Euler's partition theorem and the combinatorics of -sequences

Euler's partition theorem and the combinatorics of -sequences Euler's partition theorem and the combinatorics of -sequences

01.06.2015 Views

Truncated lecture hall partitions L (l) n,k : λ 1 n ≥ λ 2 n − 1 ≥ · · · ≥ λ k−1 n − k + 2 ≥ λ k n − k + 1 > 0 Theorem: [Corteel,S 2004] [ L (l) n,k (q) = q(k+1 2 ) n k ] q (−q n−k+1 ; q) k (q 2n−k+1 ; q) k , where (a; q) n = (1 − a)(1 − aq) · · · (1 − aq n−1 ) Analog for l-lecture hall partitions?

Truncated lecture hall partitions L (l) n,k,j : j ≥ λ 1 n ≥ λ 2 n − 1 ≥ · · · ≥ λ k−1 n − k + 2 ≥ λ k n − k + 1 > 0 Theorem: [Corteel,S 2004] [ L (l) n,k (q) = q(k+1 2 ) n k Theorem [Corteel,Lee,S 2005] ( ) L (l) n n,k,j (1) = jk k ] q (−q n−k+1 ; q) k (q 2n−k+1 ; q) k , where (a; q) n = (1 − a)(1 − aq) · · · (1 − aq n−1 ) Analog for l-lecture hall partitions?

Truncated lecture hall <strong>partition</strong>s<br />

L (l)<br />

n,k<br />

:<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ · · · ≥<br />

λ k−1<br />

n − k + 2 ≥<br />

λ k<br />

n − k + 1 > 0<br />

Theorem: [Corteel,S 2004]<br />

[<br />

L (l)<br />

n,k<br />

(q) = q(k+1 2 ) n<br />

k<br />

]<br />

q<br />

(−q n−k+1 ; q) k<br />

(q 2n−k+1 ; q) k<br />

,<br />

where (a; q) n = (1 − a)(1 − aq) · · · (1 − aq n−1 )<br />

Analog for l-lecture hall <strong>partition</strong>s?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!