Employing Electrochemical Impedance in Predicting ... - Halox

Employing Electrochemical Impedance in Predicting ... - Halox Employing Electrochemical Impedance in Predicting ... - Halox

www.halox.com<br />

EMPLOYING ELECTROCHEMICAL<br />

IMPEDANCE IN PREDICTING<br />

CORROSION EVENTS<br />

Dr. Tony Gichuhi<br />

Strictly confidential - proprietary <strong>in</strong>formation of HALOX


HALOX Overview<br />

www.halox.com<br />

• Objectives<br />

• Challenges<br />

• Corrosion Correlations<br />

• EIS Background<br />

» Pr<strong>in</strong>ciples – Equipment – Model<strong>in</strong>g<br />

» Interpretation – Why EIS?<br />

• Direct-to-Metal Coat<strong>in</strong>g Screen<strong>in</strong>g Study<br />

• Data Comparison<br />

• EIS Prediction<br />

• Conclusion<br />

Coat<strong>in</strong>g<br />

Substrate<br />

2


Objectives<br />

www.halox.com<br />

EIS Test<br />

• Can we use EIS to predict<br />

coat<strong>in</strong>g performance?<br />

• F<strong>in</strong>d correlation between EIS<br />

response and Salt Spray and<br />

Prohesion results<br />

•Does coat<strong>in</strong>g deterioration via<br />

EIS mimic cab<strong>in</strong>et test<br />

results?<br />

• Can we shorten screen<strong>in</strong>g<br />

time?<br />

Cab<strong>in</strong>et Tests<br />

• Salt Spray<br />

»Static test<br />

» 5% NaCl<br />

»Constant 35°C, 100% RH<br />

• Prohesion<br />

»Cyclic test<br />

»1 hr salt mist at ambient &<br />

1 hr dry<strong>in</strong>g at 35°C<br />

» 0.05% NaCl, 0.35%<br />

(NH 4 ) 2 SO 4<br />

3


Challenges<br />

www.halox.com<br />

Cd plat<strong>in</strong>g vs. Zn<br />

plat<strong>in</strong>g on<br />

automotive parts<br />

Pa<strong>in</strong>ted CRS vs.<br />

Electro-galvanized<br />

steel<br />

4


Challenges<br />

www.halox.com<br />

- Cab<strong>in</strong>et tests<br />

- Neutral salt spray considered <strong>in</strong>dustry standard for<br />

over 50 years<br />

- Neutral salt spray has been the achilles heel for W/B<br />

coat<strong>in</strong>gs breakthroughs<br />

- Can sometimes take too much time<br />

- Many use neutral salt spray as quality control to<br />

qualify DTM coat<strong>in</strong>gs designed to provide barrier<br />

properties, good adhesion, hardness, toughness,<br />

chemical resistance, etc<br />

- Do not always tell us why a coat<strong>in</strong>g failed or passed<br />

5


Challenges<br />

www.halox.com<br />

- ASTM B-117 Salt Fog<br />

- How many hours of salt spray is equivalent to 1 or 10<br />

yrs real world corrosion?<br />

Cyclic Prohesion<br />

Cyclic Salt Spray<br />

Humidity<br />

Prohesion<br />

Salt Spray<br />

Resistance to SO 2<br />

(Kesternich)<br />

Immersion<br />

Xenon Arc<br />

Condensation<br />

QUV<br />

Volvo outdoor SCAB test<br />

(Simulated Corrosion Atmospheric Breakdown)<br />

SAE J2334 Cosmetic Corrosion Lab Test<br />

(80 cycles = 5 yrs on vehicle test<strong>in</strong>g)<br />

GMW14872 Cyclic Accelerated Corrosion Test<strong>in</strong>g<br />

(Formerly GM9540P 60 cycles = 10 years)<br />

CASS (Copper Accelerated Acetic Acid Salt Spray)<br />

6


Corrosion Correlation<br />

www.halox.com<br />

Reference: John Repp – Corrpro Companies, Inc - US Army Corrosion Summit 2002<br />

7


EIS Background<br />

www.halox.com<br />

8


EIS Pr<strong>in</strong>ciples<br />

www.halox.com<br />

- Rapidly provides <strong>in</strong>fo on<br />

physical and electro chemical<br />

behavior of coat<strong>in</strong>gs<br />

- Monitors permeability of<br />

electrolyte through ionic<br />

conduction<br />

- Good wet adhesion is<br />

paramount for good protection<br />

- Changes <strong>in</strong> coat<strong>in</strong>g resistance<br />

correlate to penetration of<br />

ionic species<br />

9


EIS Equipment<br />

www.halox.com<br />

Gamry PC3 with Multiplexer for 8 channel<br />

Flat cell with exposed area about 22.56 cm 2<br />

Electrolyte: 5% NaCl or 0.05% NaCl/0.35% (NH 4 ) 2 SO 4<br />

SCE Reference Electrode<br />

Graphite Counter Electrode<br />

Cold Rolled Steel Work<strong>in</strong>g Electrode<br />

10


Equivalent Circuit Model<strong>in</strong>g<br />

www.halox.com<br />

11


EIS Interpretation<br />

www.halox.com<br />

Reference: David Dubowik & Greg Ross – Air Products<br />

12


EIS Response (Defects vs. No Defects)<br />

www.halox.com<br />

13<br />

Reference: <strong>Electrochemical</strong> <strong>Impedance</strong> Spectroscopy as a Method for Quality Control of Mirror Coat<strong>in</strong>gs <strong>in</strong> Applications


Why EIS?<br />

www.halox.com<br />

• For pa<strong>in</strong>ts/coat<strong>in</strong>gs on a metal substrate, EIS acts as a<br />

very sensitive quantitative detector of changes <strong>in</strong> both the<br />

coat<strong>in</strong>g and the metal substrate dur<strong>in</strong>g long-term exposure<br />

to an electrolyte.<br />

• Changes <strong>in</strong> the coat<strong>in</strong>g will be apparent <strong>in</strong> EIS long<br />

before any visible damage occurs.<br />

• Apply stress to the sample to cause it to fail. The stress<br />

should simulate the service environment, which could be<br />

weather<strong>in</strong>g or a specific chemical attack, e.g., seawater.<br />

14


Why EIS?<br />

www.halox.com<br />

• Measure an EIS curve immediately upon exposure and<br />

periodically thereafter until the test is complete.<br />

• Changes <strong>in</strong> the EIS curve with time reflect changes <strong>in</strong> the<br />

pa<strong>in</strong>t or the metal substrate. These changes are<br />

accelerated by the artificial stress.<br />

• Fit an equivalent circuit to the data to determ<strong>in</strong>e the value<br />

of the circuit elements.<br />

• Evaluate the data to select an “<strong>in</strong>dicator” of coat<strong>in</strong>g<br />

deterioration. The <strong>in</strong>dicator may be Z total , capacitance,<br />

pore resistance, etc.<br />

• In many cases, Z at low frequency is satisfactory.<br />

15


www.halox.com<br />

DTM SCREENING STUDY<br />

Strictly confidential - proprietary <strong>in</strong>formation of HALOX


Screen<strong>in</strong>g Protocol<br />

www.halox.com<br />

Salt Spray<br />

(ASTM B-117)<br />

24, 48, 72, 168<br />

and 504 hrs<br />

Prohesion<br />

(ASTM G85)<br />

EIS<br />

(ASTM G106)<br />

504 hrs Initial, 24, 48, 72<br />

and 168 hrs<br />

17


Screen<strong>in</strong>g Parameters<br />

www.halox.com<br />

• All coat<strong>in</strong>g DFTs were between 2.5-3.0 mils<br />

• All coat<strong>in</strong>gs were air dried for 7 days before test<strong>in</strong>g<br />

• Substrate: Cold rolled steel (ACT matte f<strong>in</strong>ish)<br />

• Panels were tested <strong>in</strong> duplicate<br />

• No corrosion <strong>in</strong>hibitors were <strong>in</strong>corporated<br />

• Recommended flash rust <strong>in</strong>hibitors were added<br />

DTM coat<strong>in</strong>g 2.5-3.0 mils<br />

CRS<br />

18


DTM FORMULATION MATRIX<br />

www.halox.com<br />

Sys Description Type pH KU ICI<br />

Wt.<br />

Solids<br />

Vol.<br />

Solids<br />

VOC<br />

A Ma<strong>in</strong>cote HG-86 Acrylic Gloss DTM 9.22 59.4 0.3 46.28 34.82 222.38<br />

B<br />

NeoCryl XK-87<br />

High Solids<br />

Styrene Acrylic<br />

7.46 63.1 0.9 56.50 43.08 158.07<br />

C Ma<strong>in</strong>cote HG-54D Acrylic Dispersion 9.26 93.0 0.7 41.12 28.02 356.44<br />

D<br />

Hexion<br />

Aquamac 705<br />

Acrylic DTM 8.79 68.6 0.6 47.17 36.69 117.67<br />

E Hexion Aquamac 580 V<strong>in</strong>yl Acrylic DTM 7.83 64.3 0.8 TBD TBD TBD<br />

F EPS 2540 High Gloss Acrylic 8.87 67.9 0.8 44.69 33.71 211.79<br />

G NeoCryl A-6099 High Gloss DTM 9.46 57.6 1.4 40.64 28.90 257.86<br />

H<br />

NeoCryl XK-98<br />

I BASFJoncryl 1522<br />

J<br />

K<br />

Avanse MV-100<br />

Sher-Cryl HPA<br />

Acrylic DTM<br />

Enamel<br />

Acrylic Latex<br />

SEH-0183D<br />

High Gloss Acrylic<br />

DTM<br />

High Performance<br />

Acrylic Gloss<br />

8.12 79.3 1.4 43.93 41.92 29.82<br />

8.43 51.5 0.5 45.57 37.36


Bode Plots for DTM Pa<strong>in</strong>ts<br />

Initial scan<br />

www.halox.com<br />

Rank<br />

Sys<br />

1 F<br />

2 I<br />

3 G<br />

4 J<br />

5 K<br />

6 E<br />

7 A<br />

8 B<br />

9 D<br />

10 C<br />

11 H<br />

20


Bode Plots for DTM Pa<strong>in</strong>ts<br />

After 24 hrs<br />

www.halox.com<br />

Rank<br />

Sys<br />

1 I<br />

2 F<br />

3 G<br />

4 J<br />

5 K<br />

6 A<br />

7 E<br />

8 B<br />

9 D<br />

10 C<br />

11 H<br />

21


Bode Plots for DTM Pa<strong>in</strong>ts<br />

After 48 hrs<br />

www.halox.com<br />

Rank<br />

Sys<br />

1 I<br />

2 F<br />

3 G<br />

4 J<br />

5 A<br />

6 E<br />

7 K<br />

8 B<br />

9 D<br />

10 C<br />

11 H<br />

22


Bode Plots for DTM Pa<strong>in</strong>ts<br />

After 168 hrs<br />

www.halox.com<br />

Rank<br />

Sys<br />

1 F<br />

2 A<br />

3 K<br />

4 I<br />

5 E<br />

6 B<br />

7 J<br />

8 G<br />

9 C<br />

10 D<br />

11 H<br />

23


Bode Plots for DTM Pa<strong>in</strong>ts<br />

Best Systems Initially and after 168 hrs<br />

www.halox.com<br />

AFTER 168 hrs<br />

INITIAL SCAN<br />

24


Bode plots for overall best system:<br />

Initial - 24 – 48 – 168 hrs<br />

www.halox.com<br />

Best<br />

System<br />

F<br />

25


Nyquist plots for overall best system:<br />

Initial – 24 – 48 – 168 hrs<br />

www.halox.com<br />

26


Cab<strong>in</strong>et Test Results<br />

NSS 504 hrs<br />

www.halox.com<br />

F A K I<br />

27


Cab<strong>in</strong>et Test Results<br />

Prohesion 504 hrs<br />

www.halox.com<br />

F A K I<br />

28


Corrosion Progression<br />

Salt Spray: 72, 168, 504 hrs<br />

www.halox.com<br />

F F F<br />

29<br />

72 hrs 168 hrs 504 hrs


Correlation<br />

www.halox.com<br />

30


Total <strong>Impedance</strong> [Z]<br />

www.halox.com<br />

Total <strong>Impedance</strong> Z<br />

XK 98<br />

AQ 580<br />

168 hrs<br />

24 hrs<br />

Initial<br />

HG 54-D<br />

NC 6099<br />

JC 1522<br />

DTM Pa<strong>in</strong>t System<br />

XK 87<br />

HG 86<br />

MV 100<br />

AQ 705<br />

EPS<br />

HPA<br />

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09<br />

Ohms<br />

31


Total <strong>Impedance</strong> [Z]<br />

www.halox.com<br />

Total <strong>Impedance</strong> Z<br />

Initial<br />

24 hrs<br />

168 hrs<br />

Ohms<br />

1E+09<br />

100000000<br />

10000000<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

HPA EPS AQ 705 MV 100 HG 86 XK 87 JC 1522 NC 6099 HG 54-D AQ 580 XK 98<br />

DTM Pa<strong>in</strong>t System<br />

32


Best DTM Coat<strong>in</strong>gs<br />

www.halox.com<br />

1E+09<br />

100000000<br />

10000000<br />

1000000<br />

100000<br />

10000<br />

Initial<br />

24 hrs<br />

168 hrs<br />

1000<br />

100<br />

10<br />

1<br />

HPA EPS HG 86 JC 1522<br />

33


Summary<br />

www.halox.com<br />

EIS RESULTS<br />

(Z TOT )<br />

CABINET<br />

RESULTS<br />

(504 hrs)<br />

Rank Initial 24 hrs 48 hrs 168 hrs NSS Prohesion<br />

Best F I I F F F<br />

2 I F F A A A<br />

3 G G G K K K<br />

4 J J J I I I<br />

Worst H H H H H H<br />

34


Conclusion<br />

www.halox.com<br />

- EIS predicted the lead<strong>in</strong>g<br />

and worst coat<strong>in</strong>gs <strong>in</strong> salt<br />

spray with<strong>in</strong> the first 24-<br />

168 hrs<br />

- EIS response also tracked<br />

well with Prohesion<br />

- EIS accurately predicted<br />

which coat<strong>in</strong>gs would<br />

perform the best long-term<br />

35


www.halox.com<br />

THANK YOU FOR YOUR ATTENTION<br />

Strictly confidential - proprietary <strong>in</strong>formation of HALOX

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!