01.06.2015 Views

Generalizations of Cauchy's Determinant and Schur's Pfaffian

Generalizations of Cauchy's Determinant and Schur's Pfaffian

Generalizations of Cauchy's Determinant and Schur's Pfaffian

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Generalizations</strong> <strong>of</strong> Cauchy’s <strong>Determinant</strong> <strong>and</strong> Schur’s <strong>Pfaffian</strong><br />

Masao Ishikawa ∗ Soichi Okada † Hiroyuki Tagawa ‡ Jiang Zeng §<br />

Abstract<br />

We present several generalizations <strong>of</strong> Cauchy’s determinant det (1/(x i + y j)) <strong>and</strong> Schur’s<br />

<strong>Pfaffian</strong> Pf ((x j − x i )/(x j + x i )) by considering matrices whose entries involve some generalized<br />

V<strong>and</strong>ermonde determinants. Special cases <strong>of</strong> our formulae include previous formulae due<br />

to S. Okada <strong>and</strong> T. Sundquist. As an application, we give a relation for the Littlewood–<br />

Richardson coefficients involving a rectangular partition.<br />

Résumé<br />

On présente plusieurs généralisations du déterminant de Cauchy det (1/(x i + y j )) et du <strong>Pfaffian</strong><br />

de Schur Pf ((x j − x i )/(x j + x i )) en considérant des matrices dont les coefficients impliquent<br />

des déterminants de V<strong>and</strong>ermonde généralisés. Des cas particuliers de nos formules<br />

contiennent celles obtenues précédemment par S. Okada et T. Sundquist. Comme une application,<br />

on donne une relation pour les coefficients de Littlewood–Richardson associés aux trois<br />

partitions dont une est de forme rectangle.<br />

1 Introduction<br />

Identities for determinants <strong>and</strong> <strong>Pfaffian</strong>s are <strong>of</strong> great interest in many branches <strong>of</strong> mathematics.<br />

Some people need relations among minors or sub<strong>Pfaffian</strong>s <strong>of</strong> a general matrix, others have to evaluate<br />

special determinants or <strong>Pfaffian</strong>s. In combinatorics <strong>and</strong> representation theory, an important<br />

role is played by Cauchy’s determinant identity [3]<br />

( 1<br />

det<br />

=<br />

x i + y j<br />

)1≤i,j≤n<br />

<strong>and</strong> Schur’s <strong>Pfaffian</strong> identity [20]<br />

(<br />

xj − x i<br />

Pf<br />

=<br />

x j + x i<br />

)1≤i,j≤2n<br />

∏<br />

∏<br />

1≤i


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

(<br />

If q = 0, then V n,0 (x; a) =<br />

x j−1<br />

i<br />

)<br />

<strong>and</strong> the determinant det V n,0 (x; a) = ∏ 1≤i


GENERALIZATIONS OF CAUCHY'S DETERMINANT AND SCHUR'S PFAFFIAN<br />

These identities were conjectured by S. Okada in [18].<br />

p = q = r = s = 0 in (1.4), then the identities read<br />

If we put p = q = 0 in (1.3) or<br />

(<br />

bj − a i<br />

det<br />

y j − x i<br />

)1≤i,j≤n<br />

( (aj − a i )(b j − b i )<br />

Pf<br />

=<br />

x j − x i<br />

)1≤i,j≤2n<br />

= ∏ (−1)n(n−1)/2<br />

n<br />

i,j=1 (y j − x i ) det V n,n (x, y; a, b), (1.7)<br />

1<br />

∏1≤i


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

(2) If A is a skew-symmetric matrix, then we have<br />

Pf A 1,2<br />

1,2 · Pf A3,4<br />

− Pf A1,3<br />

· Pf A2,4<br />

+ Pf A1,4<br />

· Pf A2,3<br />

= Pf A · Pf A1,2,3,4<br />

. (2.2)<br />

This <strong>Pfaffian</strong> analogue <strong>of</strong> Desnanot–Jacobi formula is given in [9], [8], <strong>and</strong> is called the Plücker<br />

relation in [8].<br />

By applying Desnanot–Jacobi formula for <strong>Pfaffian</strong>s to the skew-symmetric matrix on the left<br />

h<strong>and</strong> side <strong>of</strong> (1.4) <strong>and</strong> using the induction on n, we can see that the pro<strong>of</strong> <strong>of</strong> (1.4) is reduced to<br />

the case n = 2 with z, c, w, d replaced by<br />

z ← (x (1,2,3,4) , z), c ← (a (1,2,3,4) , c), w ← (x (1,2,3,4) , w), d ← (b (1,2,3,4) , d),<br />

respectively, where x (1,2,3,4) denotes the vector obtained by removing x 1 , x 2 , x 3 , x 4 from x. Then<br />

the identity (1.4) in the case n = 2 can be proven by the induction on p + q + r + s with the help<br />

<strong>of</strong> the following relations between det V p,q <strong>and</strong> det V p−1,q (or det V q,p ).<br />

Lemma 2.2.<br />

(1) If p ≥ q <strong>and</strong> p ≥ 1, then we have<br />

det V p,q (x; a) =<br />

where we put<br />

∏<br />

p+q−1<br />

i=1<br />

(2) For nonnegative integers p <strong>and</strong> q, we have<br />

where a −1 = (a −1<br />

1 , · · · , a−1 p+q).<br />

(x p+q − x i ) · det V p−1,q (x 1 , · · · , x p+q−1 ; a ′ 1, · · · , a ′ p+q−1), (2.3)<br />

a ′ i = a i − a p+q<br />

x i − x p+q<br />

(1 ≤ i ≤ p + q − 1).<br />

p+q<br />

∏<br />

det V p,q (x; a) = (−1) pq a i · det V q,p (x; a −1 ), (2.4)<br />

Remark 2.3. We can also reduce the pro<strong>of</strong> <strong>of</strong> the other identities (1.3), (1.5) <strong>and</strong> (1.6) in Theorem<br />

1.1 to the case <strong>of</strong> n = 2 by using Desnanot-Jacobi formulae. It is easy to show the case <strong>of</strong><br />

n = 2 <strong>of</strong> (1.3) by using the relations in Lemma 2.2 <strong>and</strong> the induction on p + q. We can prove<br />

(1.5) (resp. (1.6)) in the case <strong>of</strong> n = 2, by regarding the both sides as polynomials in z p+q (resp.<br />

z p ) <strong>and</strong> showing that the values coincide at appropriate points by a brute force. Also the special<br />

cases <strong>of</strong> these identities can be obtained by regarding the both sides as meromorphic functions <strong>and</strong><br />

computing the principal parts at their poles.<br />

2.2 Homogeneous version <strong>and</strong> pro<strong>of</strong> <strong>of</strong> (1.3), (1.5) <strong>and</strong> (1.6)<br />

For the second part <strong>of</strong> the pro<strong>of</strong>, we introduce a homogeneous version <strong>of</strong> the matrix V p,q ( (x; a). )<br />

x a<br />

For vectors x, y, a, b <strong>of</strong> length n <strong>and</strong> nonnegative integers p, q with p+q = n, we set U p,q y b<br />

to be the n × n matrix with ith row<br />

(a i x p−1<br />

i<br />

, a i x p−2<br />

i<br />

y i , · · · , a i y p−1<br />

i<br />

i=1<br />

, b i x q−1<br />

i<br />

, b i x q−2<br />

i y i , · · · , b i y q−1<br />

i ).<br />

Then we have the following relation among det U p,q , det V p,q <strong>and</strong> det W p . Here use the following<br />

notation for vectors x = (x 1 , · · · , x n ) <strong>and</strong> y = (y 1 , · · · , y n ):<br />

<strong>and</strong>, for integers k <strong>and</strong> l,<br />

x + y = (x 1 + y 1 , . . . , x n + y n ), xy = (x 1 y 1 , . . . , x n y n ),<br />

x k = (x k 1, . . . , x k n),<br />

x k y l = (x k 1y l 1, . . . , x k ny l n).<br />

234


GENERALIZATIONS OF CAUCHY'S DETERMINANT AND SCHUR'S PFAFFIAN<br />

Lemma 2.4.<br />

(<br />

U p,q x<br />

y<br />

) p+q<br />

a ∏<br />

= a<br />

b<br />

k x p−1<br />

k<br />

· V p,q ( x −1 y; a −1 bx q−p) , (2.5)<br />

k=1<br />

( )<br />

V p,q (x; a) = U p,q 1 1<br />

, (2.6)<br />

x a<br />

)<br />

= (−1) n(n−1)/2 det W 2n (x; a), (2.7)<br />

)<br />

= (−1) n(n−1)/2 det W 2n+1 (x; a), (2.8)<br />

det U n,n (<br />

x 1 + ax<br />

1 + x 2 x + a<br />

det U n,n+1 (<br />

x 1 + ax<br />

2<br />

1 + x 2 1 + a<br />

where 1 = (1, · · · , 1).<br />

We can “homogenize” the identity (1.4).<br />

theorem is equivalent to (1.4).<br />

It follows from (2.5) <strong>and</strong> (2.6) that the following<br />

Theorem 2.5. Let n be a positive integer <strong>and</strong> let p, q, r <strong>and</strong> s be nonnegative integers. Suppose<br />

that the vectors x, y, a, b, c, d have length 2n, the vectors ξ, η, α, β have length p + q, <strong>and</strong> the<br />

vectors ζ, ω, γ, δ have length r + s. Then we have<br />

⎛<br />

( )<br />

( ) ⎞<br />

det U p+1,q+1 xi , x j , ξ a i , a j , α<br />

det U<br />

Pf ⎜<br />

y i , y j , η b i , b j , β<br />

r+1,s+1 xi , x j , ζ c i , c j , γ<br />

y i , y j , ω d i , d j , δ<br />

⎝<br />

( )<br />

⎟<br />

xi x<br />

det j<br />

⎠<br />

y i y j<br />

( ) n−1 (<br />

1<br />

=<br />

( ) det U p,q ξ α<br />

det U r,s ζ γ<br />

∏1≤i


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

Now the identity (1.3) follows from this corollary (2.11), (2.6) <strong>and</strong> an appropriate replacement<br />

<strong>of</strong> variables. Also the remaining identities (1.5) <strong>and</strong> (1.6) are immediate from (2.11) <strong>and</strong> (2.9) by<br />

using the relations (2.7) <strong>and</strong> (2.8). This completes the pro<strong>of</strong> <strong>of</strong> Theorem 1.1.<br />

3 A variation <strong>of</strong> the determinant <strong>and</strong> <strong>Pfaffian</strong> identities<br />

In this section, we give a variation <strong>of</strong> the identities in Theorem 1.1, which can be regarded as a<br />

generalization <strong>of</strong> an identity <strong>of</strong> T. Sundquist [23].<br />

Let n be a positive integer <strong>and</strong> let p <strong>and</strong> q be nonnegative integers with p + q = n. Let<br />

x = (x 1 , · · · , x n ) <strong>and</strong> a = (a 1 , · · · , a n ) be vectors <strong>of</strong> variables. For partitions λ <strong>and</strong> µ with<br />

l(λ) ≤ p <strong>and</strong> l(µ) ≤ q, we define a matrix V p,q<br />

λ,µ<br />

(x; a) to be the n × n matrix with ith row<br />

(x λp<br />

i<br />

, x λp−1+1<br />

i<br />

, x λp−2+2<br />

i , · · · , x λ1+p−1<br />

i , a i x µq<br />

i<br />

, a i x µq−1+1<br />

i<br />

, a i x µq−2+2<br />

i , · · · , a i x µ1+q−1<br />

i ).<br />

For example, if λ = µ = ∅, then we have V p,q<br />

∅,∅ (x; a) = V p,q (x; a). Let P n denote the set <strong>of</strong><br />

partitions λ with length ≤ n which are <strong>of</strong> the form λ = (α 1 , · · · , α r |α 1 + 1, · · · , α r + 1) in the<br />

Frobenius notation. We define<br />

∑<br />

F p,q (x; a) = (−1) (|λ|+|µ|)/2 det V p,q<br />

λ,µ<br />

(x; a).<br />

λ∈P p, µ∈P q<br />

The main result <strong>of</strong> this section is the following theorem.<br />

Theorem 3.1. (a) Let n be a positive integer <strong>and</strong> let p <strong>and</strong> q be nonnegative integers. For six<br />

vectors <strong>of</strong> variables<br />

x = (x 1 , · · · , x n ), y = (y 1 , · · · , y n ), z = (z 1 , · · · , z p+q ),<br />

a = (a 1 , · · · , a n ), b = (b 1 , · · · , b n ), c = (c 1 , · · · , c p+q ),<br />

we have<br />

( F p+1,q+1 )<br />

(x i , y j , z; a i , b j , c)<br />

det<br />

(y j − x i )(1 − x i y j )<br />

=<br />

1≤i,j≤n<br />

(−1) n(n−1)/2<br />

∏ n<br />

i,j=1 (y j − x i )(1 − x i y j ) F p,q (z; c) n−1 F n+p,n+q (x, y, z; a, b, c). (3.1)<br />

(b) Let n be a positive integer <strong>and</strong> let p, q, r, s be nonnegative integers. For seven vectors <strong>of</strong><br />

variables<br />

x = (x 1 , · · · , x 2n ), a = (a 1 , · · · , a 2n ), b = (b 1 , · · · , b 2n ),<br />

z = (z 1 , · · · , z p+q ), c = (c 1 , · · · , c p+q ),<br />

w = (w 1 , · · · , w r+s ), d = (d 1 , · · · , d r+s ),<br />

we have<br />

( F p+1,q+1 (x i , x j , z; a i , a j , c)F r+1,s+1 )<br />

(x i , x j , w; b i , b j , d)<br />

Pf<br />

(x j − x i )(1 − x i x j )<br />

=<br />

1≤i,j≤2n<br />

1<br />

∏1≤i


GENERALIZATIONS OF CAUCHY'S DETERMINANT AND SCHUR'S PFAFFIAN<br />

The key ingredient to prove Theorem 3.1 <strong>and</strong> Corollary 3.2 is the following relation between<br />

F p,q (x; a) <strong>and</strong> det V p,q (y; b).<br />

Proposition 3.3. We have<br />

F p,q (x; a) = (−1) (p 2)+( q 2) p+q ∏<br />

x p−1<br />

i · det V p,q (x + x −1 ; ax q−p ),<br />

i=1<br />

= (−1) (p 2)+( q 2) det U<br />

p,q<br />

( )<br />

x 1<br />

1 + x 2 . (3.4)<br />

a<br />

This proposition can be proven by the Cauchy-Binet formula <strong>and</strong> the computation <strong>of</strong> minors<br />

in the following lemma.<br />

Lemma 3.4. Let D r be the following r ×(2r −1) matrix with columns indexed by 0, 1, · · · , 2r −2:<br />

D r =<br />

⎛<br />

⎜<br />

⎝<br />

0 r − 2 r − 1 r 2r − 2<br />

1<br />

1 1<br />

. .. . . .<br />

1 1<br />

⎞<br />

⎟<br />

⎠ .<br />

Then the minor <strong>of</strong> D r corresponding to a partition λ is given by<br />

det ∆ [r]<br />

I(λ) (D r) =<br />

{<br />

(−1) r(r−1)/2+|λ|/2 if λ ∈ P r ,<br />

0 otherwise,<br />

where ∆ [r]<br />

I(λ) (D r) is the r × r submatrix <strong>of</strong> D r consisting <strong>of</strong> columns λ r , λ r−1 + 1, · · · , λ 1 + (r − 1).<br />

Concluding this section, we should remark that, in Theorem 3.1, we can replace F p,q (x; a) by<br />

the following alternatives:<br />

∑<br />

G p,q (x; a) = (−1) (|λ|+|µ|)/2 det V p,q<br />

λ,µ<br />

(x; a),<br />

λ∈Q p , µ∈Q q<br />

∑<br />

H p,q (x; a) = (−1) (|λ|+p(λ)+|µ|+p(µ))/2 det V p,q<br />

λ,µ<br />

(x; a),<br />

λ∈R p, µ∈R q<br />

where Q n (resp. R n ) is the set <strong>of</strong> partitions λ with length ≤ n which are <strong>of</strong> the form λ = (α + 1|α)<br />

(resp. λ = (α|α)) in the Frobenius notation. Then we obtain similar relations between G p,q (x; a),<br />

H p,q (x; a) <strong>and</strong> det V p,q (y; b).<br />

4 Another generalization <strong>of</strong> Cauchy’s determinant identity<br />

In this section, we give another type <strong>of</strong> generalized Cauchy’s determinant identities involving<br />

det V p,q <strong>and</strong> det W p . The following is the main result <strong>of</strong> this section:<br />

Theorem 4.1.<br />

(<br />

)<br />

1<br />

det<br />

det V p+1,q+1 (x i , y j , z; a i , b j , c)<br />

1≤i,j≤n<br />

∏<br />

= (−1)n(n−1)/2 1≤i


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

If p = q = 0, then the identity (4.1) becomes<br />

( 1<br />

det<br />

=<br />

b j − a i<br />

)1≤i,j≤n<br />

∏ (−1)n(n−1)/2 1≤i


GENERALIZATIONS OF CAUCHY'S DETERMINANT AND SCHUR'S PFAFFIAN<br />

Pro<strong>of</strong>. The first identity (5.3) is obtained from (1.4) by putting p = q = r = s = 0 <strong>and</strong> a i = b i =<br />

x m i . The second identity (5.4) follows from the first one (5.3) <strong>and</strong> the composition <strong>of</strong> hyperpfaffians<br />

given in [14, Eq. (82)].<br />

6 Application to Littlewood–Richardson coefficients<br />

In this section, we use the <strong>Pfaffian</strong> identity (1.5) in Theorem 1.1 <strong>and</strong> the minor-summation formula<br />

[7] to derive a relation between Littlewood–Richardson coefficients.<br />

For three partitions λ, µ <strong>and</strong> ν, we denote by LR λ µ,ν the Littlewood-Richardson coefficient.<br />

These numbers LR λ µ,ν appear in the following expansions (see [15]) :<br />

s µ (X)s ν (X) = ∑ λ<br />

LR λ µ,ν s λ (X),<br />

s λ/µ (X) = ∑ ν<br />

LR λ µ,ν s ν (X),<br />

s λ (X, Y ) = ∑ µ,ν<br />

LR λ µ,ν s µ (X)s ν (Y ).<br />

We are concerned with the Littlewood–Richardson coefficients involving rectangular partitions.<br />

Let □(a, b) denote the partition whose Young diagram is the rectangle a × b, i.e.<br />

□(a, b) = (b a ) = (b, . . . , b).<br />

} {{ }<br />

a<br />

For a partition λ ⊂ □(a, b), we define λ † = λ † (a, b) by<br />

λ † i = b − λ a+1−i<br />

(1 ≤ i ≤ a).<br />

Okada [16] used the special case <strong>of</strong> the identities (1.3) <strong>and</strong> (1.4) (i.e., the case <strong>of</strong> p = q = 0 <strong>and</strong><br />

p = q = r = s = 0) to prove the following proposition. (This proposition is also derived by the<br />

combinatorial algorithm called Littlewood–Richardson rule.)<br />

Proposition 6.1. Let n be a positive integer <strong>and</strong> let e <strong>and</strong> f be nonnegative integers.<br />

(1) For partitions µ, ν, we have<br />

{<br />

LRµ,ν □(n,e) 1 if ν = µ † (n, e),<br />

=<br />

0 otherwise.<br />

(2) For a partition λ <strong>of</strong> length ≤ 2n, we have<br />

{<br />

LR λ 1 if λ n+1 ≤ min(e, f) <strong>and</strong> λ i + λ 2n+1−i = e + f (1 ≤ i ≤ n),<br />

□(n,e),□(n,f) =<br />

0 otherwise.<br />

(6.1)<br />

(6.2)<br />

The main result <strong>of</strong> this section is the following theorem, which generalizes (6.2). It would be<br />

interesting to find a bijective pro<strong>of</strong> <strong>of</strong> the equality (6.5).<br />

Theorem 6.2. Let n be a positive integer <strong>and</strong> let e <strong>and</strong> f be nonnegative integers. Let λ <strong>and</strong> µ<br />

be partitions such that λ ⊂ □(2n, e + f) <strong>and</strong> µ ⊂ □(n, e). Then we have<br />

(1) LR λ µ,□(n,f) = 0 unless<br />

λ n ≥ f <strong>and</strong> λ n+1 ≤ min(e, f). (6.3)<br />

(2) If λ satisfies the above condition (6.3) <strong>and</strong> we define two partitions α <strong>and</strong> β by<br />

α i = λ i − f, β i = e − λ 2n+1−i , (1 ≤ i ≤ n), (6.4)<br />

then we have<br />

LR λ µ,□(n,f) = LR β α,µ † (n,e) . (6.5)<br />

In particular, LR λ µ,□(n,f) = 0 unless α ⊂ β.<br />

239


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

In particular, if µ = □(n, e) is a rectangle, then this theorem reduces to (6.2). If µ is a<br />

near-rectangle, then we have the following corollary by using Pieri’s rule [15, (5.16), (5.17)].<br />

Corollary 6.3. Suppose that a partitions λ ⊂ □(2n, e + f) satisfies the condition (6.3) in Theorem<br />

6.2. Define two partitions α <strong>and</strong> β by (6.4). Then we have<br />

{<br />

LR λ (e n−1 ,e−k),(f n ) = 1 if β/α is a horizontal strip <strong>of</strong> length k,<br />

0 otherwise,<br />

{<br />

LR λ (e n−k ,(e−1) k ),(f n ) = 1 if β/α is a vertical strip <strong>of</strong> length k,<br />

0 otherwise.<br />

In order to prove Theorem 6.2, we substitute<br />

a i = x e+p+n<br />

i , b i = x f+r+n<br />

i , c i = z e+p+n<br />

i , d i = w f+r+n<br />

i (6.6)<br />

in the <strong>Pfaffian</strong> identity (1.4). By the bi-determinant definition <strong>of</strong> Schur functions, we have<br />

{<br />

det V p,q (x; x k s □(q,k−p) (x)∆(x) if k ≥ p,<br />

) =<br />

0 if k < p,<br />

where ∆(x) = ∏ 1≤i


GENERALIZATIONS OF CAUCHY'S DETERMINANT AND SCHUR'S PFAFFIAN<br />

Here we recall the minor summation formula [7].<br />

Lemma 6.7. Let X be a 2n × N matrix <strong>and</strong> A be an N × N skew-symmetric matrix. Then we<br />

have<br />

∑<br />

Pf ∆ I I(A) det ∆ [2n]<br />

I<br />

(X) = Pf(XA t X),<br />

I<br />

where I runs over all 2n-element subsets <strong>of</strong> [N], <strong>and</strong> ∆ I J (M) denotes the submatrix <strong>of</strong> a matrix M<br />

obtained by picking up the rows indexed by I <strong>and</strong> the columns indexed by J.<br />

By applying this minor-summation formula, we obtain<br />

Proposition 6.8. Let B = (b ij ) 0≤i,j≤e+f+2n−1 be the skew-symmetric matrix, whose entries b ij<br />

are given in Lemma 6.6. Then, for a partition λ ⊂ □(2n, e + f), we have<br />

∑<br />

µ⊂□(n,e)<br />

ν⊂□(n,f)<br />

where I(λ) = {λ 2n , λ 2n−1 + 1, . . . , λ 2 + 2n − 2, λ 1 + 2n − 1}.<br />

Now we can finish the pro<strong>of</strong> <strong>of</strong> Theorem 6.2.<br />

LR λ µ,ν s µ (n,e)(z)s † ν (n,f)(w) = Pf ∆ I(λ)<br />

† I(λ)<br />

(B), (6.10)<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 6.2. In the above argument, we take p ≥ n <strong>and</strong> r = 0. In this case, the<br />

variables w disappear <strong>and</strong> we see that<br />

{<br />

h (e+n−1)+(f+n−1)+1−k−l (z) if 0 ≤ k ≤ min(e + n − 1, f + n − 1) <strong>and</strong> l ≥ f + n − 1,<br />

b kl =<br />

0 otherwise<br />

<strong>and</strong> the equation (6.10) becomes<br />

∑<br />

µ⊂□(n,e)<br />

LR λ µ,□(n,f) s µ † (n,e)(z) = Pf ∆ I(λ)<br />

I(λ) (B).<br />

( )<br />

O C<br />

The skew-symmetric matrix B has the form B =<br />

− t with<br />

C O<br />

C = (h e+n−1−i−j (z)) 0≤i≤f+n−1,0≤j≤e+n−1<br />

.<br />

¿From the relation (2.10), we see that the sub<strong>Pfaffian</strong> Pf B I(λ) vanishes unless<br />

If these conditions are satisfied, then we have<br />

λ n+1 ≤ min(e, f), λ n ≥ f.<br />

Hence we have<br />

Pf B I(λ) = (−1) n(n−1)/2 det ( h βi −α n+1−j −i+(n+1−j)(z) ) 1≤i,j≤n<br />

= s β/α (z).<br />

∑<br />

µ⊂□(n,e)<br />

LR λ µ,□(n,f) s µ † (n,e)(z) = s β/α (z).<br />

Comparing the coefficients <strong>of</strong> s µ † (n,e)(z) completes the pro<strong>of</strong>.<br />

References<br />

[1] A. I. Barvinok, New algorithms for linear k-matroid intersection <strong>and</strong> matroid k-parity problems,<br />

Math. Program. 69 (1995), 449–470.<br />

[2] D. M. Bressoud, “Pro<strong>of</strong>s <strong>and</strong> Confirmations : The Story <strong>of</strong> the Alternating Sign Matrix<br />

Conjecture”, Cambridge Univ. Press, 1999.<br />

241


M. ISHIKAWA, S. OKADA, H. TAGAWA, J. ZENG<br />

[3] A. L. Cauchy, Mémoire sur les fonctions alternées et sur les sommes alternées, Exercices Anal.<br />

et Phys. Math. 2 (1841), 151–159.<br />

[4] G. Frobenius, Über die elliptischen Funktionen zweiter Art, J. Reine und Angew. Math. 93<br />

(1882), 53–68.<br />

[5] M. Ishikawa, Minor summation formula <strong>and</strong> a pro<strong>of</strong> <strong>of</strong> Stanley’s open problem,<br />

arXiv:math.CO/0408204.<br />

[6] M. Ishikawa, S. Okada, H. Tagawa <strong>and</strong> J. Zeng <strong>Generalizations</strong> <strong>of</strong> Cauchy’s determinant <strong>and</strong><br />

Schur’s <strong>Pfaffian</strong>”, arXiv:math.CO/0411280.<br />

[7] M. Ishikawa <strong>and</strong> M. Wakayama, Minor summation formulas <strong>of</strong> <strong>Pfaffian</strong>s, Linear <strong>and</strong> Multilinear<br />

Algebra 39 (1995), 285–305.<br />

[8] M. Ishikawa <strong>and</strong> M. Wakayama, Applications <strong>of</strong> the minor summation formula III: Plücker<br />

relations, lattice paths <strong>and</strong> <strong>Pfaffian</strong>s, arXiv:math.CO/0312358.<br />

[9] D. Knuth, Overlapping <strong>Pfaffian</strong>s, Electron. J. Combin. 3 (2) (“The Foata Festschrift”) (1996),<br />

151–163.<br />

[10] C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42 (1999), B42q.<br />

[11] C. Krattenthaler, Advanced determinant calculus : a complement, arXiv:math.CO/0503507.<br />

[12] D. Laksov, A. Lascoux <strong>and</strong> A. Thorup, On Giambelli’s theorem on complete correlations,<br />

Acta Math. 162 (1989), 143–199.<br />

[13] A. Lascoux, Symmetric Functions <strong>and</strong> Combinatorial Operators on Polynomials, CBMS Reg.<br />

Conf. Ser. Math. 99, AMS, 2003.<br />

[14] J.-G. Luque <strong>and</strong> J.-Y. Thibon, <strong>Pfaffian</strong> <strong>and</strong> Hafnian identities in shuffle algebras, Adv. Appl.<br />

Math. 29 (2002), 620–646.<br />

[15] I. G. Macdonald, “Symmetric Functions <strong>and</strong> Hall Polynomials (2nd ed.),”Oxford Univ. Press,<br />

1995.<br />

[16] S. Okada, Applications <strong>of</strong> minor-summation formulas to rectangular-shaped representations<br />

<strong>of</strong> classical groups, J. Alg. 205 (1998), 337–367.<br />

[17] S. Okada, Enumeration <strong>of</strong> symmetry classes <strong>of</strong> alternating sign matrices <strong>and</strong> characters <strong>of</strong><br />

classical groups, arXiv:math.CO/0408234.<br />

[18] S. Okada, <strong>Determinant</strong> <strong>and</strong> <strong>Pfaffian</strong> formulae <strong>of</strong> Cauchy type <strong>and</strong> their applications, in<br />

“Aspects <strong>of</strong> Combinatorial Representation Theory,” Sūrikaisekikenkyūsho Kōkyūroku 1382<br />

(2004), 198–215 (in Japanese).<br />

[19] S. Okada, An elliptic generalization <strong>of</strong> Schur’s <strong>Pfaffian</strong> identity, arXiv:math.CA/0412038.<br />

[20] I. Schur, Über die Darstellung der symmetrischen und der alternirenden Gruppe durch gebrochene<br />

lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155–250.<br />

[21] R. P. Stanley, Open problem, presented at International Conference on Formal Power Series<br />

<strong>and</strong> Algebraic Combinatorics (Vadstena 2003), June 23 – 27, 2003, available from<br />

http://www-math.mit.edu/ rstan/trans.html.<br />

[22] J. R. Stembridge, Non-intersecting paths, <strong>Pfaffian</strong>s <strong>and</strong> plane partitions, Adv. Math. 83<br />

(1990), 96–131.<br />

[23] T. Sundquist, Two variable <strong>Pfaffian</strong> identities <strong>and</strong> symmetric functions, J. Algebraic Combin.<br />

5 (1996), 135–148.<br />

242

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!