Euler's partition theorem and the combinatorics of -sequences

Euler's partition theorem and the combinatorics of -sequences Euler's partition theorem and the combinatorics of -sequences

01.06.2015 Views

Theorem [Corteel,S 2004] Given positive integers s 1 , . . . , s n , the generating function for the sequences λ 1 , . . . , λ n satisfying is λ 1 s 1 ≥ λ 2 s 2 ≥ · · · ≥ λ n−1 s n−1 ≥ λ n s n ≥ 0 ∑ s2 −1 ∑ s3 −1 z 2 =0 z 3 =0 · · · ∑s n−1 s 1 z 2 z n=0 q⌈ s 2 ∏ n i=1 (1 − qb i ) ⌉+ P n i=2 z i ∏ n−1 i=2 qb i ⌈ z i+1 − z i ⌉ s i+1 s i where b 1 = 1 and for 2 ≤ i ≤ n, b i = s 1 + s 2 + · · · + s i . Corollary As q → 1, (1 − q) n × this gf −→ s 2 s 3 · · · s ∏ n n i=1 b . i

Truncated l-lecture hall partitions → l-nomials Corollary For l-sequence {a i }: L (l) n+k,k : λ 1 a n+k ≥ λ 2 a n+k−1 ≥ λ k a n+1 > 0 but L (l) n+k,k (q) =? ) (l) lim ((1 − q→1 q)k L (l) n+k,k (q)) = ( n k (p 1 p 2 · · · p k )(p n+k p n+k−1 · · · p n+1 ) where p i = a i + a i−1 and ( n k ) (l) is the l-nomial ...

Truncated l-lecture hall <strong>partition</strong>s → l-nomials<br />

Corollary For l-sequence {a i }:<br />

L (l)<br />

n+k,k : λ 1<br />

a n+k<br />

≥ λ 2<br />

a n+k−1<br />

≥<br />

λ k<br />

a n+1<br />

> 0<br />

but<br />

L (l)<br />

n+k,k<br />

(q) =?<br />

) (l)<br />

lim ((1 −<br />

q→1 q)k L (l)<br />

n+k,k (q)) =<br />

( n<br />

k<br />

(p 1 p 2 · · · p k )(p n+k p n+k−1 · · · p n+1 )<br />

where p i = a i + a i−1<br />

<strong>and</strong><br />

( n<br />

k<br />

) (l)<br />

is <strong>the</strong> l-nomial ...

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!