01.06.2015 Views

Euler's partition theorem and the combinatorics of -sequences

Euler's partition theorem and the combinatorics of -sequences

Euler's partition theorem and the combinatorics of -sequences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong> <strong>and</strong> <strong>the</strong><br />

<strong>combinatorics</strong> <strong>of</strong> l-<strong>sequences</strong><br />

Carla D. Savage<br />

North Carolina State University<br />

June 26, 2008


Inspiration<br />

BME1 Mireille Bousquet-Mélou, <strong>and</strong> Kimmo Eriksson, Lecture hall<br />

<strong>partition</strong>s,<br />

Ramanujan. J., 1:1, 1997, 101-111.<br />

BME2 Mireille Bousquet-Mélou, <strong>and</strong> Kimmo Eriksson, Lecture hall<br />

<strong>partition</strong>s II,<br />

Ramanujan. J., 1:2, 1997, 165-185.<br />

Reference<br />

SY07 C. D. S. <strong>and</strong> Ae Ja Yee, Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong> <strong>and</strong> <strong>the</strong><br />

<strong>combinatorics</strong> <strong>of</strong> l-<strong>sequences</strong>,<br />

JCTA, 2007, to appear, available online.<br />

LS08 Nicholas Loehr, <strong>and</strong> C. D. S. Notes on l-nomials, in<br />

preparation.


Overview<br />

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong>


Overview<br />

1, 2, 3, . . .<br />

l-<strong>sequences</strong><br />

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong>


Overview<br />

1, 2, 3, . . .<br />

l-<strong>sequences</strong><br />

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong><br />

The l-Euler <strong><strong>the</strong>orem</strong>


Overview<br />

1, 2, 3, . . .<br />

l-<strong>sequences</strong><br />

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong><br />

The l-Euler <strong><strong>the</strong>orem</strong><br />

Lecture hall <strong>partition</strong>s<br />

l-Lecture hall <strong>partition</strong>s


Overview<br />

1, 2, 3, . . .<br />

l-<strong>sequences</strong><br />

Euler’s <strong>partition</strong> <strong><strong>the</strong>orem</strong><br />

The l-Euler <strong><strong>the</strong>orem</strong><br />

Lecture hall <strong>partition</strong>s<br />

l-Lecture hall <strong>partition</strong>s<br />

Binomial coefficients<br />

l-nomial coefficients


Euler’s Partition Theorem:<br />

The number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> an integer N into odd parts is equal<br />

to <strong>the</strong> number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> N into distinct parts.<br />

Example: N = 8<br />

Odd parts:<br />

(7,1) (5,3) (5,1,1,1) (3,3,1,1) (3,1,1,1,1,1) (1,1,1,1,1,1,1,1)<br />

Distinct Parts:<br />

(8) (7,1) (6,2) (5,3) (5,2,1) (4,3,1)


Sylvester’s Bijection


Sylvester’s Bijection


l-<strong>sequences</strong><br />

For integer l ≥ 2, define <strong>the</strong> sequence {a n<br />

(l) } n≥1 by<br />

a (l)<br />

n<br />

= la (l)<br />

n−1 − a(l) n−2 ,<br />

with initial conditions a (l)<br />

1<br />

= 1, a (l)<br />

2<br />

= l.


l-<strong>sequences</strong><br />

For integer l ≥ 2, define <strong>the</strong> sequence {a n<br />

(l) } n≥1 by<br />

a (l)<br />

n<br />

= la (l)<br />

n−1 − a(l) n−2 ,<br />

with initial conditions a (l)<br />

1<br />

= 1, a (l)<br />

2<br />

= l.<br />

{a (3)<br />

n } = 1, 3, 8, 21, 55, 144, 377, . . .<br />

{a (2)<br />

n } = 1, 2, 3, 4, 5, 6, 7, . . .


l-<strong>sequences</strong><br />

For integer l ≥ 2, define <strong>the</strong> sequence {a n<br />

(l) } n≥1 by<br />

a (l)<br />

n<br />

= la (l)<br />

n−1 − a(l) n−2 ,<br />

with initial conditions a (l)<br />

1<br />

= 1, a (l)<br />

2<br />

= l.<br />

{a (3)<br />

n } = 1, 3, 8, 21, 55, 144, 377, . . .<br />

{a (2)<br />

n } = 1, 2, 3, 4, 5, 6, 7, . . .<br />

(These are <strong>the</strong> (k, l) <strong>sequences</strong> in [BME2] with k = l = l.)


l ≥ 2<br />

The l-Euler <strong><strong>the</strong>orem</strong> [BME2]: The number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> an<br />

integer N into parts from <strong>the</strong> set<br />

{a (l)<br />

0<br />

+ a (l)<br />

1 , a(l) 1<br />

+ a (l)<br />

2 , a(l) 2<br />

+ a (l)<br />

3 , . . .}<br />

is <strong>the</strong> same as <strong>the</strong> number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> N in which <strong>the</strong> ratio <strong>of</strong><br />

consecutive parts is greater than<br />

Pro<strong>of</strong>: via lecture hall <strong>partition</strong>s.<br />

c l = l + √ l 2 − 4<br />

2


l = 2<br />

The l-Euler <strong><strong>the</strong>orem</strong> [BME2]: The number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> an<br />

integer N into parts from <strong>the</strong> set<br />

{0 + 1, 1 + 2, 2 + 3, . . .} = {1, 3, 5, . . .}<br />

is <strong>the</strong> same as <strong>the</strong> number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> N in which <strong>the</strong> ratio <strong>of</strong><br />

consecutive parts is greater than<br />

c 2 = 2 + √ 2 2 − 4<br />

2<br />

= 1


l = 3<br />

The l-Euler <strong><strong>the</strong>orem</strong> [BME2]: The number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> an<br />

integer N into parts from <strong>the</strong> set<br />

{0 + 1, 1 + 3, 3 + 8, . . .} = {1, 4, 11, 29, . . .}<br />

is <strong>the</strong> same as <strong>the</strong> number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> N in which <strong>the</strong> ratio <strong>of</strong><br />

consecutive parts is greater than<br />

c 3 = 3 + √ 3 2 − 4<br />

2<br />

= (3 + √ 5)/2


l = 3<br />

The l-Euler <strong><strong>the</strong>orem</strong> [BME2]: The number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> an<br />

integer N into parts from <strong>the</strong> set<br />

{0 + 1, 1 + 3, 3 + 8, . . .} = {1, 4, 11, 29, . . .}<br />

is <strong>the</strong> same as <strong>the</strong> number <strong>of</strong> <strong>partition</strong>s <strong>of</strong> N in which <strong>the</strong> ratio <strong>of</strong><br />

consecutive parts is greater than<br />

c 3 = 3 + √ 3 2 − 4<br />

2<br />

= (3 + √ 5)/2<br />

Stanley: bijection?


Θ (l) : Bijection for <strong>the</strong> l-Euler Theorem [SY07]<br />

Given a <strong>partition</strong> µ into parts in<br />

{a 0 + a 1 , a 1 + a 2 , a 2 + a 3 , . . .}<br />

construct λ = (λ 1 , λ 2 , . . .) by inserting <strong>the</strong> parts <strong>of</strong> µ in nonincreasing<br />

order as follows:<br />

To insert a k−1 + a k into (λ 1 , λ 2 , . . .):<br />

If k = 1, <strong>the</strong>n add a 1 to λ 1 ;<br />

o<strong>the</strong>rwise, if (λ 1 + a k − a k−1 ) > c l (λ 2 + a k−1 − a k−2 ),<br />

add a k − a k−1 to λ 1 , add a k−1 − a k−2 to λ 2 ;<br />

recursively insert a k−2 + a k−1 into (λ 3 , λ 4 , . . .)<br />

o<strong>the</strong>rwise,<br />

add a k to λ 1 , <strong>and</strong> add a k−1 to λ 2 .


The insertion step<br />

To insert a k + a k−1 into (λ 1 , λ 2 , λ 3 , λ 4 , . . .) ei<strong>the</strong>r do<br />

(i) (λ 1 + a k , λ 2 + a k−1 , λ 3 , λ 4 , . . .)<br />

or<br />

(ii) (λ 1 + (a k − a k−1 ), λ 2 + (a k−1 − a k−2 ),<br />

insert (a k−1 + a k−2 )into(λ 3 , λ 4 , . . .))<br />

How to decide?<br />

Do (ii) if <strong>the</strong> ratio <strong>of</strong> first two parts is okay, o<strong>the</strong>rwise do (i).


Interpretation <strong>of</strong> a (l)<br />

n<br />

Define T n<br />

(l) : set <strong>of</strong> l-ary strings <strong>of</strong> length n that do not contain<br />

(l − 1)(l − 2) ∗ (l − 1)<br />

T (3)<br />

1<br />

= {0, 1, 2} |T (3)<br />

1<br />

| = 3<br />

T (3)<br />

2<br />

= {00, 01, 02, 11, 10, 12, 20, 21} |T (3)<br />

2<br />

| = 8<br />

T (3)<br />

3<br />

: all 27 except 220, 221, 222, 022, 122, <strong>and</strong> 212.<br />

Theorem |T (l)<br />

n<br />

| = a(l) n+1 .<br />

|T (3)<br />

3<br />

| = 27 − 6 = 21


Binary numeration system<br />

1 0 1 1 0 → 1 ∗ 2 4 + 0 ∗ 2 3 + 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 22<br />

Ternary numeration system<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 3 4 + 0 ∗ 3 3 + 2 ∗ 3 2 + 1 ∗ 3 1 + 1 ∗ 3 0 = 138<br />

(unique representation)


Binary numeration system<br />

1 0 1 1 0 → 1 ∗ 2 4 + 0 ∗ 2 3 + 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 22<br />

Ternary numeration system<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 3 4 + 0 ∗ 3 3 + 2 ∗ 3 2 + 1 ∗ 3 1 + 1 ∗ 3 0 = 138<br />

A Fraenkel numeration system: ternary, but ...<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75


Binary numeration system<br />

1 0 1 1 0 → 1 ∗ 2 4 + 0 ∗ 2 3 + 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 22<br />

Ternary numeration system<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 3 4 + 0 ∗ 3 3 + 2 ∗ 3 2 + 1 ∗ 3 1 + 1 ∗ 3 0 = 138<br />

A Fraenkel numeration system: ternary, but ...<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75<br />

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21<br />

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21


Binary numeration system<br />

1 0 1 1 0 → 1 ∗ 2 4 + 0 ∗ 2 3 + 1 ∗ 2 2 + 1 ∗ 2 1 + 0 ∗ 2 0 = 22<br />

Ternary numeration system<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 3 4 + 0 ∗ 3 3 + 2 ∗ 3 2 + 1 ∗ 3 1 + 1 ∗ 3 0 = 138<br />

A Fraenkel numeration system: ternary, but ...<br />

(unique representation)<br />

1 0 2 1 1 → 1 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 1 ∗ 1 = 75<br />

0 0 2 1 2 → 0 ∗ 55 + 0 ∗ 21 + 2 ∗ 8 + 1 ∗ 3 + 2 ∗ 1 = 21<br />

0 1 0 0 0 → 0 ∗ 55 + 1 ∗ 21 + 0 ∗ 8 + 0 ∗ 3 + 0 ∗ 1 = 21<br />

but unique representation by ternary strings with no 21*2


Theorem [Fraenkel 1985] Every nonnegative integer has a unique<br />

(up to leading zeroes) representation as an l-ary string which does<br />

not contain <strong>the</strong> pattern<br />

(l − 1) (l − 2) ∗ (l − 1).<br />

Pro<strong>of</strong> Show that<br />

is a bijection<br />

f : b n b n−1 . . . b 1<br />

−→<br />

n∑<br />

b i a i<br />

i=1<br />

f : T (l)<br />

n<br />

−→ {0, 1, 2, . . . a (l)<br />

n+1 − 1}.<br />

The l-representation <strong>of</strong> an integer x is<br />

[x] = f −1 (x).


Can revise bijection<br />

To insert a k + a k+1 into (λ 1 , λ 2 , λ 3 , λ 4 , . . .) ei<strong>the</strong>r do<br />

(i) (λ 1 + a k , λ 2 + a k−1 , λ 3 , λ 4 , . . .)<br />

or<br />

(ii) (λ 1 + (a k − a k−1 ), λ 2 + (a k−1 − a k−2 ),<br />

How to decide?<br />

insert (a k−1 + a k−2 )into(λ 3 , λ 4 , . . .))<br />

Do (i) if it does not create a carry in Fraenkel arithmetic;<br />

o<strong>the</strong>rwise do (ii).<br />

So, insertion becomes a 2-d form <strong>of</strong> Fraenkel arithmetic.


Lecture Hall Partitions


The Lecture Hall Theorem [BME1] The generating function for<br />

integer <strong>sequences</strong> λ 1 , λ 2 , . . . , λ n satisfying:<br />

is<br />

L n :<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ . . . ≥ λ n<br />

1 ≥ 0<br />

L n (q) =<br />

n∏<br />

i=1<br />

1<br />

1 − q 2i−1


The Lecture Hall Theorem [BME1] The generating function for<br />

integer <strong>sequences</strong> λ 1 , λ 2 , . . . , λ n satisfying:<br />

is<br />

L n :<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ . . . ≥ λ n<br />

1 ≥ 0<br />

L n (q) =<br />

n∏<br />

i=1<br />

1<br />

1 − q 2i−1<br />

lim n→∞ (Lecture Hall Theorem) = Euler’s Theorem<br />

since<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ . . . ≥ λ n<br />

1<br />

n∏<br />

i=1<br />

≥ 0 −→ <strong>partition</strong>s into distinct parts<br />

1<br />

−→ <strong>partition</strong>s into odd parts<br />

1 − q2i−1


Let {a n } = {a (l)<br />

n }.<br />

The l-Lecture Hall Theorem [BME2]: The generating function<br />

for integer <strong>sequences</strong> λ 1 , λ 2 , . . . , λ n satisfying:<br />

L (l)<br />

n :<br />

λ 1<br />

a n<br />

≥ λ 2<br />

a n−1<br />

≥ . . . ≥ λ n−1<br />

a 2<br />

≥ λ n<br />

a 1<br />

≥ 0<br />

is<br />

L (l)<br />

n (q) =<br />

n∏<br />

i=1<br />

1<br />

(1 − q a i−1 +a i )<br />

lim n→∞ (l-Lecture Hall Theorem) = l-Euler Theorem<br />

since as n → ∞,<br />

a n /a n−1 → c l


Θ (l)<br />

n : Bijection for <strong>the</strong> l-Lecture Hall Theorem<br />

Given a <strong>partition</strong> µ into parts in<br />

{a 0 + a 1 , a 1 + a 2 , a 2 + a 3 , . . . , a n−1 + a n }<br />

construct λ = (λ 1 , λ 2 , . . . , λ n ) by inserting <strong>the</strong> parts <strong>of</strong> µ in nonincreasing<br />

order as follows:<br />

To insert a k−1 + a k into (λ 1 , λ 2 , . . . , λ n ):<br />

If k = 1, <strong>the</strong>n add a 1 to λ 1 ;<br />

o<strong>the</strong>rwise, if (λ 1 + a k − a k−1 ) ≥ (a n /a n−1 )(λ 2 + a k−1 − a k−2 ),<br />

add a k − a k−1 to λ 1 , add a k−1 − a k−2 to λ 2 ;<br />

recursively insert a k−2 + a k−1 into (λ 3 , λ 4 , . . . , λ n )<br />

o<strong>the</strong>rwise,<br />

add a k to λ 1 , <strong>and</strong> add a k−1 to λ 2 .


Relationship between bijections


Truncated lecture hall <strong>partition</strong>s<br />

L (l)<br />

n,k<br />

:<br />

λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ · · · ≥<br />

λ k−1<br />

n − k + 2 ≥<br />

λ k<br />

n − k + 1 > 0<br />

Theorem: [Corteel,S 2004]<br />

[<br />

L (l)<br />

n,k<br />

(q) = q(k+1 2 ) n<br />

k<br />

]<br />

q<br />

(−q n−k+1 ; q) k<br />

(q 2n−k+1 ; q) k<br />

,<br />

where (a; q) n = (1 − a)(1 − aq) · · · (1 − aq n−1 )<br />

Analog for l-lecture hall <strong>partition</strong>s?


Truncated lecture hall <strong>partition</strong>s<br />

L (l)<br />

n,k,j : j ≥ λ 1<br />

n ≥ λ 2<br />

n − 1 ≥ · · · ≥<br />

λ k−1<br />

n − k + 2 ≥<br />

λ k<br />

n − k + 1 > 0<br />

Theorem: [Corteel,S 2004]<br />

[<br />

L (l)<br />

n,k<br />

(q) = q(k+1 2 ) n<br />

k<br />

Theorem [Corteel,Lee,S 2005]<br />

( )<br />

L (l) n<br />

n,k,j (1) = jk k<br />

]<br />

q<br />

(−q n−k+1 ; q) k<br />

(q 2n−k+1 ; q) k<br />

,<br />

where (a; q) n = (1 − a)(1 − aq) · · · (1 − aq n−1 )<br />

Analog for l-lecture hall <strong>partition</strong>s?


Theorem [Corteel,S 2004] Given positive integers s 1 , . . . , s n , <strong>the</strong><br />

generating function for <strong>the</strong> <strong>sequences</strong> λ 1 , . . . , λ n satisfying<br />

is<br />

λ 1<br />

s 1<br />

≥ λ 2<br />

s 2<br />

≥ · · · ≥ λ n−1<br />

s n−1<br />

≥ λ n<br />

s n<br />

≥ 0<br />

∑ s2 −1 ∑ s3 −1<br />

z 2 =0 z 3 =0 · · · ∑s n−1<br />

s 1 z 2<br />

z n=0 q⌈ s 2<br />

∏ n<br />

i=1 (1 − qb i )<br />

⌉+ P n<br />

i=2 z i<br />

∏ n−1<br />

i=2 qb i ⌈ z i+1 − z i ⌉<br />

s i+1 s i<br />

where b 1 = 1 <strong>and</strong> for 2 ≤ i ≤ n, b i = s 1 + s 2 + · · · + s i .<br />

Corollary As q → 1, (1 − q) n × this gf −→<br />

s 2 s 3 · · · s<br />

∏ n<br />

n<br />

i=1 b .<br />

i


Truncated l-lecture hall <strong>partition</strong>s → l-nomials<br />

Corollary For l-sequence {a i }:<br />

L (l)<br />

n+k,k : λ 1<br />

a n+k<br />

≥ λ 2<br />

a n+k−1<br />

≥<br />

λ k<br />

a n+1<br />

> 0<br />

but<br />

L (l)<br />

n+k,k<br />

(q) =?<br />

) (l)<br />

lim ((1 −<br />

q→1 q)k L (l)<br />

n+k,k (q)) =<br />

( n<br />

k<br />

(p 1 p 2 · · · p k )(p n+k p n+k−1 · · · p n+1 )<br />

where p i = a i + a i−1<br />

<strong>and</strong><br />

( n<br />

k<br />

) (l)<br />

is <strong>the</strong> l-nomial ...


The l-nomial coefficient<br />

Example<br />

( n (l)<br />

=<br />

k) a(l) n a (l)<br />

n−1 · · · a(l)<br />

n−k+1<br />

a (l)<br />

k<br />

a(l) k−1 · · · a(l) 1<br />

.<br />

( 9<br />

4<br />

) (3)<br />

=<br />

2584 ∗ 987 ∗ 377 ∗ 144<br />

21 ∗ 8 ∗ 3 ∗ 1<br />

= 174, 715, 376.<br />

Theorem [Lucas 1878]<br />

( n<br />

) (l)<br />

k is an integer.<br />

like Fibonomials, e.g. Ron Knott’s web page:<br />

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/Fibonomials.html


“Pascal-like” triangle for <strong>the</strong> l-nomial coefficient:<br />

1<br />

1 1<br />

1 3 1<br />

1 8 8 1<br />

1 21 56 21 1<br />

1 55 385 385 55 1<br />

1 144 2640 6930 2640 144 1<br />

Theorem<br />

( ) n (l) ( )<br />

= (a (l) n − 1 (l) (<br />

k<br />

k+1 − a(l) k ) + (a (l)<br />

n − 1<br />

k<br />

n−k − a(l) n−k−1 ) k − 1<br />

) (l)


Let u l <strong>and</strong> v l be <strong>the</strong> roots <strong>of</strong> <strong>the</strong> polynomial x 2 − lx + 1:<br />

Then<br />

u l = l + √ l 2 − 4<br />

; v l = l − √ l 2 − 4<br />

2<br />

2<br />

u l + v l = l; u l v l = 1.<br />

a (l)<br />

n = un l − v n l<br />

u l − v l<br />

.


Let u l <strong>and</strong> v l be <strong>the</strong> roots <strong>of</strong> <strong>the</strong> polynomial x 2 − lx + 1:<br />

Then<br />

u l = l + √ l 2 − 4<br />

; v l = l − √ l 2 − 4<br />

2<br />

2<br />

u l + v l = l; u l v l = 1.<br />

a (l)<br />

n = un l − v n l<br />

u l − v l<br />

.<br />

For real r, define<br />

∆ (l)<br />

r<br />

= ul r + v l r . Then for integer n<br />

∆ (l)<br />

n<br />

= a (l)<br />

n+1 − a(l) n−1 . (∆ is <strong>the</strong> l analog <strong>of</strong> “2”.)


Let u l <strong>and</strong> v l be <strong>the</strong> roots <strong>of</strong> <strong>the</strong> polynomial x 2 − lx + 1:<br />

Then<br />

u l = l + √ l 2 − 4<br />

; v l = l − √ l 2 − 4<br />

2<br />

2<br />

u l + v l = l; u l v l = 1.<br />

a (l)<br />

n = un l − v n l<br />

u l − v l<br />

.<br />

For real r, define<br />

∆ (l)<br />

r<br />

= ul r + v l r . Then for integer n<br />

∆ (l)<br />

n<br />

= a (l)<br />

n+1 − a(l) n−1 . (∆ is <strong>the</strong> l analog <strong>of</strong> “2”.)<br />

(∆ (l)<br />

n/2 )2 = u n l + 2(u lv l ) n/2 + v n l = ∆ (l)<br />

n + 2.<br />

∆ (l)<br />

−r = u−r l<br />

+ v −r<br />

l<br />

= vl r + ur l = ∆(l) r


A 3-term recurrence for <strong>the</strong> l-nomial [LS]<br />

( n<br />

k<br />

) (l)<br />

=<br />

( n − 2<br />

k<br />

) (l)<br />

+ ∆ (l)<br />

n−1<br />

( ) n − 2 (l)<br />

+<br />

k − 1<br />

( ) n − 2 (l)<br />

k − 2<br />

Pro<strong>of</strong>: Use identities:<br />

a (l)<br />

n+k − a(l)<br />

n−k = ∆(l) n a (l)<br />

k .<br />

a n<br />

(l) a (l)<br />

n−1 − a(l) k<br />

a(l) k−1 = a(l) n−k a(l) n+k−1 .


An l-nomial <strong><strong>the</strong>orem</strong> [LS]: An analog <strong>of</strong><br />

is<br />

n∑<br />

k=0<br />

( n<br />

k)<br />

z k = (1 + z) n<br />

n∑<br />

( ) n (l)<br />

z k =<br />

k<br />

k=0<br />

n−1<br />

∏<br />

i=0<br />

(u i−(n−1)/2<br />

l<br />

+ v i−(n−1)/2<br />

l<br />

z) =<br />

(1 + ∆ (l)<br />

1 z + z2 )(1 + ∆ (l)<br />

3 z + z2 ) · · · (1 + ∆ (l)<br />

n−1 z + z2 )<br />

(1 + z)(1 + ∆ (l)<br />

2 z + z2 )(1 + ∆ (l)<br />

4 z + z2 ) · · · (1 + ∆ (l)<br />

n−1 z + z2 )<br />

n even<br />

n odd


A coin-flipping interpretation <strong>of</strong> <strong>the</strong> l-nomial<br />

For real r, let C r<br />

(l) be a weighted coin for which <strong>the</strong> probability <strong>of</strong><br />

tails is ul r /∆(l) r <strong>and</strong> <strong>the</strong> probability <strong>of</strong> heads is vl r /∆(l) r .<br />

The probability <strong>of</strong> getting exactly k heads when tossing <strong>the</strong> n coins<br />

C (l)<br />

−(n−1)/2 ,<br />

C (l)<br />

1−(n−1)/2 ,<br />

C (l)<br />

2−(n−1)/2 , . . . , C (l)<br />

(n−1)/2 :


A coin-flipping interpretation <strong>of</strong> <strong>the</strong> l-nomial<br />

For real r, let C r<br />

(l) be a weighted coin for which <strong>the</strong> probability <strong>of</strong><br />

tails is ul r /∆(l) r <strong>and</strong> <strong>the</strong> probability <strong>of</strong> heads is vl r /∆(l) r .<br />

The probability <strong>of</strong> getting exactly k heads when tossing <strong>the</strong> n coins<br />

C (l)<br />

−(n−1)/2 ,<br />

C (l)<br />

1−(n−1)/2 ,<br />

C (l)<br />

2−(n−1)/2 , . . . , C (l)<br />

(n−1)/2 :<br />

( n<br />

k) (l)<br />

∆ (l)<br />

−(n−1)/2 ∆(l) 1−(n−1)/2 · · · ∆(l) (n−1)/2−1 ∆(l) (n−1)/2<br />

∆ (l)<br />

j/2<br />

may not be an integer, but ∆(l)<br />

−j/2 ∆(l) j/2 = ∆(l) j<br />

+ 2 is.


Figure: The 8 possible results <strong>of</strong> tossing <strong>the</strong> weighted coins<br />

C (l)<br />

−1 , C (l)<br />

0 , C (l)<br />

1 . Heads (pink) are indicated with <strong>the</strong>ir “v” weight <strong>and</strong><br />

tails (blue) with <strong>the</strong>ir “u” weight. The weight <strong>of</strong> each toss is shown.


Define a q-analog <strong>of</strong> <strong>the</strong> l-nomial:<br />

a n<br />

(l) (q) = un l − v l nqn<br />

u l − v l q ;<br />

∆(l) n (q) = ul n + v l n qn<br />

[ n<br />

k<br />

] (l)<br />

q<br />

= a(l) n (q) a (l)<br />

n−1<br />

(q) · · · a(l)<br />

n−k+1 (q)<br />

a (l) (q) a(l) (q) · · · a(l)<br />

1 (q) .<br />

k<br />

k−1<br />

Then<br />

[ n<br />

k<br />

] (l)<br />

q<br />

= q k [ n − 2<br />

k<br />

] (l)<br />

q<br />

[ ]<br />

+ ∆ (l) n − 2 (l)<br />

n−1 (q) k − 1<br />

q<br />

[ ] n − 2 (<br />

+ q n−k k − 2<br />

q<br />

<strong>and</strong><br />

n∑<br />

[ n<br />

k<br />

k=0<br />

] (l)<br />

q<br />

q k(k+1)/2 z k = α n (q, z)<br />

⌊n/2⌋<br />

∏<br />

i=1<br />

(1 + zq i ∆ (l)<br />

n−2i+1 (q) + z2 q n+1 ).<br />

where α n (q, z) = 1 if n is even; (1 + zq (n+1)/2 ) if n is odd.


Pro<strong>of</strong>s can be derived from this <strong>partition</strong>-<strong>the</strong>oretic interpretation:


Ano<strong>the</strong>r q-analog <strong>of</strong> <strong>the</strong> l-nomial<br />

Let a n (q) = (1 − q an )/(1 − q). Then<br />

[ n<br />

k<br />

] (l)<br />

q<br />

= ∑ (µ,f )<br />

q shapeweight(µ) q fillweight(µ,f )<br />

where <strong>the</strong> sum is over all pairs (µ, f ) such µ is a <strong>partition</strong> in<br />

[k × (n − k)] <strong>and</strong> f is a filling f (i, j) <strong>of</strong> <strong>the</strong> cells <strong>of</strong> [k × (n − k)]<br />

with elements <strong>of</strong> {0, 1, . . . l − 1} so that (i) no row <strong>of</strong> µ or column<br />

<strong>of</strong> µ c contains (l − 1)(l − 2) ∗ (l − 1) <strong>and</strong> ... (a bit more)<br />

Indexing cells <strong>of</strong> k × (n − k) bottom to top, left to right:<br />

◮ cell (i, j) has a shape weight (a i − a i−1 )(a j − a j−1 )<br />

◮ shapeweight(µ) is sum <strong>of</strong> shape weights <strong>of</strong> cells in µ<br />

◮ cell (i, j) has a fill weight a i a j<br />

◮ fillweight(µ, f ) is ∑ i,j f (i, j)a ia j .<br />

(Now starting to get something related to lecture hall <strong>partition</strong>s.)


Question: Is <strong>the</strong>re an analytic pro<strong>of</strong> <strong>of</strong> <strong>the</strong> l-Euler <strong><strong>the</strong>orem</strong>?<br />

When l = 2, <strong>the</strong> st<strong>and</strong>ard approach is to show <strong>the</strong> equivalence <strong>of</strong><br />

<strong>the</strong> generating functions for <strong>the</strong> set <strong>of</strong> <strong>partition</strong>s into odd parts <strong>and</strong><br />

<strong>the</strong> set <strong>of</strong> <strong>partition</strong>s into distinct parts:<br />

∞∏ 1<br />

∞<br />

1 − q 2k−1 = ∏<br />

(1 + q k ).<br />

k=1<br />

k=1<br />

The sum/product form <strong>of</strong> Euler’s <strong><strong>the</strong>orem</strong> is<br />

∞∏<br />

k=1<br />

1<br />

∞<br />

1 − q 2k−1 = ∑<br />

k=0<br />

q k(k+1)<br />

(q; q) k<br />

Is <strong>the</strong>re an analog for <strong>the</strong> l-Euler <strong><strong>the</strong>orem</strong>? What is <strong>the</strong> sum-side<br />

generating function for <strong>partition</strong>s in which <strong>the</strong> ratio <strong>of</strong> consecutive<br />

parts is greater than c l ?


Question: When l = 2, several refinements <strong>of</strong> Euler’s <strong><strong>the</strong>orem</strong><br />

follow from Sylvester’s bijection. What refinements <strong>of</strong> <strong>the</strong> l-Euler<br />

<strong><strong>the</strong>orem</strong> can be obtained from <strong>the</strong> bijection? We have some partial<br />

answers, but here’s one we can’t answer:<br />

Sylvester showed that if, in his bijection, <strong>the</strong> <strong>partition</strong> µ into odd<br />

parts maps to λ (distinct parts), <strong>the</strong>n <strong>the</strong> number <strong>of</strong> distinct part<br />

sizes occurring in µ is <strong>the</strong> same as <strong>the</strong> number <strong>of</strong> maximal chains<br />

in λ. (A chain is a sequence <strong>of</strong> consecutive integers.) Is <strong>the</strong>re an<br />

analog for l > 2?


Question: Can we enumerate ei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se finite sets:<br />

◮ The integer <strong>sequences</strong> λ 1 , . . . , λ n in which <strong>the</strong> ratio <strong>of</strong><br />

consecutive parts is greater than c l <strong>and</strong> λ 1 < a (l)<br />

n+1 ?<br />

We have a combinatorial characterization: <strong>the</strong>se can be<br />

viewed as fillings <strong>of</strong> a staircase <strong>of</strong> shape (n, n − 1, . . . , 1) such<br />

that (i) <strong>the</strong> filling <strong>of</strong> each row is an l-ary string with no<br />

(l − 1)(l − 2) ∗ (l − 1) <strong>and</strong> (ii) <strong>the</strong> rows are weakly decreasing,<br />

lexicographically. For l = 2 <strong>the</strong> answer is 2 n .<br />

◮ The integer <strong>sequences</strong> λ 1 , . . . , λ n satisfying<br />

1 ≥ λ 1<br />

a n<br />

≥ λ 2<br />

a n−1<br />

≥ . . . ≥ λ n−1<br />

a 2<br />

≥ λ n<br />

a 1<br />

≥ 0<br />

For l = 2 this is <strong>the</strong> same set as above <strong>and</strong> <strong>the</strong> answer is 2 n .


Question: What is <strong>the</strong> generating function for truncated l-lecture<br />

hall <strong>partition</strong>s?<br />

Question: What is <strong>the</strong> right q-analog <strong>of</strong> <strong>the</strong> l-nomial (<strong>and</strong> <strong>the</strong><br />

right interpretation) to explain <strong>and</strong> generalize lecture hall<br />

<strong>partition</strong>s?<br />

(We know what lecture hall <strong>partition</strong>s look like in <strong>the</strong> “l-world”.<br />

What about ordinary <strong>partition</strong>s? <strong>partition</strong>s into distinct parts?)<br />

Question: There are several q-series identities related to Euler’s<br />

<strong><strong>the</strong>orem</strong>, such as Lebesgue’s identity <strong>the</strong> Roger’s-Fine identity<br />

Cauchy’s identity Are <strong>the</strong>re l-analogs?


Sincere thanks to ...<br />

You, <strong>the</strong> audience<br />

The FPSAC08 Organizing Committee<br />

The FPSAC08 Program Committee<br />

Luc Lapointe


CanaDAM 2009<br />

2nd Canadian Discrete <strong>and</strong> Algorithmic<br />

Ma<strong>the</strong>matics Conference<br />

May 25 - 28, 2009<br />

CRM, Montreal, Quebec, Canada<br />

http://www.crm.umontreal.ca/CanaDAM2009/index.shtml


AMS 2009 Spring Sou<strong>the</strong>astern Section Meeting<br />

North Carolina State University<br />

Raleigh, NC April 4-5, 2009 (Saturday - Sunday)<br />

Some <strong>of</strong> <strong>the</strong> special sessions:<br />

◮ Applications <strong>of</strong> Algebraic <strong>and</strong> Geometric Combinatorics (Sullivant,<br />

Savage)<br />

◮ Rings, Algebras, <strong>and</strong> Varieties in Combinatorics (Hersh, Lenart,<br />

Reading)<br />

◮ Recent Advances in Symbolic Algebra <strong>and</strong> Analysis (Singer, Szanto)<br />

◮ Kac-Moody Algebras, Vertex Algebras, Quantum Groups, <strong>and</strong><br />

Applications (Bakalov, Misra, Jing)<br />

◮ Enumerative Geometry <strong>and</strong> Related Topics (Rimayi, Mihalcea)<br />

◮ Homotopical Algebra with Applications to Ma<strong>the</strong>matical Physics<br />

(Lada, Stasheff)<br />

◮ Low Dimensional Topology <strong>and</strong> Geometry (Dunfield, Etnyre, Ng)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!