Euler's partition theorem and the combinatorics of -sequences

Euler's partition theorem and the combinatorics of -sequences Euler's partition theorem and the combinatorics of -sequences

01.06.2015 Views

The Lecture Hall Theorem [BME1] The generating function for integer sequences λ 1 , λ 2 , . . . , λ n satisfying: is L n : λ 1 n ≥ λ 2 n − 1 ≥ . . . ≥ λ n 1 ≥ 0 L n (q) = n∏ i=1 1 1 − q 2i−1

The Lecture Hall Theorem [BME1] The generating function for integer sequences λ 1 , λ 2 , . . . , λ n satisfying: is L n : λ 1 n ≥ λ 2 n − 1 ≥ . . . ≥ λ n 1 ≥ 0 L n (q) = n∏ i=1 1 1 − q 2i−1 lim n→∞ (Lecture Hall Theorem) = Euler’s Theorem since λ 1 n ≥ λ 2 n − 1 ≥ . . . ≥ λ n 1 n∏ i=1 ≥ 0 −→ partitions into distinct parts 1 −→ partitions into odd parts 1 − q2i−1

The Lecture Hall Theorem [BME1] The generating function for<br />

integer <strong>sequences</strong> λ 1 , λ 2 , . . . , λ n satisfying:<br />

is<br />

L n :<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ . . . ≥ λ n<br />

1 ≥ 0<br />

L n (q) =<br />

n∏<br />

i=1<br />

1<br />

1 − q 2i−1<br />

lim n→∞ (Lecture Hall Theorem) = Euler’s Theorem<br />

since<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ . . . ≥ λ n<br />

1<br />

n∏<br />

i=1<br />

≥ 0 −→ <strong>partition</strong>s into distinct parts<br />

1<br />

−→ <strong>partition</strong>s into odd parts<br />

1 − q2i−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!