04.06.2015 Views

Periodic Delta Function and Fejer-Cesaro - Gauge-institute.org

Periodic Delta Function and Fejer-Cesaro - Gauge-institute.org

Periodic Delta Function and Fejer-Cesaro - Gauge-institute.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

<strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong>,<br />

<strong>and</strong> <strong>Fejer</strong>-<strong>Cesaro</strong> Summation<br />

of Fourier Series<br />

H. Vic Dannon<br />

vic0@comcast.net<br />

June, 2012<br />

Abstract<br />

The <strong>Fejer</strong> Summation Theorem supplies the<br />

conditions under which the <strong>Fejer</strong>-<strong>Cesaro</strong> Summation of Fourier<br />

Series, associated with a function f ( x ) equals f ( x ).<br />

It is believed to hold in the Calculus of Limits. In fact,<br />

The Theorem cannot be proved in the Calculus of Limits<br />

under any conditions,<br />

because the <strong>Fejer</strong> Summation requires integration of the singular<br />

<strong>Fejer</strong> Kernel.<br />

In Infinitesimal Calculus, the <strong>Fejer</strong> Kernel is the <strong>Periodic</strong> <strong>Delta</strong><br />

<strong>Function</strong>,<br />

δ periodic( x ) = ... + δ ( x + 4) + δ ( x + 2) + δ ( x ) + δ ( x − 2) + δ ( x − 4) + ... .<br />

This function violates the Calculus of Limits Conditions<br />

The Hyper-real<br />

δ( x)<br />

, is not defined in the Calculus of Limits,<br />

<strong>and</strong><br />

δ ( x)<br />

is not integrable in any bounded interval.<br />

1


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

<br />

1<br />

(<br />

2<br />

δ( x + 0) + δ( x − 0) ) = 0 does not replace δ( x)<br />

at its<br />

discontinuity point, x = 0 .<br />

But δ <strong>Periodic</strong>( x ) equals its <strong>Fejer</strong> Summation, <strong>and</strong> the <strong>Fejer</strong><br />

Summation associated with any periodic hyper-real f ( x ), equals<br />

f ( x ).<br />

Keywords: Infinitesimal, Infinite-Hyper-Real, Hyper-Real,<br />

infinite Hyper-real, Infinitesimal Calculus, <strong>Delta</strong> <strong>Function</strong>,<br />

<strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong>, <strong>Delta</strong> Comb, Fourier Series, Dirichlet<br />

Kernel, <strong>Fejer</strong> Kernel, <strong>Fejer</strong>-<strong>Cesaro</strong> Summation, <strong>Fejer</strong> Summation<br />

Theorem,<br />

2000 Mathematics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15;<br />

46S20; 97I40; 97I30<br />

2


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Contents<br />

0. The Origin of the <strong>Fejer</strong> Summation Theorem<br />

1. The Divergence of the <strong>Fejer</strong> Kernel in the Calculus of Limits<br />

2. Hyper-real line.<br />

3. Integral of a Hyper-real <strong>Function</strong><br />

4. <strong>Delta</strong> <strong>Function</strong><br />

5. <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong>, δ ( ξ − x)<br />

6. Convergent Series<br />

periodic<br />

7. <strong>Fejer</strong> Sequence <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

8. <strong>Fejer</strong> Kernel <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

9. <strong>Fejer</strong> Summation <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

10. <strong>Fejer</strong> Summation Theorem<br />

References<br />

3


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

The Origin of the <strong>Fejer</strong>-<strong>Cesaro</strong><br />

Summation Theorem<br />

Let f ( x ) be a function defined on [ − 1 ,1], so that f (1) = f ( − 1) .<br />

The Fourier Coefficients of f ( x ) are<br />

1<br />

2<br />

ξ=<br />

1<br />

−inπξ<br />

∫ f () ξ e dξ<br />

≡ c n<br />

, n = ..., −2, −1, 0,1,2,... ,<br />

ξ=−1<br />

The Fourier Series partial sums<br />

ξ = 1<br />

{ } { 1 −inπξ ( −x) 1 −i πξ ( −x) 1 1 iπξ ( −x) 1 inπξ<br />

( −x)<br />

( ) = ∫ ( ξ) + ... + + + + ... +<br />

2 2 2 2 2<br />

}<br />

S n<br />

fx f e e e e dξ<br />

,<br />

<br />

ξ =−1<br />

give rise to the Dirichlet Sequence<br />

0.1 <strong>Cesaro</strong><br />

Dirichlet Sequence<br />

1 −inπx 1 −i πx 1 1 iπx inπ<br />

x<br />

2 2 2 2<br />

Dn<br />

( x) = e + ... + e + + e + ... + 1 e<br />

2<br />

= + cos πx<br />

+ cos 2 πx<br />

+ ... + cosnπ<br />

x<br />

1<br />

2<br />

sin( n + ) πx<br />

= , n = 0,1, 2,..<br />

2sin x<br />

1<br />

2<br />

1<br />

π<br />

2<br />

To assign a numerical value to the divergent series<br />

1− 1+ 1− 1+ 1− 1 + ...,<br />

<strong>Cesaro</strong> suggested to consider the convergence of the Arithmetic<br />

Means of its Partial Sums<br />

4


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

σ<br />

σ<br />

σ<br />

σ<br />

0<br />

= s0 = 1,<br />

s + s 1 + (1−1)<br />

= = = ,<br />

2 2<br />

0 1 1<br />

1 2<br />

s + s + s 1 + (1− 1) + (1− 1+<br />

1)<br />

= = = ,<br />

3 3<br />

0 1 2 2<br />

2 3<br />

s + s + s + s 1 + (1− 1) + (1− 1+ 1) + (1− 1+ 1−1)<br />

= = = ,<br />

4 4<br />

0 1 2 3 1<br />

3 2<br />

……………………………………………………………………………..<br />

Thus,<br />

σ +<br />

= ,<br />

1<br />

2k<br />

1 2<br />

<strong>and</strong> the series converges to 1 2 .<br />

we conclude that<br />

σ<br />

k+<br />

1 1<br />

2k<br />

= →<br />

2k<br />

+ 1 2<br />

the infinite series 1− 1 + 1− 1+ 1− 1 + ... has <strong>Cesaro</strong> Sum of<br />

1<br />

2<br />

For any series<br />

a0 + a1 + a2 + a3 + ..., with partial sums s 0<br />

, s 1<br />

, s 2<br />

,...<br />

s0 + s1 + ... + s<br />

If m<br />

m + 1<br />

→<br />

σ<br />

0.2 <strong>Fejer</strong><br />

Then σ is the <strong>Cesaro</strong> Sum of a0 + a1 + a2 + a3 + ...<br />

applied <strong>Cesaro</strong> summation to Fourier Series.<br />

The <strong>Fejer</strong> Summation partial sums are the Arithmetic Means<br />

5


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

FS<br />

ej<br />

n<br />

{ fx ( )}<br />

=<br />

{ f ( x ) } + { f ( x ) } + ... + { f ( x ) }<br />

S S S<br />

0 1<br />

n + 1<br />

n<br />

ξ=<br />

1<br />

1<br />

= ( ) {( 1)<br />

1<br />

∫ f ξ n + + ncos[ π( ξ − x)] + ... + cos[ πn( ξ −x)]}<br />

dξ.<br />

n + 1<br />

2<br />

<br />

ξ=−1<br />

<strong>Fejer</strong> Sequence<br />

The <strong>Fejer</strong> Summation associated with the function f ( x ) is clearly<br />

different from the Fourier Series associated with f ( x ), but it may<br />

nevertheless converge to f ( x ).<br />

The equality of the <strong>Fejer</strong> Summation associated with f ( x ), to f ( x )<br />

is the <strong>Fejer</strong> Summation Theorem.<br />

The question is under which conditions does the Theorem hold.<br />

6


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

1.<br />

The Divergence of the <strong>Fejer</strong><br />

Kernel in the Calculus of Limits<br />

The <strong>Fejer</strong> Summation is believed to converge to f ( x ) provided that<br />

1. f ( x ) is integrable on [ −1<br />

,1]<br />

2. f ( x ) is periodic with period T = 2<br />

1<br />

3. (<br />

2<br />

fx ( + 0) + fx ( − 0) ) replaces f ( x ) at a discontinuity point.<br />

These Conditions reflect the belief that the equality depends only<br />

on the function, regardless of the singularity of the <strong>Fejer</strong> Kernel.<br />

The <strong>Fejer</strong> Summation is not an infinite series, where<br />

S n+ 1<br />

= S n<br />

+ a n+ 1. It has a singular Kernel, <strong>and</strong> it raises the<br />

question whether it equals<br />

f ( x ).<br />

In the Calculus of Limits, no smoothness of the function<br />

guarantees the convergence of the <strong>Fejer</strong> Summation.<br />

1.1 The <strong>Fejer</strong> Kernel is either singular or zero<br />

In the Calculus of Limits, the <strong>Fejer</strong> Summation is the limit of the<br />

1 −<br />

n−1 −<br />

n−1<br />

{ }<br />

in x i x i x in x<br />

ej n<br />

fx ( ) = π π π<br />

c<br />

ne ... c<br />

1e c0 ce<br />

1<br />

... ce<br />

n −<br />

+ + n −<br />

+ + + + π<br />

n<br />

n n<br />

FS<br />

1<br />

7


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

⎛ ⎞ ⎛ ⎞ ⎛<br />

= + + + +<br />

⎜ ⎜ ⎝ ⎠ ⎝ ⎠ ⎝⎜<br />

ξ= 1 ξ= 1 ξ=<br />

1<br />

1 ∫ −inπξ inπx () ...<br />

1<br />

() ...<br />

1<br />

inπξ inπx<br />

f ξe dξ e f ξdξ −<br />

f()<br />

ξe dξ<br />

e<br />

2n<br />

∫ 2 ∫ 2n<br />

ξ=− 1<br />

⎟<br />

ξ=− 1<br />

⎟<br />

ξ=−1<br />

ξ = 1<br />

∫<br />

ξ =−1<br />

{ 1 −inπξ ( −x) n−<br />

1 −iπξ ( −x) 1 n−<br />

1 iπξ ( −x) 1 inπξ<br />

( −x)<br />

}<br />

= f() ξ e + ... + e + + e + ... + e dξ<br />

<br />

2n 2n 2 2<br />

n 2n<br />

<strong>Fejer</strong> Sequence<br />

⎞⎟⎠<br />

.<br />

As n<br />

→∞, the <strong>Fejer</strong> Sequence becomes the <strong>Fejer</strong> Kernel, which is<br />

singular, <strong>and</strong> diverges at any ξ − x = 2k.<br />

Thus, the <strong>Fejer</strong> Summation does not converge in the Calculus of<br />

Limits.<br />

Avoiding the singularity at<br />

ξ = x , by using the Cauchy Principal<br />

Value of the integral does not recover the Theorem, because at any<br />

ξ −x<br />

≠ 2k, the <strong>Fejer</strong> Kernel vanishes, <strong>and</strong> the integral is<br />

identically zero, for any function<br />

f ( x ).<br />

Plots of the <strong>Fejer</strong> sequence confirm that<br />

In the Calculus of Limits,<br />

the <strong>Fejer</strong> Kernel is either singular or zero<br />

1.2 Plots of <strong>Fejer</strong> Sequence<br />

plots the spikes at x = 0 , x =−2,<br />

x = 2<br />

8


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

gives 9 spikes<br />

9


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Thus, the <strong>Fejer</strong> Summation Theorem does not hold in the Calculus<br />

of Limits.<br />

1.3 Infinitesimal Calculus Solution<br />

By resolving the problem of the infinitesimals [Dan2], we obtained<br />

the Infinite Hyper-reals that are strictly smaller than ∞ , <strong>and</strong><br />

constitute the value of the <strong>Delta</strong> <strong>Function</strong> at the singularity.<br />

The controversy surrounding the Leibnitz Infinitesimals derailed<br />

the development of the Infinitesimal Calculus, <strong>and</strong> the <strong>Delta</strong><br />

<strong>Function</strong> could not be defined <strong>and</strong> investigated properly.<br />

In Infinitesimal Calculus, [Dan3], we can differentiate over jump<br />

discontinuities, <strong>and</strong> integrate over singularities.<br />

The <strong>Delta</strong> <strong>Function</strong>, the idealization of an impulse in Radar<br />

circuits, is a Discontinuous Hyper-Real function which definition<br />

requires Infinite Hyper-reals, <strong>and</strong> which analysis requires<br />

Infinitesimal Calculus.<br />

In [Dan5], we show that in infinitesimal Calculus, the hyper-real<br />

ω=∞<br />

1<br />

( x)<br />

e i ω<br />

δ = x ω<br />

2π<br />

∫ d<br />

ω=−∞<br />

is zero for any x ≠ 0 ,<br />

10


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

it spikes at<br />

x = 0 , so that its Infinitesimal Calculus<br />

x =∞<br />

∫<br />

integral is δ( xdx ) = 1,<br />

<strong>and</strong><br />

x =−∞<br />

1<br />

δ (0) = < ∞.<br />

dx<br />

Here, we show that in Infinitesimal calculus, the <strong>Fejer</strong> Kernel is<br />

the periodic hyper-real <strong>Delta</strong> <strong>Function</strong>: A periodic train of <strong>Delta</strong><br />

<strong>Function</strong>s.<br />

And the <strong>Fejer</strong> Summation FS { f ( x)<br />

associated with a Hyperreal<br />

periodic function f ( x ), equals f ( x ).<br />

ej<br />

}<br />

11


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

2.<br />

Hyper-real Line<br />

Each real number α can be represented by a Cauchy sequence of<br />

rational numbers, ( r , r , r ,...) so that r → α .<br />

1 2 3<br />

The constant sequence ( ααα , , ,...) is a constant hyper-real.<br />

In [Dan2] we established that,<br />

1. Any totally ordered set of positive, monotonically decreasing<br />

n<br />

to zero sequences<br />

infinitesimal hyper-reals.<br />

( ι1, ι2, ι3,...)<br />

constitutes a family of<br />

2. The infinitesimals are smaller than any real number, yet<br />

strictly greater than zero.<br />

1 1 1<br />

3. Their reciprocals ( , , ,...<br />

ι 1<br />

ι 2<br />

ι 3<br />

) are the infinite hyper-reals.<br />

4. The infinite hyper-reals are greater than any real number,<br />

yet strictly smaller than infinity.<br />

5. The infinite hyper-reals with negative signs are smaller<br />

than any real number, yet strictly greater than −∞.<br />

6. The sum of a real number with an infinitesimal is a<br />

non-constant hyper-real.<br />

7. The Hyper-reals are the totality of constant hyper-reals, a<br />

family of infinitesimals, a family of infinitesimals with<br />

12


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

negative sign, a family of infinite hyper-reals, a family of<br />

infinite hyper-reals with negative sign, <strong>and</strong> non-constant<br />

hyper-reals.<br />

8. The hyper-reals are totally ordered, <strong>and</strong> aligned along a<br />

line: the Hyper-real Line.<br />

9. That line includes the real numbers separated by the nonconstant<br />

hyper-reals. Each real number is the center of an<br />

interval of hyper-reals, that includes no other real number.<br />

10. In particular, zero is separated from any positive real<br />

by the infinitesimals, <strong>and</strong> from any negative real by the<br />

infinitesimals with negative signs, −dx .<br />

11. Zero is not an infinitesimal, because zero is not strictly<br />

greater than zero.<br />

12. We do not add infinity to the hyper-real line.<br />

13. The infinitesimals, the infinitesimals with negative<br />

signs, the infinite hyper-reals, <strong>and</strong> the infinite hyper-reals<br />

with negative signs are semi-groups with<br />

respect to addition. Neither set includes zero.<br />

14. The hyper-real line is embedded in , <strong>and</strong> is not<br />

∞<br />

homeomorphic to the real line. There is no bi-continuous<br />

one-one mapping from the hyper-real onto the real line.<br />

13


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

15. In particular, there are no points on the real line that<br />

can be assigned uniquely to the infinitesimal hyper-reals, or<br />

to the infinite hyper-reals, or to the non-constant hyperreals.<br />

16. No neighbourhood of a hyper-real is homeomorphic to<br />

an<br />

n<br />

ball. Therefore, the hyper-real line is not a manifold.<br />

17. The hyper-real line is totally ordered like a line, but it<br />

is not spanned by one element, <strong>and</strong> it is not one-dimensional.<br />

14


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

3.<br />

Integral of a Hyper-real <strong>Function</strong><br />

In [Dan3], we defined the integral of a Hyper-real <strong>Function</strong>.<br />

Let f () x be a hyper-real function on the interval [ ab] , .<br />

The interval may not be bounded.<br />

f () x may take infinite hyper-real values, <strong>and</strong> need not be<br />

bounded.<br />

At each<br />

a<br />

≤<br />

x<br />

≤b,<br />

there is a rectangle with base<br />

dx dx<br />

[ x − , x + 2<br />

], height f () x , <strong>and</strong> area<br />

2<br />

f ( xdx. )<br />

We form the Integration Sum of all the areas for the x ’s that<br />

start at x = a, <strong>and</strong> end at x = b,<br />

∑ f ( xdx ) .<br />

x∈[ a, b]<br />

If for any infinitesimal dx , the Integration Sum has the same<br />

hyper-real value, then f () x is integrable over the interval [ ab] , .<br />

Then, we call the Integration Sum the integral of f () x from x = a,<br />

to x<br />

= b, <strong>and</strong> denote it by<br />

15


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

x=<br />

b<br />

∫ f ( xdx ) .<br />

x=<br />

a<br />

If the hyper-real is infinite, then it is the integral over [, ab] ,<br />

If the hyper-real is finite,<br />

x=<br />

b<br />

∫ fxdx ( ) = real part of the hyper-real . <br />

x=<br />

a<br />

3.1 The countability of the Integration Sum<br />

In [Dan1], we established the equality of all positive infinities:<br />

We proved that the number of the Natural Numbers,<br />

Card , equals the number of Real Numbers,<br />

2 Card <br />

Card = , <strong>and</strong><br />

we have<br />

2 Card<br />

2<br />

Card <br />

Card = ( Card) = .... = 2 = 2 = ... ≡ ∞.<br />

In particular, we demonstrated that the real numbers may be<br />

well-ordered.<br />

Consequently, there are countably many real numbers in the<br />

interval [ ab] , , <strong>and</strong> the Integration Sum has countably many terms.<br />

While we do not sequence the real numbers in the interval, the<br />

summation takes place over countably many f ( xdx. )<br />

The Lower Integral is the Integration Sum where f ( x ) is replaced<br />

16


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

by its lowest value on each interval<br />

3.2<br />

∑<br />

x∈[ a, b]<br />

⎛<br />

⎜⎝<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

⎞<br />

inf f ( t)<br />

dx<br />

⎠⎟<br />

x− ≤t≤ x+<br />

dx dx<br />

2 2<br />

The Upper Integral is the Integration Sum where f ( x ) is replaced<br />

by its largest value on each interval<br />

3.3<br />

∑<br />

x∈[ a, b]<br />

⎛<br />

⎜⎝<br />

dx dx<br />

2 2<br />

[ x − , x + ]<br />

⎞ sup f ( t)<br />

dx<br />

⎠⎟<br />

x− ≤t≤ x+<br />

dx dx<br />

2 2<br />

If the integral is a finite hyper-real, we have<br />

3.4 A hyper-real function has a finite integral if <strong>and</strong> only if its<br />

upper integral <strong>and</strong> its lower integral are finite, <strong>and</strong> differ by an<br />

infinitesimal.<br />

17


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

4.<br />

<strong>Delta</strong> <strong>Function</strong><br />

In [Dan5], we have defined the <strong>Delta</strong> <strong>Function</strong>, <strong>and</strong> established its<br />

properties<br />

1. The <strong>Delta</strong> <strong>Function</strong> is a hyper-real function defined from the<br />

hyper-real line into the set of two hyper-reals<br />

⎧<br />

⎪ 1 ⎫<br />

⎨0, ⎪<br />

⎬<br />

⎪⎩<br />

dx ⎪ . The<br />

⎭<br />

hyper-real<br />

0 is the sequence 0, 0, 0,... . The infinite hyperreal<br />

1<br />

dx<br />

depends on our choice of dx .<br />

2. We will usually choose the family of infinitesimals that is<br />

spanned by the sequences<br />

1<br />

n , 1<br />

2<br />

n<br />

,<br />

1<br />

n<br />

3<br />

,… It is a<br />

semigroup with respect to vector addition, <strong>and</strong> includes all<br />

the scalar multiples of the generating sequences that are<br />

non-zero. That is, the family includes infinitesimals with<br />

negative sign. Therefore,<br />

1<br />

dx<br />

will mean the sequence n .<br />

Alternatively, we may choose the family spanned by the<br />

sequences<br />

1<br />

2 n ,<br />

1<br />

3 n ,<br />

1<br />

4 n ,… Then, 1<br />

dx<br />

will mean the<br />

18


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

sequence 2 n<br />

. Once we determined the basic infinitesimal<br />

dx , we will use it in the Infinite Riemann Sum that defines<br />

an Integral in Infinitesimal Calculus.<br />

3. The <strong>Delta</strong> <strong>Function</strong> is strictly smaller than ∞<br />

4. We define,<br />

1<br />

χ δ ( x) ≡ dx ( )<br />

,<br />

dx x<br />

dx<br />

⎡ ⎤ ,<br />

⎢−<br />

⎣ 2 2 ⎥⎦<br />

where<br />

χ ⎡<br />

⎢−<br />

⎣<br />

dx,<br />

dx<br />

2 2<br />

⎧ dx dx<br />

1, x ∈ ⎡−<br />

, ⎤<br />

( x)<br />

= ⎪ ⎢ 2 2 ⎥<br />

⎨ ⎣ ⎦ .<br />

⎪⎪ 0, otherwise<br />

⎩<br />

⎤<br />

⎥⎦<br />

5. Hence,<br />

for x < 0 , δ ( x) = 0<br />

at<br />

for<br />

dx<br />

x =− , δ( x)<br />

jumps from 0 to<br />

2<br />

dx dx<br />

⎢ ⎣<br />

,<br />

2 2 ⎥ ⎦ , 1<br />

( x)<br />

x ∈ ⎡−<br />

⎤<br />

δ = .<br />

dx<br />

1<br />

dx ,<br />

at x = 0 ,<br />

δ (0) =<br />

1<br />

dx<br />

at<br />

dx<br />

x = , δ( x)<br />

drops from<br />

2<br />

for x > 0 , δ ( x) = 0.<br />

xδ ( x) = 0<br />

1<br />

dx to 0.<br />

6. If dx =<br />

1<br />

, ( x) = 1 1( x),2 1 1( x),3 1 1( x )...<br />

n<br />

[ − , ] [ − , ] [ − , ]<br />

δ χ χ χ<br />

2 2 4 4 6 6<br />

7. If dx =<br />

2<br />

,<br />

n<br />

1 2 3<br />

δ ( x) = , , ,...<br />

2 2 2<br />

2 cosh x 2 cosh 2x 2 cosh 3x<br />

19


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

8. If dx =<br />

1<br />

,<br />

n<br />

− x − 2x − 3x<br />

[0, ∞) [0, ∞) [0, ∞)<br />

δ( x) = e χ ,2 e χ , 3 e χ ,...<br />

x =∞<br />

∫<br />

9. δ( xdx ) = 1.<br />

x =−∞<br />

In [Dan6], we obtained<br />

10.<br />

k =∞<br />

1 −ik( ξ−x<br />

)<br />

δξ ( − x)<br />

= e<br />

2π<br />

∫ dk<br />

k =−∞<br />

In [Dan8], we defined the <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong>, <strong>and</strong> obtained<br />

11.<br />

δ <strong>Periodic</strong>( x ) = ... + δ ( x + 4) + δ ( x + 2) + δ ( x ) + δ ( x − 2) + δ ( x − 4) + ...<br />

1 −inπx 1 −i πx 1 1 iπx 1 inπx<br />

e e e e<br />

2 2 2 2 2<br />

= ... + + ... + + + + ... + + ...<br />

20


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

5.<br />

<strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong> δ ( ξ − x)<br />

5.1 <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong><br />

periodic<br />

δ<strong>Periodic</strong>( ξ− x) = ... + δξ ( − x + 2) + δξ ( − x) + δξ ( −x<br />

− 2) +...<br />

is a periodic hyper-real <strong>Delta</strong> function, with period T = 2 .<br />

In [Dan8], we obtained<br />

1 inπξ ( x ) 1 iπξ ( x) 1 1 iπξ ( x) 1 inπξ<br />

( x )<br />

2 2 2 2 2<br />

− − − − − −<br />

δ<strong>Periodic</strong>( ξ − x) = .. + e + .. + e + + e + .. + e + ..<br />

21


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

6.<br />

Convergent Series<br />

In [Dan10], we defined convergence of infinite series in<br />

Infinitesimal Calculus<br />

6.1 Sequence Convergence to a finite hyper-real a<br />

a → a iff a − a = infinitesimal .<br />

n<br />

n<br />

6.2 Sequence Convergence to an infinite hyper-real A<br />

a → A iff a<br />

n<br />

represents the infinite hyper-real A.<br />

n<br />

6.3 Series Convergence to a finite hyper-real s<br />

a1 + a2 + ... → s iff a1 + ... + an<br />

− s = infinitesimal .<br />

6.4 Series Convergence to an Infinite Hyper-real S<br />

a1 + a2 + ... → S<br />

iff<br />

a<br />

1<br />

+ ... +a<br />

n<br />

represents the infinite hyper-real S .<br />

22


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

7.<br />

<strong>Fejer</strong> Sequence <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

7.1 <strong>Fejer</strong> Sequence Definition<br />

Let f ( x ) be an integrable function on [ −1 ,1].<br />

Then, for each<br />

n = ..., −3, −2, −1, 0,1,2, 3,... , the integrals<br />

1<br />

2<br />

ξ=<br />

1<br />

∫<br />

ξ=−1<br />

−inπξ<br />

f () ξ e dξ<br />

≡ c n<br />

are the Fourier Coefficients of f ( x ).<br />

The Fourier Series partial sums<br />

ξ = 1<br />

{ } { 1 −inπξ ( −x) 1 −iπξ ( −x) 1 1 iπξ ( −x) 1 inπξ<br />

( −x)<br />

( ) = ∫ ( ξ) + ... + + + + ... +<br />

2 2 2 2 2<br />

}<br />

S n<br />

fx f e e e e dξ<br />

,<br />

<br />

ξ =−1<br />

give rise to the Dirichlet Sequence<br />

Dirichlet Sequence<br />

1 −inπx 1 −i πx 1 1 iπx inπ<br />

x<br />

2 2 2 2<br />

Dn<br />

( x) = e + ... + e + + e + ... + 1 e<br />

2<br />

= + cos πx<br />

+ cos 2 πx<br />

+ ... + cosnπ<br />

x<br />

1<br />

2<br />

sin( n + ) πx<br />

= , n = 0,1, 2,..<br />

2sin x<br />

1<br />

2<br />

1<br />

π<br />

2<br />

The <strong>Fejer</strong> Summation partial sums are the Arithmetic Means<br />

FS<br />

ej<br />

n<br />

{ fx ( )}<br />

=<br />

{ f ( x) } + { f( x) } + ... + { f( x)<br />

}<br />

S S S<br />

0 1<br />

n + 1<br />

n<br />

23


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

ξ=<br />

1<br />

1<br />

= ( ) {( 1)<br />

1<br />

∫ f ξ n + + ncos[ π( ξ − x)] + ... + cos[ πn( ξ −x)]}<br />

dξ.<br />

n + 1<br />

2<br />

<br />

ξ=−1<br />

They give rise to the <strong>Fejer</strong> Sequence<br />

<strong>Fejer</strong> Sequence<br />

F ( x ) = + cos[ πξ ( − x )] + ... + cos[ π n ( ξ−<br />

x )]<br />

1 n<br />

1<br />

n 2 n+ 1 n+<br />

1<br />

7.2<br />

1 m−1<br />

m−( m−1)<br />

m 1<br />

π<br />

2 m m<br />

F<br />

−<br />

( x) = + cos x + ... + cos( m − 1) πx<br />

,<br />

D ( x ) + D ( x ) + ... D ( x )<br />

m<br />

0 1 m−1<br />

= ,<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin ( mπx)<br />

= , m = 1, 2, ..<br />

2m<br />

sin ( πx)<br />

Proof:<br />

F<br />

m−1<br />

D0( x) + D1( x) + ... Dm<br />

−1( x)<br />

( x) =<br />

m<br />

1 3 1<br />

1<br />

⎧<br />

sin πx sin πx sin( m ) ⎫<br />

⎪<br />

− πx<br />

2 2 2<br />

= ...<br />

⎪<br />

⎨ + + +<br />

⎬<br />

m 2sin1πx 2sin1πx<br />

2sin1<br />

⎪<br />

π<br />

⎩<br />

x<br />

2 2 2 ⎪⎭<br />

1<br />

= + + + x<br />

2 2 2<br />

2msin<br />

πx<br />

1<br />

2<br />

{ sin 1 πx sin 3 πx ... sin( m −<br />

1 ) π }<br />

cos 0−cos πx cos πx−cos2πx<br />

cos( m−1) πx−cosmπx<br />

{ ...<br />

1πx 1πx 1πx<br />

}<br />

1<br />

= + + +<br />

2msin<br />

πx<br />

1 2sin 2sin 2sin<br />

2<br />

1<br />

= −<br />

4msin<br />

πx<br />

2 1<br />

2<br />

2 2 2<br />

{ 1 cosmπx}<br />

24


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin ( mπx)<br />

= .<br />

2m<br />

sin ( πx)<br />

7.3 <strong>Fejer</strong> Sequence is a <strong>Periodic</strong> <strong>Delta</strong> Sequence, <strong>and</strong><br />

represents a <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong><br />

Each<br />

F<br />

m<br />

2 1<br />

1 2<br />

1( x)<br />

m 2 1<br />

2<br />

sin ( mπx)<br />

−<br />

= , m = 1, 2, 3,...<br />

2 sin ( πx)<br />

1. has the sifting property on each interval,<br />

x =−3<br />

∫<br />

... F ( x) dx = 1; F ( x) dx = 1; F ( x) dx = 1…<br />

x =−5<br />

m−1<br />

2. is a continuous function<br />

x =−1<br />

∫<br />

x =−3<br />

m−1<br />

x = 1<br />

∫<br />

x =−1<br />

m−1<br />

1<br />

3. peaks on each of these intervals to lim F ( x)<br />

= m.<br />

Proof of (1)<br />

x= 1 x=<br />

1<br />

⎡1 m−1 1<br />

m−1 ⎢⎣<br />

π<br />

2 m m<br />

x=− 1 x=−1<br />

x→2k<br />

∫ ∫ x<br />

F ( x) dx = + cos x + ... + cos( m −1)<br />

πx⎤<br />

⎥⎦<br />

d<br />

= 1.<br />

Proof of (3)<br />

1<br />

1 x x<br />

m 1 1<br />

sin x ... sin( m 1) x<br />

=<br />

−<br />

π<br />

π<br />

⎤<br />

2 mπ<br />

m( m− 1) π<br />

⎥⎦x<br />

=−1<br />

=<br />

⎡<br />

⎢ + + + −<br />

⎣<br />

m<br />

2<br />

As x → 0 ,<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin ( mπx)<br />

0<br />

→<br />

2m<br />

sin ( πx)<br />

0<br />

25


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Applying Bernoulli’s rule,<br />

⎡sin ⎤<br />

1 ⎢ '<br />

⎣ ⎦ 1 (2 sin )cos ( )<br />

→<br />

2m ⎡<br />

⎢sin<br />

2 m (2 sin x)cos x( )<br />

⎣ ⎦<br />

2 1<br />

mπx 1 1 1<br />

2 ⎥<br />

mπx mπx mπ<br />

2 2 2<br />

2 1 0<br />

1 1<br />

πx<br />

⎤' x→<br />

π π<br />

1π<br />

2 ⎥<br />

2 2 2 x = 0<br />

1sinmπx<br />

0<br />

= =<br />

2 sin 0<br />

π x<br />

x = 0<br />

Applying Bernoulli’s rule to 1sin mπx<br />

2 sinπx<br />

,<br />

1[sin mπx]' 1πmcosmπx<br />

1<br />

→ = m .<br />

πx<br />

π πx<br />

2<br />

2 [sin ]' x→0<br />

2 cos<br />

x = 0<br />

7.4 <strong>Fejer</strong> Sequence Represents a <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong><br />

δ<br />

periodic<br />

1<br />

⎛sin πξ ( x)<br />

⎞<br />

−<br />

( ξ − x)<br />

= 2m<br />

⎜ sin πξ ( x)<br />

⎜⎝ − ⎠⎟<br />

m<br />

2<br />

1<br />

2<br />

2<br />

26


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

8.<br />

<strong>Fejer</strong> Kernel <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

8.1 <strong>Fejer</strong> Kernel in the Calculus of Limits<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin ( )<br />

ejer ( ) lim mπξ−<br />

x<br />

F ξ − x =<br />

m→∞<br />

2 m sin πξ ( − x)<br />

1 m−1<br />

m−( m−1)<br />

{ πξ x<br />

m πξ }<br />

= lim + cos ( − ) + ... + cos( −1) ( −x )<br />

m→∞<br />

2<br />

m<br />

m<br />

8.2 In the Calculus of Limits, the <strong>Fejer</strong> Kernel does not have<br />

Proof:<br />

the sifting property<br />

By 4.3, as ξ −x<br />

→ 2k,<br />

2 1<br />

1 sin mπξ<br />

( − x)<br />

2m<br />

2<br />

sin<br />

1<br />

πξ ( − x)<br />

Hence,<br />

2 →<br />

1<br />

2<br />

2<br />

m .<br />

2 1<br />

1 sin mπξ<br />

( x)<br />

2 1<br />

lim lim lim<br />

m→∞ ξ−x→2k 2m<br />

2 1<br />

2<br />

sin πξ ( − x)<br />

m→∞<br />

2<br />

−<br />

→ m =<br />

∞.<br />

8.3 Hyper-real <strong>Fejer</strong> Kernel in Infinitesimal Calculus<br />

F<br />

ejer<br />

⎧⎪<br />

1<br />

n , ξ x 2<br />

( ξ x)<br />

⎪ − = k<br />

− = 2<br />

⎨ .<br />

⎪ 0, ξ − x ≠ 2k<br />

⎪⎩<br />

27


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Proof: at any ξ − x = 2k,<br />

2 1<br />

mπξ−<br />

x<br />

2<br />

=<br />

1<br />

2 1<br />

2<br />

πξ−<br />

x<br />

2 ξ− x=<br />

2k<br />

1 sin ( )<br />

2m<br />

sin ( )<br />

m<br />

. <br />

For ξ −x<br />

≠ 2k, <strong>and</strong> for any m ,<br />

Mx ( ). Therefore,<br />

2 1<br />

2<br />

2 1<br />

2<br />

sin mπξ<br />

( − x)<br />

sin πξ ( − x)<br />

is bounded by<br />

2 1<br />

mπξ−<br />

x<br />

2<br />

≤<br />

1<br />

2 1<br />

2m<br />

πξ−<br />

x<br />

2<br />

1 sin ( )<br />

0 ≤<br />

M(<br />

ξ<br />

2m<br />

sin ( )<br />

− x)<br />

Hence, for ξ −x<br />

≠ 2k,<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin mπξ<br />

( − x)<br />

=<br />

2m<br />

sin πξ ( − x)<br />

infinitesimal .<br />

8.4 Let 1 N = 1 be an infinite Hyper-real. Then,<br />

2 dx<br />

F<br />

ejer<br />

( ξ − x)<br />

=<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin Nπξ<br />

( − x)<br />

2N<br />

sin πξ ( − x)<br />

1 N −1<br />

2 N<br />

N−( N−1)<br />

N<br />

= + cos πξ ( − x) + ... + cos( N −1) πξ ( −x )<br />

= ... + δξ ( − x + 2) + δξ ( − x) + δξ ( −x<br />

− 2) + ...<br />

= δ ( ξ −x)<br />

periodic<br />

Proof:<br />

1 N −1<br />

N−( N−1)<br />

ejer<br />

ξ<br />

π ξ<br />

2 N N<br />

F ( − x) = + cos ( − x) + ... + cos( N −1) π( ξ −x)<br />

28


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

By 8.3,<br />

⎧⎪ , ξ − x = − 2 ⎧⎪ , ξ = x ⎧⎪<br />

, ξ − x = 2<br />

= + ⎨ + ⎨ + ⎨<br />

+<br />

⎪ 0, ξ −x ≠ −2 ⎪ 0, ξ ≠ x ⎪ 0, ξ −x<br />

≠ 2<br />

⎩ ⎩ ⎩<br />

N N N<br />

... ⎪ 2 ⎪ 2 ⎪ 2<br />

...<br />

⎧ 1<br />

, ξ − x = − 2 ⎧ 1<br />

, ξ = x ⎧<br />

1<br />

, ξ − x = 2<br />

= ... +<br />

dx dx dx<br />

⎨<br />

⎪ + ⎨<br />

⎪ + ⎨<br />

⎪<br />

+ ...<br />

⎪ 0, ξ −x ≠ −2 ⎪ 0, ξ ≠ x ⎪ 0, ξ −x<br />

≠ 2<br />

⎩ ⎩ ⎩<br />

= ... + δξ ( − x + 2) + δξ ( − x) + δξ ( −x<br />

− 2) + ...<br />

= δ ( ξ −x). <br />

<strong>Periodic</strong><br />

29


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

9.<br />

<strong>Fejer</strong> Summation <strong>and</strong> δ ( ξ − x)<br />

periodic<br />

9.1 <strong>Fejer</strong> Summation of a Hyper-real <strong>Function</strong><br />

Let f ( x ) be a hyper-real function integrable on [ −1 ,1].<br />

Then, for each<br />

n = ..., −3, −2, −1, 0,1,2, 3,... , the integrals<br />

1<br />

2<br />

ξ=<br />

1<br />

∫<br />

ξ=−1<br />

−inπξ<br />

f () ξ e dξ<br />

≡ c n<br />

exist, with finite, or infinite hyper-real values. The<br />

c n<br />

are the<br />

Fourier Coefficients of<br />

f ( x ).<br />

The Fourier Series partial sums<br />

ξ = 1<br />

{ } { 1 −inπξ ( −x) 1 −i πξ ( −x) 1 1 iπξ ( −x) 1 inπξ<br />

( −x)<br />

( ) = ∫ ( ξ) + ... + + + + ... +<br />

2 2 2 2 2<br />

}<br />

S n<br />

fx f e e e e dξ<br />

,<br />

<br />

ξ =−1<br />

give rise to the Dirichlet Sequence<br />

Dirichlet Sequence<br />

1 −inπx 1 −i πx 1 1 iπx inπ<br />

x<br />

2 2 2 2<br />

Dn<br />

( x) = e + ... + e + + e + ... + 1 e<br />

2<br />

= + cos πx<br />

+ cos 2 πx<br />

+ ... + cosnπ<br />

x<br />

1<br />

2<br />

sin( n + ) πx<br />

= , n = 0,1, 2,..<br />

2sin x<br />

1<br />

2<br />

1<br />

π<br />

2<br />

The <strong>Fejer</strong> Summation partial sums are the Arithmetic Means<br />

30


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

FS<br />

ej<br />

n<br />

{ fx ( )}<br />

=<br />

{ f ( x ) } + { f ( x ) } + ... + { f ( x ) }<br />

S S S<br />

0 1<br />

n + 1<br />

n<br />

ξ=<br />

1<br />

1<br />

= ( ) {( 1)<br />

1<br />

∫ f ξ n + + ncos[ π( ξ − x)] + ... + cos[ πn( ξ −x)]}<br />

dξ.<br />

n + 1<br />

2<br />

<br />

ξ=−1<br />

They give rise to the <strong>Fejer</strong> Sequence<br />

<strong>Fejer</strong> Sequence<br />

F ( x ) = + cos[ πξ ( − x )] + ... + cos[ π n ( ξ−<br />

x )]<br />

1 n<br />

1<br />

n 2 n+ 1 n+<br />

1<br />

By 4.2, for m = 1, 2, ..,<br />

F ( x) cos πx ... cos( m 1) π<br />

1 m−1 1<br />

m 1 2 m m<br />

−<br />

= + + + − x,<br />

D ( x ) + D ( x ) + ... D ( x )<br />

m<br />

0 1 m−1<br />

= ,<br />

2 1<br />

2<br />

2 1<br />

2<br />

1 sin ( mπx)<br />

= .<br />

2m<br />

sin ( πx)<br />

Let 1 N = 1 be an infinite Hyper-real.<br />

2 dx<br />

The Hyper-real <strong>Fejer</strong> Kernel is<br />

F ( x) = + cos πx + ... + cos( N −1)<br />

πx<br />

1 N −1 1<br />

ejer 2 N N<br />

= ... + δ( x + 4) + δ( x + 2) + δ( x) + δ( x − 2) + δ( x + 4)...<br />

The <strong>Fejer</strong> Summation associated with f ( x ) is<br />

1 −<br />

N−1 −<br />

N−1<br />

{ }<br />

Ni x i x i x Ni x<br />

ejer<br />

fx ( ) = π π π<br />

c<br />

Ne ... c<br />

1e c0 ce<br />

1<br />

... ce<br />

N −<br />

+ + N −<br />

+ + + + π<br />

N<br />

N N<br />

F S<br />

1<br />

For each x , it may assume finite or infinite hyper-real values.<br />

31


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

9.2 F S{ x }<br />

δ ( ξ − ) = δ ( ξ −x)<br />

ejer <strong>Periodic</strong> <strong>Periodic</strong><br />

Proof: Let N be an infinite hyper-real.<br />

( ) (<br />

{ ( x )} 1 c e πξ<br />

− = + .. +<br />

N − 1c<br />

e<br />

ejer <strong>Periodic</strong> N −N<br />

Ni x iπξ<br />

x<br />

N −1<br />

− − − − )<br />

F S δ ξ<br />

N −1 iπξ<br />

( −x) 1 Niπξ<br />

( −x)<br />

0 1<br />

..<br />

N<br />

N N<br />

+ c + ce + + c e ,<br />

where<br />

u=<br />

1<br />

N−n 1<br />

π<br />

• c n<br />

= ∫ δ <strong>Periodic</strong><br />

( u)<br />

e du,<br />

N<br />

2<br />

u=−1<br />

−in u<br />

• T = 2 is the period,<br />

• <strong>and</strong> c = 0.<br />

For δ ( ) with T = 2 ,<br />

<strong>Periodic</strong> u<br />

N−n N n<br />

u=<br />

1<br />

1<br />

2<br />

u=−1<br />

−inπu<br />

c = ⎡... + δ( u + 2) + δ( u) + δ( u − 2) + ... ⎤<br />

∫ ⎣<br />

⎦<br />

e du<br />

Therefore,<br />

u=<br />

1<br />

1 −inπu<br />

1<br />

δ( ue ) du<br />

2 2<br />

u=−1<br />

= ∫ = .<br />

( ) ( )<br />

{ } 1 −iN πξ−x ( ) ...<br />

1 −iπξ−x<br />

δ ξ − = + +<br />

<strong>Fejer</strong>S<br />

<strong>Periodic</strong><br />

x e e<br />

by 5.<br />

2 2<br />

= δ ( ξ −x),<br />

<strong>Periodic</strong><br />

1 1 i πξ ( − x ) 1 ( )<br />

...<br />

iN πξ−<br />

e<br />

e<br />

x<br />

2 2 2<br />

+ + + + ,<br />

32


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

10.<br />

<strong>Fejer</strong> Summation Theorem<br />

The <strong>Fejer</strong> Summation Theorem for a hyper-real function, f ( x ), is<br />

the Fundamental Theorem of <strong>Fejer</strong> Summation.<br />

It supplies the conditions under which the <strong>Fejer</strong> Summation<br />

associated with f ( x ) equals f ( x ).<br />

It is believed to hold in the Calculus of Limits under some<br />

Conditions. In fact,<br />

The Theorem cannot be proved in the Calculus of Limits<br />

under any conditions,<br />

because the <strong>Fejer</strong> Summation requires integration of the singular<br />

<strong>Fejer</strong> Kernel.<br />

10.1 <strong>Fejer</strong> Summation Theorem cannot be proved in<br />

the Calculus of Limits<br />

Proof: Take L = 1, <strong>and</strong> c = 0.<br />

In the Calculus of Limits, the <strong>Fejer</strong> Summation is the limit of<br />

FS<br />

1 −<br />

1<br />

{ ( )} in π<br />

= x + ... +<br />

n−<br />

fx c e c e<br />

ej n n −n<br />

n<br />

−1<br />

−i πx<br />

n−1 iπx<br />

1<br />

n<br />

n<br />

inπx<br />

+ c 0<br />

+ ce 1<br />

+ ... + c e ,<br />

n<br />

33


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

⎛ ⎞ ⎛<br />

= + +<br />

⎜⎝ ⎠ ⎝<br />

ξ= 1 ξ=<br />

1<br />

1 inπξ inπx ( ) ...<br />

n 1<br />

iπξ iπx<br />

f ξe dξ −<br />

e −<br />

f( ξ)<br />

e dξ<br />

−<br />

e<br />

2n<br />

∫<br />

2n<br />

∫<br />

ξ=− 1 ⎟<br />

⎜<br />

ξ=−1<br />

⎟<br />

⎛ ⎞ ⎛ ⎞ ⎛<br />

+ + + +<br />

⎜ ⎜ ⎝ ⎠ ⎝ ⎠ ⎝⎜<br />

ξ=<br />

1<br />

∫<br />

ξ=−1<br />

ξ= 1 ξ= 1 ξ=<br />

1<br />

1 ∫ f () d n 1 f i i x<br />

() e πξ d e π<br />

...<br />

1<br />

f in in<br />

() e πξ d e π<br />

ξ ξ −<br />

−<br />

ξ ξ −<br />

ξ ξ<br />

2 ∫ 2n<br />

∫<br />

x<br />

2n<br />

ξ=− 1 ⎟ ξ=− 1 ⎟<br />

ξ=−1<br />

{<br />

1 inπξ<br />

( −x ) n−1<br />

iπξ<br />

( −x<br />

)<br />

2n<br />

2n<br />

= f ( ξ) e + ... + e<br />

As n<br />

→∞, the <strong>Fejer</strong> Sequence<br />

1 inπξ<br />

( −x ) n−1<br />

iπξ<br />

( −x<br />

n( ξ ) ...<br />

2n 2n<br />

)<br />

F − x = e + + e<br />

⎞<br />

⎠<br />

1<br />

+ +<br />

2<br />

n−1 −iπξ<br />

( −x) 1 −inπξ<br />

( −x)<br />

e ... e<br />

2n<br />

2n<br />

+ + + d ξ .<br />

1 n−1 −iπξ<br />

( −x) 1 −inπξ<br />

( −x)<br />

e ... e<br />

2 2n<br />

2n<br />

+ + + +<br />

becomes the <strong>Fejer</strong> Kernel, the infinite series<br />

1 inπξ<br />

( −x ) n−1<br />

iπξ<br />

( −x<br />

)<br />

e<br />

e<br />

2n<br />

2n<br />

... + + ... +<br />

1 1 −iπξ<br />

( −x) n 1 in ( x)<br />

e<br />

− − πξ−<br />

e<br />

2 2n<br />

2n<br />

+ + + ... + + ...,<br />

By 8.2, The <strong>Fejer</strong> Kernel is singular whenever ξ − x = 2k, <strong>and</strong><br />

the <strong>Fejer</strong> Summation diverges in the Calculus of Limits.<br />

⎞⎟⎠<br />

}<br />

Avoiding the singularity at<br />

ξ − x =<br />

2k, by using the Cauchy<br />

Principal Value of the integral does not recover the Theorem,<br />

because at any<br />

ξ −x<br />

≠<br />

2k, the <strong>Fejer</strong> Kernel is zero, <strong>and</strong> the<br />

integral is identically zero, for any function<br />

f ( x ).<br />

34


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Thus, the <strong>Fejer</strong> Summation Theorem cannot be proved the<br />

Calculus of Limits.<br />

10.2 Calculus of Limits Conditions are irrelevant to <strong>Fejer</strong><br />

Summation Theorem<br />

Proof: The <strong>Fejer</strong> Conditions are<br />

1. f ( x ) is integrable on [ c − L,<br />

c + L]<br />

2. f ( x ) is periodic with period T = 2L<br />

1<br />

3. (<br />

2<br />

fx ( + 0) + fx ( − 0) ) replaces f ( x ) at a discontinuity point.<br />

It is clear from 10.1 that the <strong>Fejer</strong> conditions on f ( x ) do not<br />

resolve the singularity of the <strong>Fejer</strong> kernel, <strong>and</strong> are not sufficient<br />

for the <strong>Fejer</strong> Summation Theorem. <br />

In Infinitesimal Calculus, by 8.4, the <strong>Fejer</strong> Kernel is the <strong>Periodic</strong><br />

<strong>Delta</strong> <strong>Function</strong>, <strong>and</strong> by 9.2, it equals its <strong>Fejer</strong> Summation.<br />

Then, the <strong>Fejer</strong> Summation Theorem holds for any periodic<br />

integrable Hyper-Real <strong>Function</strong>:<br />

10.3 <strong>Fejer</strong> Summation Theorem for Hyper-real f ( x )<br />

If f ( x ) is hyper-real function integrable on [ c − L, c + L]<br />

, so that<br />

f ( c − L) = f(<br />

c + L)<br />

35


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

Then, f ( x) = F S{ f( x )}<br />

ejer<br />

Proof: Take L = 1, c = 0, <strong>and</strong><br />

1N = 1 an infinite Hyper- real.<br />

ξ=<br />

1<br />

∫<br />

ξ=−1<br />

2 dx<br />

{ }<br />

f ( x) = f( ξ) ... + δ( ξ − x + 2) + δ( ξ − x) + δ( ξ −x<br />

− 2) + ...<br />

dξ<br />

δ<br />

<strong>Periodic</strong><br />

By 8.4, δ ( ξ − x) = F ( ξ −x)<br />

ξ = 1<br />

∫<br />

ξ=−1<br />

<strong>Periodic</strong><br />

{<br />

1 iN πξ ( −x) N −1<br />

iπξ<br />

( −x)<br />

2N<br />

2N<br />

= f ( ξ) e + ... + e<br />

ej<br />

( ξ−x<br />

), where the period of <strong>Delta</strong> is T=2<br />

+<br />

1<br />

+<br />

2<br />

N − 1 −iπξ<br />

( −x) 1 −iNπξ<br />

( −x<br />

e ... e )<br />

2N<br />

2N<br />

}<br />

+ + + d ξ .<br />

In [Dan6], we established that the Fourier Transform,<br />

ξ=∞<br />

−i<br />

2πνξ<br />

∫ f () ξ e dξ,<br />

ξ=−∞<br />

exists for any Hyper-real function<br />

fx ( ). That is, the summation<br />

ξ=∞<br />

∑<br />

ξ=−∞<br />

−i<br />

2πνξ<br />

f () ξ e dξ<br />

exists for any Hyper-real function<br />

fx ( )<br />

. Consequently, the<br />

summations over intervals exist, <strong>and</strong> we may write the integral as<br />

the sum of integrals over intervals<br />

⎛ ξ= 1 ⎞ ⎛ ξ=<br />

1 ⎞ ⎛ ξ= 1<br />

⎞ 1 1 iN πξ iN πx () ...<br />

N 1 1 iπξ iπx<br />

f ξe dξ −<br />

e<br />

−<br />

−<br />

f() ξe dξ = e<br />

1<br />

+ + +<br />

f()<br />

ξdξ<br />

N<br />

2 ∫<br />

2N<br />

2 ∫<br />

⎟+<br />

2<br />

⎜⎝ ξ=− 1 ⎠⎟<br />

⎝⎜<br />

ξ=− 1 ⎠⎟<br />

∫<br />

⎝⎜<br />

ξ=−1<br />

⎟<br />

⎠<br />

c<br />

−N<br />

c<br />

−1 0<br />

c<br />

36


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

⎛ ⎞ ⎛<br />

⎞<br />

+ + +<br />

⎝ ⎠ ⎝<br />

⎠<br />

<br />

<br />

ξ= 1 ξ=<br />

1<br />

N −1 1 −iπξ iπx () ...<br />

1 1<br />

iNπξ iNπ<br />

f ξe dξ e −<br />

f()<br />

ξe dξ<br />

x<br />

e<br />

2N<br />

2 ∫<br />

2N<br />

2 ∫<br />

⎜<br />

ξ=− 1<br />

⎟<br />

⎜<br />

ξ=−1<br />

⎟<br />

c<br />

1<br />

1 c iN x N 1 i x N 1 i x iN x<br />

N<br />

e − π −<br />

... c 1 e − π c −<br />

0 ce π<br />

1<br />

... c N −<br />

N −<br />

N<br />

N<br />

e π<br />

= + + + + + + 1<br />

N<br />

ej<br />

{ f ( x)<br />

}<br />

= FS .<br />

c<br />

N<br />

In particular, the <strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong> violates the <strong>Fejer</strong><br />

Conditions<br />

The Hyper-real<br />

δ( x)<br />

, is not defined in the Calculus of Limits,<br />

<strong>and</strong><br />

δ ( x)<br />

is not integrable in any bounded interval.<br />

<br />

1<br />

(<br />

2<br />

δ( x + 0) + δ( x − 0) ) = 0 does not replace δ( x)<br />

at its<br />

discontinuity point, x = 0 .<br />

But by 9.2,<br />

<strong>Periodic</strong>( x )<br />

satisfies the <strong>Fejer</strong> Summation Theorem.<br />

δ<br />

37


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

References<br />

[Achieser] Achieser, N. I., Theory of Approximation, Ungar, 1956.<br />

[Carslaw] Carslaw, H. S., “Introduction to the Theory of Fourier Series <strong>and</strong><br />

integrals” Third Edition, Macmillan, 1930.<br />

[Dan1] Dannon, H. Vic, “Well-Ordering of the Reals, Equality of all Infinities,<br />

<strong>and</strong> the Continuum Hypothesis” in <strong>Gauge</strong> Institute Journal Vol. 6 No. 2, May<br />

2010;<br />

[Dan2] Dannon, H. Vic, “Infinitesimals” in <strong>Gauge</strong> Institute Journal Vol.6 No.<br />

4, November 2010;<br />

[Dan3] Dannon, H. Vic, “Infinitesimal Calculus” in <strong>Gauge</strong> Institute Journal<br />

Vol. 7 No. 4, November 2011;<br />

[Dan4] Dannon, H. Vic, “Riemann’s Zeta <strong>Function</strong>: the Riemann Hypothesis<br />

Origin, the Factorization Error, <strong>and</strong> the Count of the Primes”, in <strong>Gauge</strong><br />

Institute Journal of Math <strong>and</strong> Physics, Vol. 5, No. 4, November 2009.<br />

[Dan5] Dannon, H. Vic, “The <strong>Delta</strong> <strong>Function</strong>” in <strong>Gauge</strong> Institute Journal Vol.<br />

8, No. 1, February, 2012;<br />

[Dan6] Dannon, H. Vic, “<strong>Delta</strong> <strong>Function</strong>, the Fourier Transform, <strong>and</strong> the<br />

Fourier Integral Theorem” in <strong>Gauge</strong> Institute Journal Vol. 8, No. 2, May,<br />

2012;<br />

[Dan7] Dannon, H. Vic, “Riemannian Trigonometric Series”, <strong>Gauge</strong> Institute<br />

Journal, Volume 7, No. 3, August 2011.<br />

[Dan8] Dannon, H. Vic, “<strong>Periodic</strong> <strong>Delta</strong> <strong>Function</strong> <strong>and</strong> Dirichlet Summation of<br />

Fourier Series” posted to www.gauge-institue.<strong>org</strong>;<br />

[Dan9] Dannon, H. Vic, “Lebesgue Integration” <strong>Gauge</strong> Institute Journal Vol.7<br />

No. 1, February 2011;<br />

38


<strong>Gauge</strong> Institute Journal<br />

H. Vic Dannon<br />

[Dan10] Dannon, H. Vic, “Infinite Series with Infinite Hyper-real Sum ” in<br />

<strong>Gauge</strong> Institute Journal Vol. 8, No. 3, August, 2012;<br />

[Davis] Davis, Philip, “Interpolation <strong>and</strong> Approximation” Blaisdell, 1963.<br />

[Hardy] Hardy, G. H., Divergent Series, Chelsea 1991.<br />

[Kreider] Kreider, Kuller, Ostberg, Perkins, “an introduction to real analysis”<br />

Addison Wesley, 1966<br />

[Natanson] Natanson, I. P., “Constructive <strong>Function</strong> Theory” Ungar, 1964.<br />

[Rogosinski] Rogosinski, Werner, “Fourier Series” Chelsea, 1950.<br />

[Tolstov] Tolstov, Ge<strong>org</strong>i, “Fourier Series” Prentice-Hall,1962<br />

[Zygmund] Zygmund, A., “Trigonometric Series”, Second Edition, Cambridge<br />

University Press, 1968.<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!