04.06.2015 Views

talk - International Workshop on Double Beta Decay and Neutrino

talk - International Workshop on Double Beta Decay and Neutrino

talk - International Workshop on Double Beta Decay and Neutrino

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Double</strong> <strong>Beta</strong> <strong>Decay</strong>:<br />

A Very Special Experiment<br />

NASA Hubble Photo<br />

Boris Kayser<br />

DBD11<br />

November 15, 2011<br />

1


<strong>Neutrino</strong>less <strong>Double</strong> <strong>Beta</strong> <strong>Decay</strong> [0νββ]<br />

e – e –<br />

Nucl<br />

Nucl’<br />

Cannot occur in the St<strong>and</strong>ard Model<br />

Observati<strong>on</strong> at any level would imply —<br />

ØLept<strong>on</strong> number L is not c<strong>on</strong>served<br />

Ø<strong>Neutrino</strong>s have Majorana masses —<br />

masses with a different origin than the<br />

quark <strong>and</strong> charged lept<strong>on</strong> masses<br />

Ø<strong>Neutrino</strong>s are their own antiparticles<br />

2


Observati<strong>on</strong> of 0νββ would make more plausible —<br />

ØThe See-Saw model of the origin of neutrino mass<br />

ØLeptogenesis, an outgrowth of the See-Saw, which<br />

may be the origin of the bary<strong>on</strong>-antibary<strong>on</strong><br />

asymmetry of the universe<br />

3


What does all<br />

this mean?<br />

Why is it<br />

interesting?<br />

4


N<strong>on</strong>c<strong>on</strong>servati<strong>on</strong> of<br />

Lept<strong>on</strong> Number L<br />

5


The Lept<strong>on</strong> Number L is defined by —<br />

L(ν) = L( – ) = –L(ν) = –L( + ) = 1<br />

This is the quantum number that<br />

distinguishes antilept<strong>on</strong>s from lept<strong>on</strong>s.<br />

It is the lept<strong>on</strong>ic analogue of the Bary<strong>on</strong> Number B,<br />

which distinguishes antibary<strong>on</strong>s from bary<strong>on</strong>s.<br />

6


0νββ<br />

e – e –<br />

Nucl<br />

Nucl’<br />

Clearly does not c<strong>on</strong>serve L: ΔL = 2.<br />

N<strong>on</strong>-perturbative Sphaler<strong>on</strong> processes in the<br />

St<strong>and</strong>ard Model (SM) do not c<strong>on</strong>serve L.<br />

But Sphaler<strong>on</strong> processes can <strong>on</strong>ly<br />

change L by a multiple of 3.<br />

2 is not a multiple of 3.<br />

The ΔL = 2 of 0νββ is outside the SM.<br />

7


Majorana Masses<br />

8


Out of, say, a left-h<strong>and</strong>ed neutrino field, ν L ,<br />

<strong>and</strong> its charge-c<strong>on</strong>jugate, ν Lc , we can build a<br />

Left-H<strong>and</strong>ed Majorana mass term —<br />

m L ν L ν L<br />

c<br />

(ν) R<br />

X<br />

mL<br />

ν L<br />

Majorana masses mix ν <strong>and</strong> ν, so they do not<br />

c<strong>on</strong>serve the Lept<strong>on</strong> Number L, changing it by<br />

ΔL = 2, precisely what is needed for 0νββ.<br />

9


A Majorana mass for any fermi<strong>on</strong> f causes f f.<br />

Quark <strong>and</strong> charged-lept<strong>on</strong> Majorana masses<br />

are forbidden by electric charge c<strong>on</strong>servati<strong>on</strong>.<br />

<strong>Neutrino</strong> Majorana masses would make<br />

the neutrinos very distinctive.<br />

Majorana ν masses cannot come from H SM " L " R , the ν<br />

analogue of the Higgs coupling that leads to the q <strong>and</strong> <br />

masses, <strong>and</strong> the progenitor of a Dirac ν mass term.<br />

!<br />

SM Higgs<br />

10


Possible progenitors of Majorana mass terms:<br />

H SM H SM " L<br />

c "L , H IW =1" L<br />

c "L , m R " R<br />

c "R<br />

Not renormalizable<br />

!<br />

This Higgs<br />

not in SM<br />

No Higgs<br />

Majorana neutrino masses must have a different origin<br />

than the masses of quarks <strong>and</strong> charged lept<strong>on</strong>s.<br />

11


Whatever diagrams cause 0νββ, its observati<strong>on</strong><br />

would imply the existence of a Majorana mass term:<br />

(Schechter <strong>and</strong> Valle)<br />

(ν) R<br />

e – e<br />

0νββ<br />

–<br />

ν L<br />

W<br />

u d d u<br />

W<br />

(ν) R → ν L : A Majorana mass term<br />

12


Of course, this Majorana mass term is tiny:<br />

< 10 –23 eV.<br />

(Duerr, Lindner, Merle; Rodejohann)<br />

<strong>Neutrino</strong> oscillati<strong>on</strong> data imply masses > 10 –2 eV.<br />

∴ There must be other sources of neutrino mass.<br />

But 0νββ<br />

A Majorana mass term, however tiny.<br />

13


Why Most Theorists<br />

Expect Majorana Masses<br />

The St<strong>and</strong>ard Model (SM) is defined by the fields it<br />

c<strong>on</strong>tains, its symmetries (notably weak isospin invariance),<br />

<strong>and</strong> its renormalizability.<br />

Leaving neutrino masses aside, anything allowed by the<br />

SM symmetries occurs in nature.<br />

Right-H<strong>and</strong>ed Majorana mass terms<br />

are allowed by the SM symmetries.<br />

Then quite likely Majorana masses<br />

occur in nature too.<br />

14


Does ν = ν?<br />

15


What Is the Questi<strong>on</strong>?<br />

For each mass eigenstate ν i , <strong>and</strong> given helicty h,<br />

does —<br />

or<br />

• ν i (h) = ν i (h)<br />

(Majorana neutrinos)<br />

• ν i (h) ≠ ν i (h) (Dirac neutrinos) ?<br />

Equivalently, do neutrinos have Majorana<br />

masses? If they do, then the mass eigenstates are<br />

Majorana neutrinos.<br />

16


Why Majorana Masses<br />

Majorana <strong>Neutrino</strong>s<br />

The objects ν L <strong>and</strong> ν L<br />

c<br />

in m L ν L ν Lc are not the<br />

mass eigenstates, but just the neutrinos in terms<br />

of which the model is c<strong>on</strong>structed.<br />

m L ν L ν Lc induces ν<br />

ν mixing.<br />

As a result of K 0 K 0 mixing, the neutral K<br />

mass eigenstates are —<br />

K S,L ≅ (K 0 ± K 0 )/√2 . K S,L = K S,L .<br />

As a result of ν ν mixing, the neutrino mass<br />

eigenstate is —<br />

ν i = ν + ν. ν i = ν i .<br />

17


Whatever diagrams cause 0νββ, its observati<strong>on</strong><br />

would imply the existence of a Majorana mass term:<br />

(Schechter <strong>and</strong> Valle)<br />

(ν) R<br />

e – e<br />

0νββ<br />

–<br />

ν L<br />

W<br />

u d d u<br />

W<br />

(ν) R → ν L : A Majorana mass term<br />

∴ 0νββ<br />

ν i = ν i<br />

18


The Nature of<br />

Majorana <strong>Neutrino</strong>s<br />

19


SM Interacti<strong>on</strong>s Of<br />

A Dirac <strong>Neutrino</strong><br />

We have 4 mass-degenerate states:<br />

ν<br />

makes –<br />

C<strong>on</strong>served L<br />

+1<br />

ν<br />

makes +<br />

–1<br />

ν<br />

ν<br />

These states, when Ultra<br />

Rel., do not interact.<br />

(<br />

The weak interacti<strong>on</strong><br />

is Left H<strong>and</strong>ed.<br />

(<br />

20


SM Interacti<strong>on</strong>s Of<br />

A Majorana <strong>Neutrino</strong><br />

We have <strong>on</strong>ly 2 mass-degenerate states:<br />

ν<br />

ν<br />

makes –<br />

makes +<br />

The weak interacti<strong>on</strong>s violate parity.<br />

(They can tell Left from Right.)<br />

An incoming left-h<strong>and</strong>ed neutral lept<strong>on</strong> makes – .<br />

An incoming right-h<strong>and</strong>ed neutral lept<strong>on</strong> makes + .<br />

21


Electromagnetic<br />

Properties<br />

22


Can a Majorana <strong>Neutrino</strong> Have<br />

an Electric Charge Distributi<strong>on</strong>?<br />

No!<br />

–<br />

+<br />

Anti + =<br />

–<br />

But for a Majorana neutrino —<br />

Anti (ν) = ν<br />

23


Dipole Moments<br />

ν<br />

In the St<strong>and</strong>ard Model,<br />

loop diagrams like —<br />

W +<br />

–<br />

γ<br />

produce, for a Dirac neutrino of mass m ν ,<br />

a magnetic dipole moment —<br />

ν<br />

µ ν = 3 x 10 –19 (m ν /1eV) µ B<br />

(Marciano, S<strong>and</strong>a; Lee, Shrock; Fujikawa, Shrock)<br />

24


A Majorana neutrino cannot have a magnetic or<br />

electric dipole moment:<br />

[ ] [ ]<br />

= –<br />

µ µ<br />

e + e –<br />

But for a Majorana neutrino,<br />

ν i<br />

=<br />

ν i<br />

Therefore,<br />

µ [ν ] = [ν ]<br />

i µ i<br />

= 0<br />

25


Both Dirac <strong>and</strong> Majorana neutrinos can have<br />

transiti<strong>on</strong> dipole moments, leading to —<br />

ν 2<br />

e<br />

γ<br />

ν 1<br />

e<br />

One can look for the dipole moments this way.<br />

To be visible, they would have to vastly exceed<br />

St<strong>and</strong>ard Model predicti<strong>on</strong>s.<br />

26


The See-Saw<br />

The Most Popular<br />

Explanati<strong>on</strong> Of<br />

Why <strong>Neutrino</strong>s<br />

Are So Light<br />

27


Majorana Masses Split<br />

Dirac <strong>Neutrino</strong>s<br />

A Majorana mass term splits a Dirac neutrino<br />

into two Majorana neutrinos.<br />

4<br />

Dirac<br />

neutrino<br />

2<br />

2<br />

Majorana<br />

neutrino<br />

Majorana<br />

neutrino<br />

Splitting due to<br />

Majorana mass<br />

28


What Happens In the See-Saw<br />

A BIG Majorana mass term splits a Dirac neutrino<br />

into two widely-spaced Majorana neutrinos.<br />

D<br />

4<br />

Dirac<br />

neutrino<br />

2<br />

2<br />

Majorana<br />

neutrino<br />

Majorana<br />

neutrino<br />

N<br />

Splitting due to<br />

Majorana mass<br />

ν<br />

m ν m N ≈ m D<br />

2<br />

The See-Saw Relati<strong>on</strong><br />

If m D is a typical fermi<strong>on</strong> mass, m N will be very large.<br />

29


The See-Saw Picture<br />

ν<br />

{<br />

Familiar<br />

light<br />

neutrino<br />

Very<br />

heavy<br />

neutrino<br />

}<br />

N<br />

Yanagida;<br />

Gell-Mann, Ram<strong>on</strong>d, Slansky;<br />

Mohapatra, Senjanovic;<br />

Minkowski<br />

30


Signature Predicti<strong>on</strong>s<br />

of the See-Saw<br />

Ø Each ν i = ν i<br />

(Majorana neutrinos)<br />

So look for 0 0νββ!<br />

Ø The light neutrinos have heavy partners N i<br />

31


Are we descended<br />

from the heavy<br />

See-Saw partner<br />

neutrinos?<br />

32


The Challenge —<br />

A Cosmic Broken Symmetry<br />

The universe c<strong>on</strong>tains bary<strong>on</strong>s,<br />

but essentially no antibary<strong>on</strong>s.<br />

The Bary<strong>on</strong> Number of the universe,<br />

B " n B # n B<br />

= 3 n q # n q<br />

is n<strong>on</strong>zero.<br />

( )<br />

!<br />

St<strong>and</strong>ard cosmology: Any initial n<strong>on</strong>zero<br />

Bary<strong>on</strong> Number would have been erased.<br />

How did B = 0 B ≠ 0 ?<br />

33


Sakharov: B = 0<br />

B ≠ 0 requires CP.<br />

The CP in the quark mixing matrix,<br />

seen in B <strong>and</strong> K decays, leads to<br />

much too small a Bary<strong>on</strong> Number.<br />

If quark CP cannot generate<br />

the observed Bary<strong>on</strong> Number,<br />

can some scenario involving lept<strong>on</strong>s do it?<br />

The c<strong>and</strong>idate scenario: Leptogenesis,<br />

an outgrowth of the See-Saw picture.<br />

(Fukugita, Yanagida)<br />

34


Leptogenesis — Step 1<br />

The heavy neutrinos N would have been<br />

made in the hot Big Bang.<br />

The heavy neutrinos N, like the light <strong>on</strong>es ν, are<br />

Majorana particles. Thus, an N can decay into or . +<br />

CP is expected in these decays.<br />

Then, in the early universe, we would have had<br />

different rates for the CP-mirror-image decays –<br />

+ + –<br />

N → + H <strong>and</strong> N → + H<br />

St<strong>and</strong>ard-Model Higgs<br />

This produces a universe with<br />

unequal numbers of lept<strong>on</strong>s <strong>and</strong> antilept<strong>on</strong>s.<br />

35


Leptogenesis — Step 2<br />

The St<strong>and</strong>ard-Model Sphaler<strong>on</strong> process,<br />

which does not c<strong>on</strong>serve Bary<strong>on</strong> Number B,<br />

or Lept<strong>on</strong> Number L, but does c<strong>on</strong>serve B – L, acts.<br />

B i = 0<br />

L i " 0<br />

Sphaler<strong>on</strong><br />

Process<br />

B f " # 1 3 L i<br />

L f " 2 3 L i " #2B f<br />

!<br />

Initial state<br />

from N decays<br />

There is now a n<strong>on</strong>zero Bary<strong>on</strong> Number.<br />

There are bary<strong>on</strong>s, but ∼ no antibary<strong>on</strong>s.<br />

Reas<strong>on</strong>able parameters give the observed n B n " .<br />

!<br />

Final state<br />

36


What About the<br />

Lept<strong>on</strong> Number?<br />

Big-Bang cosmology:<br />

The lept<strong>on</strong>s in the universe include electr<strong>on</strong>s<br />

<strong>and</strong> many neutrinos.<br />

#(electr<strong>on</strong>s) = #(prot<strong>on</strong>s) < #(prot<strong>on</strong>s + neutr<strong>on</strong>s)<br />

= 6 × 10 –10 #(phot<strong>on</strong>s)<br />

#(neutrinos)<br />

≈ #(phot<strong>on</strong>s) >> #(electr<strong>on</strong>s)<br />

37


If 0νββ0<br />

≠ 0:<br />

L is not c<strong>on</strong>served <strong>and</strong> ν = ν,<br />

so the relic neutrino background<br />

does not have a well-defined L.<br />

As l<strong>on</strong>g as the neutrinos were ultra-relativistic, their<br />

helicities functi<strong>on</strong>ed like lept<strong>on</strong> number. But today<br />

many (perhaps all) of them are n<strong>on</strong>-relativistic.<br />

C<strong>on</strong>sequently, we will focus <strong>on</strong> the<br />

Bary<strong>on</strong> Number of the universe.<br />

38


The See-Saw, Leptogenesis,<br />

<strong>and</strong> 0νββ<br />

By c<strong>on</strong>firming the existence of Majorana masses<br />

<strong>and</strong> the Majorana character of neutrinos—<br />

— the observati<strong>on</strong> of 0νββ<br />

would make<br />

the See-Saw picture more plausible.<br />

— hence, it would make Leptogenesis,<br />

an outgrowth of the See-Saw, more plausible.<br />

Other evidence making Leptogenesis more plausible<br />

would be the observati<strong>on</strong> of CP<br />

in neutrino oscillati<strong>on</strong> or 0νββ.<br />

39


— 0νββ<br />

—<br />

A Closer Look<br />

40


What is inside?<br />

e – e<br />

0νββ<br />

–<br />

u d d u<br />

41


We anticipate that 0νββ is dominated by<br />

a diagram with light neutrino exchange<br />

<strong>and</strong> St<strong>and</strong>ard Model vertices:<br />

SM vertex<br />

e – e –<br />

∑<br />

i<br />

Nucl<br />

ν i<br />

ν i<br />

U ei U ei<br />

W – W –<br />

Nuclear Process<br />

Nucl’<br />

Mixing matrix<br />

“The St<strong>and</strong>ard Mechanism”<br />

42


But there could be other c<strong>on</strong>tributi<strong>on</strong>s to 0νββ,<br />

which at the quark level is the process<br />

dd → uuee.<br />

An example from Supersymmetry:<br />

e<br />

e<br />

u<br />

∼<br />

e<br />

∼<br />

γ<br />

∼<br />

e<br />

u<br />

d<br />

d<br />

43


If the dominant mechanism is —<br />

SM vertex<br />

e – e –<br />

∑<br />

i<br />

Nucl<br />

ν i<br />

ν i<br />

U ei U ei<br />

W – W –<br />

Nuclear Process<br />

Nucl’<br />

Mixing matrix<br />

Then —<br />

Mass (ν i )<br />

Amp[0νββ] ∝ ⏐⏐∑ m i U ei2 ⏐⏐≡ m ββ<br />

44


Why Amp[0νββ] Is ∝ <strong>Neutrino</strong> Mass<br />

When SM Vertices Are Assumed<br />

e – e –<br />

Nucl<br />

Nucl’<br />

— manifestly does not c<strong>on</strong>serve L: ΔL = 2.<br />

But the St<strong>and</strong>ard Model (SM) weak interacti<strong>on</strong>s do<br />

c<strong>on</strong>serve L. Thus, the ΔL = 2 of 0νββ can <strong>on</strong>ly come<br />

from Majorana neutrino masses, such as —<br />

m L ( ν Lc ν L + ν L ν Lc )<br />

(ν) R<br />

X<br />

m L<br />

ν L<br />

45


Once Up<strong>on</strong> a Time<br />

“Replacing <strong>on</strong>e of the SM vertices by a right-h<strong>and</strong>ed<br />

current will eliminate the need for neutrino mass.”<br />

Now<br />

Not true: Majorana neutrino mass<br />

is still needed to violate lept<strong>on</strong> number.<br />

In fact, with <strong>on</strong>e SM LH vertex <strong>and</strong> <strong>on</strong>e n<strong>on</strong>-SM RH<br />

vertex, the amplitude is quadratic in neutrino mass.<br />

(B.K., Petcov, Rosen; Enqvist, Maalampi, Mursula; B.K.)<br />

46


To have 0νββ without any input neutrino mass<br />

requires a lept<strong>on</strong>-number-violating interacti<strong>on</strong>,<br />

such as —<br />

e<br />

e<br />

u<br />

∼<br />

e<br />

∼<br />

γ<br />

∼<br />

e<br />

u<br />

d<br />

L<br />

d<br />

47


In the St<strong>and</strong>ard Mechanism,<br />

How Large is m ββ ?<br />

How sensitive need an experiment be?<br />

Assume there are <strong>on</strong>ly 3 neutrino mass eigenstates.<br />

Then the spectrum looks like —<br />

atm<br />

ν 3<br />

sol < ν 2 ν1<br />

Normal hierarchy<br />

or<br />

ν<br />

sol < 2<br />

ν 1<br />

atm<br />

ν 3<br />

Inverted hierarchy<br />

48


Takes 1 t<strong>on</strong><br />

95% CL<br />

m ββ<br />

Smallest<br />

Takes<br />

100 t<strong>on</strong>s m ββ For Each Hierarchy<br />

49


There is no clear theoretical preference<br />

for either hierarchy.<br />

If the hierarchy is inverted—<br />

then 0νββ searches with sensitivity<br />

to m ββ = 0.01 eV have<br />

a very good chance to see a signal.<br />

Sensitivity in this range is the target<br />

for the next generati<strong>on</strong> of experiments.<br />

50


Suppose accelerator experiments have<br />

determined the hierarchy to be inverted.<br />

Suppose 0νββ searches are negative, <strong>and</strong> establish<br />

c<strong>on</strong>vincingly that m ββ < 0.01 eV. This would suggest,<br />

but not prove, that neutrinos are Dirac particles.<br />

Tiny Majorana masses could turn —<br />

into<br />

10 –20 eV 2 splittings<br />

invisible in<br />

ν oscillati<strong>on</strong><br />

6 Majorana neutrinos, making 3<br />

pseudo (almost) Dirac neutrinos.<br />

51


Schizophrenia (Split Pers<strong>on</strong>ality)<br />

(Allahverdi, Dutta, Mohapatra)<br />

ν 2<br />

ν 1<br />

Dirac<br />

Majorana<br />

ν 3<br />

Majorana<br />

In this scenario, the lower bound <strong>on</strong> m ββ when the<br />

hierarchy is inverted is ∼ doubled, to ∼ 0.02 eV.<br />

52


Summary<br />

A n<strong>on</strong>-zero signal for 0νββ0<br />

would be a tremendously<br />

important discovery.<br />

Good luck in finding it!<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!