎜<br />

⎝ν =−∞ ⎠⎟<br />

⎜⎝ν<br />

=−∞<br />

x y z<br />

ν z<br />

⎞<br />

⎠⎟<br />

Substitute<br />

x = r sin θcosφ<br />

y = r sin θsin<br />

φ<br />

z = r cos θ<br />

Then,<br />

ξ = σsin<br />

λcos<br />

μ<br />

η = σsin<br />

λsin<br />

μ<br />

ζ = σcosλ<br />

ν = νsin<br />

γcos<br />

β<br />

x<br />

ν = νsin<br />

γsin<br />

β<br />

y<br />

ν = νcos<br />

γ<br />

z<br />

24


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

ν x + ν y + ν z =<br />

x y z<br />

νξ<br />

x<br />

+ νη<br />

y<br />

+ νζ<br />

z<br />

= νr<br />

⎡sin θsin γ cosφcos β + sin φsin β + cos θcos<br />

γ⎤<br />

⎣<br />

⎦<br />

= νr<br />

⎡sin θsin γcos( β − φ) + cosθcos<br />

γ⎤<br />

⎣<br />

⎦<br />

=<br />

{ }<br />

{ }<br />

= νσ ⎡sinλ sin γ cos μ cos β + sin μ sin β + cosλ cos γ ⎤<br />

⎣<br />

⎦<br />

= νσ ⎡sin λ sin γ cos( β − μ) + cosλ cos γ ⎤<br />

⎣<br />

⎦<br />

Integrating with respect to ν , γ , <strong>and</strong> β ,<br />

ν=∞ ⎛γ= π⎛β=<br />

2π<br />

⎞ 2πν i r sin θsin γcos( β−φ) −2πνσ i sin λsin γcos( β−μ)<br />

= e<br />

e<br />

dβ<br />

∫ ×<br />

∫ ∫<br />

ν= 0 ⎜ ⎝γ= 0⎜⎝ β=<br />

0<br />

⎠⎟<br />

2πν i r cosθcos γ −2πνσ i cosλcos γ<br />

2<br />

× e e sin γdγ ν<br />

)<br />

dν.<br />

Denoting<br />

A = β − φ, B = β −μ,<br />

β=<br />

2π<br />

∫<br />

β=<br />

0<br />

e<br />

2πν i r sin θsin γcos( β−φ) −2πνσ i sinλsin γcos( β−μ)<br />

e<br />

dβ<br />

=<br />

A= 2π− φ B= 2π−μ<br />

2πν i r sin θsin γcosA −2πνσ i sinλsin γcosB<br />

= ∫ ∫<br />

e dA e<br />

A=− φ<br />

B=−μ<br />

dB<br />

2πν i rsinθsinγcosA<br />

−2πνσ i sinλsinγcosB<br />

e<br />

Since e , <strong>and</strong> are periodic with<br />

period 2 π ,<br />

25


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

A= 2π<br />

B=<br />

2π<br />

2πν i r sin θsin γcosA −2πνσ i sin λsin γcosB<br />

= ∫ e dA ∫ e<br />

dB<br />

A= 0 B=<br />

0<br />

Integrating,<br />

A=<br />

2π<br />

∫<br />

A=<br />

0<br />

e<br />

2πν i r sinθsinγcosA<br />

dA<br />

=<br />

A=<br />

2π<br />

⎛<br />

2<br />

2πν i rsinθsinγcos A (2πν i rsinθsinγcos A)<br />

⎞<br />

= 1 ...<br />

∫<br />

⎜<br />

+ + +<br />

dA<br />

⎜⎝<br />

1 2!<br />

⎠⎟<br />

A=<br />

0<br />

The integrals of <strong>the</strong> odd powers vanish, <strong>and</strong> we have<br />

2 4<br />

(2πνr sin θ sin γ) (2πνr sin θ sin γ) (2πνr<br />

sin θ sin γ)<br />

= 2π − 2π + 2π − 2π<br />

+ ...<br />

2 2 2 2 2 2<br />

2 2 ⋅4 2 ⋅4 ⋅6<br />

6<br />

=<br />

2 πJ<br />

(2πνrsinθsinγ).<br />

0<br />

Similarly,<br />

B=<br />

2π<br />

∫<br />

B=<br />

0<br />

e<br />

−2πνσ i sinλsinγcosB<br />

dB<br />

=<br />

B=<br />

2π<br />

⎛<br />

2<br />

2πνσ i sinλsin γcos B (2πν i rsinλsin γcos B)<br />

⎞<br />

= 1 .<br />

∫ ⎜<br />

+ + + ..<br />

dB<br />

⎜⎝<br />

1 2!<br />

⎠⎟<br />

B=<br />

0<br />

The integrals of <strong>the</strong> odd powers vanish, <strong>and</strong> we have<br />

2 4<br />

(2πνσsin λsin γ) (2πνσsin λsin γ) (2πνσsin λsin γ)<br />

= 2π − 2π + 2π − 2π<br />

+ ...<br />

2 2 2 2 2 2<br />

2 2 ⋅4 2 ⋅4 ⋅6<br />

6<br />

=<br />

2 πJ<br />

(2πνσsinλsinγ).<br />

0<br />

26


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Therefore, <strong>the</strong><br />

γ<br />

summation is<br />

γ=<br />

π<br />

∫<br />

γ=<br />

0<br />

2 πJ (2πνr sinθsin γ)<br />

e<br />

0<br />

2πν i r cosθcosγ<br />

0<br />

×<br />

−2 i cos cos<br />

πνσ λ γ<br />

× 2 πJ (2πνσsinλsin γ) e sin γdγ<br />

=<br />

Denoting,<br />

b<br />

c<br />

1<br />

1<br />

= 2πνrcosθ<br />

b2<br />

= 2πνσ<br />

cosλ<br />

, ,<br />

= 2πνr<br />

sinθ<br />

c = 2πνσ<br />

sinλ<br />

2<br />

γ=<br />

π<br />

= ∫<br />

γ=<br />

0<br />

b cos γ<br />

0 1 0 2<br />

−b<br />

cos γ<br />

2 πJ ( c sin γ) e<br />

1<br />

2 πJ ( c sin γ) e<br />

2<br />

sin γdγ<br />

Denote<br />

Then,<br />

u = cos γ ,<br />

du =−sin<br />

γdγ<br />

γ = 0 ⇒ u = 1 ,<br />

γ = π ⇒ u = −1<br />

<strong>and</strong> <strong>the</strong> γ summation becomes<br />

u=<br />

1<br />

∫<br />

u=−1<br />

2 bu<br />

2<br />

0 1 0 2<br />

= 2 π ( 1 − ) 2 ( 1 − )<br />

−bu<br />

J c u e<br />

1<br />

πJ c u e<br />

2<br />

du<br />

u= 1 u=<br />

1<br />

∫<br />

2 bu<br />

π<br />

0 1 ∫ 0 2<br />

2<br />

u=− 1 u=−1<br />

= 2 ( 1 − ) 2 ( 1 − )<br />

−bu<br />

J c u e<br />

1<br />

du πJ c u e<br />

2<br />

du<br />

The first integration is<br />

27


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

u= 1 u=<br />

1<br />

∫<br />

2 bu<br />

2<br />

0 1 ∫ 0 1 1<br />

u=− 1 u=<br />

0<br />

2 π ( 1 − )<br />

1<br />

= 8 π ( 1 − )cos( )<br />

J c u e du J c u bu du<br />

Denote<br />

Then,<br />

2<br />

u = 1 − v .<br />

v<br />

du =− dv<br />

2<br />

1 − v<br />

u = 0 ⇒ v = 1 ,<br />

u = 1 ⇒ v = 0<br />

<strong>and</strong> <strong>the</strong> u summation becomes<br />

v=<br />

1<br />

2 v<br />

∫ J0 c1v b1<br />

v dv.<br />

2<br />

v=<br />

0<br />

1 − v<br />

= 8 π ( )cos( 1 − )<br />

By [Prudnikov, Vol.2, p.201, 2.12.21 #5], <strong>the</strong> v summation equals<br />

b1<br />

= 2πνrcosθ<br />

Recalling ,<br />

c = 2πνrsinθ<br />

1<br />

Since 1 ( )<br />

π<br />

= 8π<br />

+ +<br />

−1<br />

2 2<br />

( ) ( )<br />

4 2 2<br />

1 1 1 1 1<br />

2 b c J b c<br />

2<br />

π 1<br />

= 8π<br />

J1<br />

2 ν<br />

2 2πνr<br />

2<br />

1<br />

= 4π<br />

J1<br />

2 ν<br />

νr<br />

2<br />

( π r)<br />

( π r)<br />

2 J x = sin x , <strong>the</strong> v summation equals<br />

2 πx<br />

28


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

= 1 2<br />

4π<br />

sin<br />

νr<br />

π2πνr<br />

2 ν<br />

( π r )<br />

That is,<br />

1<br />

= 4 sin( 2πνr<br />

).<br />

νr<br />

u=<br />

1<br />

( π )<br />

2 bu<br />

1<br />

∫ 2 π<br />

0( 1<br />

1 − ) = 4 sin 2 ν<br />

u=−1<br />

1<br />

J c u e du r<br />

νr<br />

Similarly,<br />

u=<br />

1<br />

∫<br />

u=−1<br />

2<br />

2 ( 1 )<br />

2<br />

4 sin 2<br />

0 2<br />

bu<br />

πJ c − u e du =<br />

1<br />

νσ<br />

( πνσ<br />

)<br />

Therefore, <strong>the</strong><br />

γ<br />

summation is<br />

<strong>and</strong> <strong>the</strong> ν summation is<br />

4 1 sin 2 4 1 sin 2<br />

νr<br />

νσ<br />

( πνr<br />

) ( πνσ )<br />

ν=∞ ν=∞<br />

1 1 2 2 1<br />

4 sin( 2πνr) 4 sin( 2πνσ ) ν dν = 4 sin( 2πνσ ) sin( 2πν ) ν<br />

νr<br />

νσ rσ<br />

∫ ∫ r d<br />

ν= 0 ν=<br />

0<br />

Therefore,<br />

ν=∞<br />

2 1<br />

δ( x −ξ) δ( y −η) δ( z − ζ) = 4 sin(2 πνr)sin(2 πνσ)<br />

dν<br />

rσ<br />

∫ . <br />

ν=<br />

0<br />

Thus, δ( x −ξ) δ( y −η) δ(<br />

z −ζ)<br />

is a <strong>Radial</strong>ly Symmetric <strong>Delta</strong><br />

function that we will denote<br />

δ <strong>Radial</strong> ( r − σ)<br />

29


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

7.3 The <strong>Radial</strong> <strong>Delta</strong> δ − ) Definition<br />

<strong>Radial</strong> (r<br />

ν=∞<br />

ν=<br />

0<br />

σ ( ) ( r)<br />

2 1<br />

δ<strong>Radial</strong>( r −σ) ≡ 4 sin 2πνσ sin 2πν<br />

rσ<br />

∫ dν<br />

spikes at r = σ , <strong>and</strong> vanishes for r ≠ σ .<br />

From 7.1, <strong>and</strong> 7.3,<br />

7.4<br />

ν<br />

( πν r − σ ) ( πνσ ) ( πνr)<br />

ν=∞ =∞<br />

sin 2 [ ] sin 2 sin 2<br />

νdν<br />

= 4<br />

r − σ<br />

rσ<br />

∫ ∫<br />

ν= 0 ν=<br />

0<br />

dν<br />

Common Tables do not have 7.4.<br />

30


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

8.<br />

δ ( r − r ) <strong>and</strong><br />

<strong>Radial</strong> 0<br />

δ( r − r )<br />

0<br />

δ<br />

1<br />

( r − r ) = δ( r − r )<br />

8.1<br />

<strong>Radial</strong> 0 2 0<br />

r0<br />

x = r sin θcosφ<br />

Proof: Denote y = rsin<br />

θsin<br />

φ , y = r sin θ sin φ ,<br />

z = rcos<br />

θ<br />

Then,<br />

x<br />

z<br />

= r<br />

sin θ<br />

0 0 0<br />

0 0 0<br />

= r<br />

cosθ<br />

0 0 0<br />

cosφ<br />

δ( x −x ) δ( y −y ) δ( z − z ) dxdydz = δ( r −r )( dr)(sin θd θ)<br />

dφ<br />

0 0 0 0<br />

∂(,, xyz)<br />

δ( x −x0) δ( y −y0) δ( z − z0) = δ(<br />

r −r<br />

∂(, r −cos θφ , )<br />

0<br />

0<br />

0 )<br />

Since<br />

∂(,, xyz)<br />

∂(, r −cos θφ , )<br />

=<br />

r<br />

2<br />

,<br />

δ( x −x0) δ( y −y0) δ( z − z0) = δ(<br />

r −r<br />

2 0<br />

r<br />

)<br />

δ ( r−r<br />

)<br />

δ<br />

<strong>Radial</strong> 0<br />

1<br />

( r − r ) = δ( r − r ).<br />

<br />

<strong>Radial</strong> 0 2 0<br />

r0<br />

1<br />

8.2 Sifting by δ <strong>Radial</strong> ( r σ)<br />

− 31


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

σ=∞<br />

2<br />

∫ δ<strong>Radial</strong>( r − σ)<br />

σ dσ<br />

= 1<br />

σ=<br />

0<br />

σ=∞ σ=∞<br />

∫<br />

Proof: By 8.1, δ ( r − σ) σ 2 dσ = δ( r −σ) dσ<br />

= 1.<br />

∫<br />

<strong>Radial</strong><br />

σ= 0 σ=<br />

0<br />

ν=∞<br />

2<br />

8.3 δ( r − σ) = 4 ∫ sin(2 πνr)sin(2 πνσ)<br />

dν<br />

ν=<br />

0<br />

Proof: By 8.1,<br />

=<br />

4<br />

ν=∞<br />

∫<br />

ν=<br />

0<br />

( r − )<br />

sin 2 πν[ σ]<br />

ν d ν<br />

r − σ<br />

2<br />

δ( r − σ) = σ δ ( r −σ)<br />

<strong>Radial</strong><br />

ν=∞<br />

2 2<br />

= σ 4 ∫<br />

ν=<br />

0<br />

sin(2 πνr)sin(2 πνσ)<br />

dν<br />

rσ<br />

For r ≠ σ , <strong>the</strong> integral vanishes. For r = σ , we have<br />

ν=∞<br />

2 2<br />

= σ 4 ∫<br />

By 7.3,<br />

= 4<br />

ν=<br />

0<br />

ν=∞<br />

2<br />

ν=<br />

0<br />

sin(2 πνr)sin(2 πνσ)<br />

dν<br />

2<br />

σ<br />

= 4 ∫ sin(2 πνr)sin(2 πνσ)<br />

dν<br />

ν=∞<br />

ν=<br />

0<br />

Common Tables do not have 8.3.<br />

( r − )<br />

sin 2 πν[ σ]<br />

∫ ν d ν .<br />

r − σ<br />

32


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

9.<br />

3-D <strong>Fourier</strong>-<strong>Bessel</strong> Transform<br />

The 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Transform is <strong>the</strong> 3-dimensional<br />

<strong>Fourier</strong> Transform applied to a <strong>Radial</strong>ly symmetric function f () r .<br />

Then, integration of <strong>the</strong> Exponential <strong>Function</strong> with respect to <strong>the</strong><br />

azimuth angle, yields a <strong>Bessel</strong> <strong>Function</strong>.<br />

9.1 The 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Transform<br />

F<br />

Bess<br />

sin 2<br />

() = 4 ∫ f()<br />

r<br />

ν<br />

{ f r }<br />

r =∞<br />

r = 0<br />

( πνr<br />

)<br />

rdr<br />

Proof:<br />

The 3-dimensional <strong>Fourier</strong> Transform of a radially<br />

symmetric function f (,, xyz) = fr () is<br />

F<br />

Bess<br />

{ }<br />

z=∞ y=∞ x=∞<br />

−2πν i x−2πν i y−2πν<br />

i z<br />

x y z<br />

f () r f () r e dxdydz<br />

= ∫ ∫ ∫<br />

z=−∞ y=−∞ x=−∞<br />

Substitute<br />

Then,<br />

x<br />

y<br />

z<br />

= r sin θcosφ<br />

= r sin θsin<br />

φ<br />

= r cosθ<br />

ν = νsin<br />

γcos<br />

β<br />

x<br />

ν = νsin<br />

γsin<br />

β<br />

y<br />

ν = νcos<br />

γ<br />

z<br />

33


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

ν x + ν y + ν z =<br />

x y z<br />

{ }<br />

= νr<br />

⎡sin θsin γ cosφcos β + sin φsin β + cos θcos<br />

γ⎤<br />

⎣<br />

⎦<br />

= νr<br />

⎡sin θsin γcos( β − φ) + cosθcos<br />

γ⎤<br />

⎣<br />

⎦<br />

Integrating with respect to r , θ , <strong>and</strong> φ ,<br />

F<br />

Bess<br />

r =∞ ⎛θ= π⎡φ=<br />

2π<br />

⎤ ⎞ −2πν i r sinθsinγcos( φ−β) −2πν i r cosθcosγ<br />

2<br />

f () r = f() r ∫ e dφ<br />

e sinθd<br />

∫ ∫<br />

θ<br />

r dr<br />

⎢<br />

⎥<br />

r = 0<br />

⎜⎝θ= 0 φ=<br />

0<br />

⎠⎟<br />

⎣<br />

⎦<br />

{ }<br />

Denoting<br />

α<br />

= φ− β,<br />

φ= 2π α= 2π−β<br />

−2πν i r sinθsinγcos( φ−β) −2πν i r sinθsinγcosα<br />

∫ ∫<br />

e dφ<br />

= e<br />

φ= 0<br />

α=−β<br />

dα<br />

−2πν i r sinθsinγcosα<br />

Since e<br />

is periodic in α with period 2 π ,<br />

α=<br />

2π<br />

α=<br />

0<br />

α=<br />

2π<br />

= ∫<br />

α=<br />

0<br />

e<br />

−2πν i r sin θsin γcos<br />

α<br />

dα<br />

⎛<br />

2<br />

2πν i rinθsinγcos α (2πν i rsinθsinγcos α)<br />

⎞<br />

= 1 ...<br />

∫ ⎜<br />

− + −<br />

dα<br />

.<br />

⎜⎝<br />

1 2!<br />

⎠⎟<br />

The integrals of <strong>the</strong> odd powers vanish, <strong>and</strong> we have<br />

2 4<br />

(2πνr sin θ sin γ) (2πνr sin θ sin γ) (2πνr<br />

sin θ sin γ)<br />

= 2π − 2π + 2π − 2π<br />

+ ...<br />

2 2 2 2 2 2<br />

2 2 ⋅4 2 ⋅4 ⋅6<br />

6<br />

=<br />

2 πJ<br />

(2πνrsinθsinγ).<br />

0<br />

Therefore,<br />

34


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

F<br />

Bess<br />

⎛<br />

r =∞ θ=<br />

π<br />

⎜<br />

= ∫<br />

∫ 0<br />

r = 0<br />

⎜<br />

θ=<br />

0<br />

⎟<br />

⎞ ⎟<br />

r dr<br />

⎠<br />

2 i r cos cos 2<br />

{ f () r } f()2 r ⎜<br />

− πν θ γ<br />

π J (2πνrsinθsin γ) e sinθdθ⎟<br />

⎝<br />

Denoting,<br />

b<br />

c<br />

=<br />

=<br />

2πνr<br />

cosγ<br />

,<br />

2πνrsinγ<br />

<strong>the</strong><br />

θ<br />

summation becomes<br />

θ=<br />

π<br />

−b<br />

cos θ<br />

2 π∫ J0( csin θ) e sinθdθ.<br />

θ=<br />

0<br />

Denote<br />

Then,<br />

u = cos θ .<br />

du =−sin<br />

θdθ<br />

θ = 0 ⇒ u = 1 ,<br />

θ = π ⇒ u = −1<br />

<strong>and</strong> <strong>the</strong> θ summation becomes<br />

u= 1 u=<br />

1<br />

∫<br />

2 bu<br />

0<br />

− = π∫<br />

0<br />

−<br />

2<br />

u=− 1 u=<br />

0<br />

2 π J ( c 1 u ) e du 8 J ( c 1 u )cos( bu)<br />

du<br />

Denote<br />

Then,<br />

u<br />

2<br />

= 1 − v .<br />

35


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

v<br />

du =− dv<br />

2<br />

1 − v<br />

u = 0 ⇒ v = 1 ,<br />

u = 1 ⇒ v = 0<br />

<strong>and</strong> <strong>the</strong> u summation becomes<br />

v=<br />

1<br />

2 v<br />

= 8 π ∫ J0( cv)cos( b 1 −v ) dv<br />

2<br />

1 − v<br />

v=<br />

0<br />

By [Prudnikov, Vol.2, p.201, 2.12.21 #5], this equals<br />

b = 2πνr<br />

cosγ<br />

Recalling ,<br />

c = 2πνrsinγ<br />

Since 1 ( )<br />

π<br />

= 8π<br />

+ +<br />

−1<br />

2 2<br />

( ) ( )<br />

4 2 2<br />

1<br />

2 b c J b c<br />

2<br />

π 1<br />

= 8π<br />

J1<br />

2 ν<br />

2 2πνr<br />

2<br />

1<br />

= 4π<br />

J1<br />

2 ν<br />

νr<br />

2<br />

( π r)<br />

( π r)<br />

2 J x = sin x , <strong>the</strong> v summation equals<br />

2 πx<br />

= 1 2<br />

4π<br />

sin<br />

νr<br />

π2πνr<br />

2 ν<br />

( π r )<br />

Therefore,<br />

=<br />

1<br />

4 sin 2 r<br />

νr<br />

( πν )<br />

36


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

F<br />

Bess<br />

r =∞<br />

{ f () r } f()4 r sin( 2πνr) 2<br />

= ∫<br />

r = 0<br />

r =∞<br />

r = 0<br />

1<br />

νr<br />

( πνr<br />

)<br />

r dr<br />

sin 2<br />

= 4 ∫ f ( r)<br />

rdr .<br />

ν<br />

9.2 3-D Inverse <strong>Fourier</strong>-<strong>Bessel</strong> Transform<br />

F<br />

−1<br />

Bess<br />

ν=∞<br />

ν=<br />

0<br />

( πνr<br />

)<br />

sin 2<br />

F(2 πν) = 4 ∫ F(2 πν)<br />

νdν<br />

r<br />

Proof: The 3-dimensional Inverse <strong>Fourier</strong>-<strong>Bessel</strong> Transform of a<br />

radially symmetric function<br />

F( ν , ν , ν ) = F(2 πν)<br />

x y z<br />

is<br />

F<br />

νz=∞ νy<br />

=∞ νx=∞<br />

−1<br />

2 πi[ νxx+ νyy+<br />

νzz]<br />

Bess { F(2 πν) } = ∫ ∫ ∫ F(2 πν)<br />

e<br />

dνxdνydνz<br />

ν =−∞ ν =−∞ ν =−∞<br />

Substitute<br />

z y x<br />

Then,<br />

x<br />

y<br />

z<br />

= r sin θcosφ<br />

= r sin θsin<br />

φ<br />

= r cosθ<br />

ν = νsin<br />

γcos<br />

β<br />

x<br />

ν = νsin<br />

γsin<br />

β<br />

y<br />

ν = νcos<br />

γ<br />

z<br />

ν x + ν y + ν z<br />

x y z<br />

=<br />

{ }<br />

= νr<br />

⎡sin θsin γ cosφcos β + sin φsin β + cos θcos<br />

γ⎤<br />

⎣<br />

⎦<br />

= νr<br />

⎡sin θsin γcos( β − φ) + cosθcos<br />

γ⎤<br />

⎣<br />

⎦<br />

Integrating with respect to ν , γ , <strong>and</strong> β ,<br />

37


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

ν=∞ ⎛γ= π⎡β=<br />

2π<br />

⎤ ⎞<br />

1 2 i r sin sin cos( ) 2 i r cos cos 2<br />

Bess { F(2 )}<br />

−<br />

πν θ γ β−φ πν θ γ<br />

F πν = F(2 πν) ∫ e dβ e sin γdγ ν ν<br />

∫ ∫<br />

d<br />

ν= 0<br />

⎜ ⎢<br />

⎥<br />

⎝γ= 0 β=<br />

0<br />

⎠⎟<br />

⎣<br />

⎦<br />

Denoting<br />

α<br />

= β −φ,<br />

β= 2π α= 2π−φ<br />

2πν i r sin θsin γcos( β−φ) 2πν i r sin θsin γcos<br />

α<br />

∫ ∫<br />

e dβ<br />

= e<br />

β= 0<br />

α=−φ<br />

dα<br />

2 i r sin sin cos<br />

Since e πν θ γ α is periodic in α with period 2 π ,<br />

α=<br />

2π<br />

α=<br />

0<br />

α=<br />

2π<br />

= ∫<br />

α=<br />

0<br />

e<br />

2πν i r sin θsin γcos<br />

α<br />

dα<br />

⎛<br />

2<br />

2πν i rsinθsinγcos α (2πν i rsinθsinγcos α)<br />

⎞<br />

= 1 .<br />

∫ ⎜<br />

+ + + .. dα<br />

.<br />

⎜⎝<br />

1 2!<br />

⎠⎟<br />

The integrals of <strong>the</strong> odd powers vanish, <strong>and</strong> we have<br />

2 4<br />

(2πνr sin θ sin γ) (2πνr sin θ sin γ) (2πνr<br />

sin θ sin γ)<br />

= 2π − 2π + 2π − 2π<br />

+ ...<br />

2 2 2 2 2 2<br />

2 2 ⋅4 2 ⋅4 ⋅6<br />

6<br />

=<br />

2 πJ<br />

(2πνrsinθsinγ).<br />

0<br />

Therefore,<br />

ν=∞ ⎛γ=<br />

π<br />

⎞<br />

−1 2 i r cos cos<br />

(2 ) (2 ) 2 2 Bess F F J 0(2 r sin sin ) e πν θ γ<br />

F πν = πν π πν θ γ sin γ d γ ∫<br />

ν dν<br />

∫<br />

ν= 0<br />

⎜⎝γ=<br />

0<br />

⎠⎟<br />

Denoting,<br />

b<br />

c<br />

=<br />

=<br />

2πνr<br />

cosθ<br />

,<br />

2πνr<br />

sinθ<br />

<strong>the</strong><br />

γ<br />

summation is<br />

38


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Denote<br />

Then,<br />

γ=<br />

π<br />

b cos γ<br />

∫ 2 πJ0( csin γ) e sin γdγ.<br />

γ=<br />

0<br />

u = cos γ<br />

du =−sin<br />

γdγ<br />

γ = 0 ⇒ u = 1 ,<br />

γ = π ⇒ u = −1<br />

<strong>and</strong> <strong>the</strong> γ summation becomes<br />

u= 1 u=<br />

1<br />

∫<br />

2 bu<br />

0<br />

− = π∫<br />

0<br />

−<br />

2<br />

u=− 1 u=<br />

0<br />

2 π J ( c 1 u ) e du 8 J ( c 1 u )cos( bu)<br />

du<br />

Denote<br />

Then,<br />

2<br />

u = 1 − v .<br />

v<br />

du =− dv<br />

2<br />

1 − v<br />

u = 0 ⇒ v = 1 ,<br />

u = 1 ⇒ v = 0<br />

<strong>and</strong> <strong>the</strong> u summation becomes<br />

v=<br />

1<br />

2 v<br />

= 8 π ∫ J0( cv)cos( b 1 −v ) dv<br />

2<br />

1 − v<br />

v=<br />

0<br />

By [Prudnikov, Vol.2, p.201, 2.12.21 #5], this equals<br />

π<br />

= 8π<br />

+ +<br />

−1<br />

2 2<br />

( ) ( )<br />

4 2 2<br />

1<br />

2 b c J b c<br />

2<br />

39


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Since 1 ( )<br />

π 1<br />

= 8π<br />

J1<br />

2 ν<br />

2 2πνr<br />

2<br />

1<br />

= 4π<br />

J1<br />

2 ν<br />

νr<br />

2<br />

2 J x = sin x ,<br />

2 πx<br />

( π r)<br />

( π r)<br />

= 1 2<br />

4π<br />

sin<br />

νr<br />

π2πνr<br />

2 ν<br />

( π r )<br />

Therefore,<br />

=<br />

1<br />

4 sin 2 r<br />

νr<br />

( πν )<br />

ν=∞<br />

ν=<br />

0<br />

( πνr<br />

)<br />

sin 2<br />

−1<br />

FBessF(2 πν) = 4 ∫ F(2 πν)<br />

νd ν .<br />

r<br />

40


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

10.<br />

<strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem<br />

Holds only in Infinitesimal Calculus<br />

The 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem guarantees<br />

that <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Transform <strong>and</strong> its Inverse<br />

are well defined operations, so that inversion yields <strong>the</strong> original<br />

function that generated <strong>the</strong> Transform.<br />

That is,<br />

ν=∞ ⎛ σ=∞<br />

sin 2<br />

⎞ sin 2<br />

f () r = 4 4 f()<br />

σ<br />

σdσ<br />

ν<br />

r<br />

ν= 0⎜<br />

⎝ σ=<br />

0<br />

⎠⎟<br />

( πνσ ) ( πνr<br />

)<br />

∫ ∫ d<br />

But in <strong>the</strong> Calculus of Limits, this integral is singular, <strong>and</strong> <strong>the</strong><br />

<strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem does not hold in <strong>the</strong> Calculus of<br />

Limits under any conditions.<br />

ν ν<br />

10.1 The 3-D <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem Fails<br />

in <strong>the</strong> Calculus of Limits<br />

Proof: By <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem<br />

41


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

⎛<br />

⎞ ⎟<br />

f () r = 4 ⎜4 f()<br />

d ⎟<br />

⎝<br />

⎠<br />

( πνσ ) ( πνr<br />

)<br />

ν=∞ σ=∞<br />

sin 2 sin 2<br />

⎜<br />

2 2<br />

σ σ σ<br />

∫ ∫ ν d<br />

νσ<br />

νr<br />

ν= 0 ⎜ σ=<br />

0<br />

⎟<br />

σ=∞ ⎛ ν=∞<br />

⎞ 2 1<br />

2<br />

= f ( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d d<br />

rσ<br />

σ= 0 ⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

However, at σ = r ,<br />

∫ ∫ ν σ σ<br />

ν=∞ ν=∞<br />

∫<br />

2<br />

( ) ( r) d = ( )<br />

sin 2πνσ sin 2πν ν sin 2πνσ dν<br />

ν= 0 ν=<br />

0<br />

∫<br />

ν=∞<br />

1<br />

= −<br />

2<br />

∫<br />

ν=<br />

0<br />

{ 1 cos( 4πνσ<br />

)}<br />

ν =∞<br />

⎡ sin(4 πνσ)<br />

⎤<br />

= ν − = ∞.<br />

⎣<br />

⎢ 4πσ<br />

⎦<br />

⎥<br />

ν = 0<br />

dν<br />

ν<br />

Hence, <strong>the</strong> 3-dimensinal <strong>Fourier</strong>-<strong>Bessel</strong> Integral diverges, <strong>and</strong> <strong>the</strong><br />

3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem does not hold in<br />

<strong>the</strong> Calculus of Limits.<br />

Avoiding <strong>the</strong> singularity at σ = ρ does not recover <strong>the</strong> Theorem,<br />

because without <strong>the</strong> singularity <strong>the</strong> integral equals zero.<br />

Fur<strong>the</strong>rmore,<br />

10.2 Calculus of Limits Conditions are insufficient<br />

for <strong>the</strong> 3-D <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem<br />

42


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Proof: According to [Watson, p.458], The following conditions<br />

guarantee <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem in<br />

<strong>the</strong> Calculus of Limits<br />

r =∞<br />

1. convergence of f () r<br />

∫<br />

r =−∞<br />

rdr<br />

r =∞ ⎛ω=<br />

λ<br />

⎞ 2. Existence of lim f ( r) J1( ωσ) J1( ωr)<br />

ωdω<br />

r<br />

λ→∞ 2 2<br />

r = 0 ⎜<br />

⎝ω<br />

= 0<br />

⎠⎟<br />

∫ ∫ dr<br />

It is clear from 7.1 that Condition 2. never holds. No conditions<br />

on f ( x ) can resolve <strong>the</strong> singularity, at<br />

ω=∞ ν=∞<br />

2<br />

1 1<br />

2 2<br />

ω= 0 ν=<br />

0<br />

σ = r , of<br />

∫ ∫ .<br />

r J ( ωσ) J ( ωr) ωdω = 4 sin(2 πνσ)sin(2 πνr)<br />

dν<br />

Therefore, <strong>the</strong> Calculus of Limits Conditions are insufficient for<br />

<strong>the</strong> 3-dimensional <strong>Fourier</strong> Integral Theorem. <br />

In Infinitesimal Calculus, <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong><br />

Integral Theorem holds for any radial Hyper-real function<br />

10.3 3-dimensional <strong>Fourier</strong> Integral Theorem<br />

If f (,, xyz) = fr () is Hyper-real function,<br />

Then, <strong>the</strong> <strong>Fourier</strong>-<strong>Bessel</strong> Integral Theorem holds.<br />

⎛<br />

⎞ ⎟<br />

f () r = 4 ⎜4 f()<br />

d ⎟<br />

⎝<br />

⎠<br />

( πνσ ) ( πνr<br />

)<br />

ν=∞ σ=∞<br />

sin 2 sin 2<br />

⎜<br />

2 2<br />

σ σ σ<br />

∫ ∫ ν d<br />

νσ<br />

νr<br />

ν= 0<br />

⎜<br />

σ=<br />

0<br />

⎟<br />

ν<br />

43


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

σ=∞ ⎛ ν=∞<br />

⎞ 2 1<br />

2<br />

= f ( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d d<br />

rσ<br />

σ= 0<br />

⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

∫ ∫ ν σ σ.<br />

Proof:<br />

f () r = f(,, x y z )<br />

In Infinitesimal Calculus,<br />

By 7.2,<br />

ζ=∞ η=∞ ξ=∞<br />

∫ ∫ ∫ d<br />

= f ( ξηζδ , , ) ( x −ξδ ) ( y −ηδ ) ( z − ζ)<br />

dξdηζ<br />

ζ=−∞ η=−∞ ξ=−∞<br />

ν=∞<br />

2 1<br />

δ( x −ξ, y −η, z − ζ) = 4 sin( 2πνσ) sin( 2πνr)<br />

d<br />

rσ<br />

∫ ν,<br />

ν=<br />

0<br />

<strong>and</strong><br />

ζ=∞ η=∞ ξ=∞ ⎛ ν=∞<br />

⎞ 2 1<br />

f ( r) = f( ξηζ , , ) 4 sin( 2πνσ) sin( 2πνr)<br />

dν ∫ ∫ ∫ ξ ηζ<br />

rσ<br />

∫ d d d<br />

ζ=−∞ η=−∞ ξ=−∞ ⎜⎝<br />

ν=<br />

0<br />

⎠⎟<br />

Put<br />

f ( ξηζ , , ) = f ( σ)<br />

.<br />

Integrating with respect to σ ,<br />

<strong>and</strong><br />

ddd ξ η ζ = σ dσ,<br />

⎛<br />

⎞ f ( r) = f( σ) 4 sin( 2πνσ) sin( 2πνr)<br />

d<br />

ν<br />

rσ<br />

σ<br />

σ= 0 ⎜<br />

⎝ ν=<br />

0<br />

⎠⎟<br />

σ=∞ ν=∞<br />

⎜<br />

2 1<br />

2<br />

∫ ∫ d<br />

By changing <strong>the</strong> Summation order,<br />

2<br />

σ<br />

44


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

⎛<br />

⎞ ⎟<br />

f () r = 4 ⎜4 f()<br />

d ⎟<br />

⎝<br />

⎠<br />

( πνσ ) ( πνr<br />

)<br />

ν=∞ σ=∞<br />

sin 2 sin 2<br />

⎜<br />

2 2<br />

σ σ σ ∫ dν<br />

∫ ν . <br />

νσ<br />

νr<br />

ν= 0 ⎜ σ=<br />

0<br />

⎟<br />

Then, <strong>the</strong> 3-dimensional <strong>Fourier</strong>-<strong>Bessel</strong> Transform of f () r ,<br />

σ=∞<br />

sin(2 πνσ)<br />

4 ∫ f ( σ)<br />

σdσ,<br />

ν<br />

σ=<br />

0<br />

converges to a Hyper-real function<br />

F(2 πν)<br />

be infinite Hyper-reals, like <strong>the</strong> <strong>Delta</strong> <strong>Function</strong>.<br />

And <strong>the</strong> Inverse <strong>Fourier</strong>-<strong>Bessel</strong> Transform of F(2 πν)<br />

ν=∞<br />

sin(2 πνσ)<br />

4 ∫ F(2 πν)<br />

νdν<br />

σ<br />

ν=<br />

0<br />

converges to <strong>the</strong> Hyper-real function f ( ρ ).<br />

, some of its values may<br />

10.4 If f () r is Hyper-real function,<br />

Then,<br />

<strong>the</strong> Hyper-real integral<br />

σ=∞<br />

sin(2 πνσ)<br />

4 ∫ f ( σ)<br />

σdσ converges to<br />

ν<br />

σ=<br />

0<br />

F(2 πν)<br />

45


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

<strong>the</strong> Hyper-real integral<br />

ν=∞<br />

sin(2 πνσ)<br />

4 ∫ F(2 πν)<br />

νdν<br />

converges<br />

σ<br />

ν=<br />

0<br />

to f () r<br />

46


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

References<br />

[Bowman] Bowman, Frank, Introduction to <strong>Bessel</strong> <strong>Function</strong>s, Dover, 1958<br />

[Dan1] Dannon, H. Vic, “Well-Ordering of <strong>the</strong> Reals, Equality of all Infinities,<br />

<strong>and</strong> <strong>the</strong> Continuum Hypo<strong>the</strong>sis” in <strong>Gauge</strong> Institute Journal Vol.6 No 2, May<br />

2010;<br />

[Dan2] Dannon, H. Vic, “Infinitesimals” in <strong>Gauge</strong> Institute Journal Vol.6 No<br />

4, November 2010;<br />

[Dan3] Dannon, H. Vic, “Infinitesimal Calculus” in <strong>Gauge</strong> Institute Journal<br />

Vol.7 No 1, February 2011;<br />

[Dan4] Dannon, H. Vic, “Riemann’s Zeta <strong>Function</strong>: <strong>the</strong> Riemann Hypo<strong>the</strong>sis<br />

Origin, <strong>the</strong> Factorization Error, <strong>and</strong> <strong>the</strong> Count of <strong>the</strong> Primes”, in <strong>Gauge</strong><br />

Institute Journal of Math <strong>and</strong> Physics, November 2009.<br />

[Dan5] Dannon, H. Vic, “The <strong>Delta</strong> <strong>Function</strong>” in <strong>Gauge</strong> Institute Journal<br />

Vol.7 No 2, May 2011;<br />

[Dan6] Dannon, H. Vic, “The <strong>Delta</strong> <strong>Function</strong> <strong>and</strong> <strong>Fourier</strong> Transform” in<br />

<strong>Gauge</strong> Institute Journal Vol.7 No 3, August 2011;<br />

[Dirac] Dirac, P. A. M. The Principles of Quantum Mechanics, Second Edition,<br />

Oxford Univ press, 1935.<br />

[Gray] Gray, Andrew, <strong>and</strong> Ma<strong>the</strong>ws, G.B., A Treatise on <strong>Bessel</strong> <strong>Function</strong>s <strong>and</strong><br />

<strong>the</strong>ir applications to Physics, Dover 1966<br />

[Hen] Henle, James M., <strong>and</strong> Kleinberg Eugene M., Infinitesimal Calculus,<br />

MIT Press 1979.<br />

[Hosk] Hoskins, R. F., St<strong>and</strong>ard <strong>and</strong> Nonst<strong>and</strong>ard Analysis, Ellis Horwood,<br />

1990.<br />

47


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

[Keis] Keisler, H. Jerome, Elementary calculus, An Infinitesimal Approach,<br />

Second Edition, Prindle, Weber, <strong>and</strong> Schmidt, 1986, pp. 905-912<br />

[Laug] Laugwitz, Detlef, “Curt Schmieden’s approach to infinitesimals-an eyeopener<br />

to <strong>the</strong> historiography of analysis” Technische Universitat Darmstadt,<br />

Preprint Nr. 2053, August 1999<br />

[Mikus] Mikusinski, J. <strong>and</strong> Sikorski, R., “The elementary <strong>the</strong>ory of<br />

distributions”, Rosprawy Matematyczne XII, Warszawa 1957.<br />

[R<strong>and</strong>] R<strong>and</strong>olph, John, “Basic Real <strong>and</strong> Abstract Analysis”, Academic Press,<br />

1968.<br />

[Riemann] Riemann, Bernhard, “On <strong>the</strong> Representation of a <strong>Function</strong> by a<br />

Trigonometric Series”.<br />

(1) In “Collected Papers, Bernhard Riemann”, translated from<br />

<strong>the</strong> 1892 edition by Roger Baker, Charles Christenson, <strong>and</strong><br />

Henry Orde, Paper XII, Part 5, Conditions for <strong>the</strong> existence of a<br />

definite integral, pages 231-232, Part 6, Special Cases, pages<br />

232-234. Kendrick press, 2004<br />

(2) In “God Created <strong>the</strong> Integers” Edited by Stephen Hawking,<br />

Part 5, <strong>and</strong> Part 6, pages 836-840, Running Press, 2005.<br />

[Schwartz] Schwartz, Laurent, Ma<strong>the</strong>matics for <strong>the</strong> Physical Sciences,<br />

Addison-Wesley, 1966.<br />

[Temp] Temple, George, 100 Years of Ma<strong>the</strong>matics, Springer-Verlag, 1981.<br />

pp. 19-24.<br />

[Watson] Watson, G. N., A Treatise on <strong>the</strong> Theory of <strong>Bessel</strong> <strong>Function</strong>s, 2 nd<br />

Edition, Cambridge, 1958.<br />

48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!