27.05.2015 Views

SPE International Symposium & Exhibition on Formation Damage ...

SPE International Symposium & Exhibition on Formation Damage ...

SPE International Symposium & Exhibition on Formation Damage ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

N<strong>on</strong>-Darcy Displacement in Linear Composite and Radial Flow Porous Media<br />

Yu-Shu Wu, Perap<strong>on</strong> Fakcharoenphol, and R<strong>on</strong>glei Zhang, Colorado School of Mines<br />

Copyright 2010, Society of Petroleum Engineers<br />

This paper was prepared for presentati<strong>on</strong> at the <str<strong>on</strong>g>SPE</str<strong>on</strong>g> EUROPEC/EAGE Annual C<strong>on</strong>ference and <str<strong>on</strong>g>Exhibiti<strong>on</strong></str<strong>on</strong>g> held in Barcel<strong>on</strong>a, Spain, 14–17 June 2010.<br />

This paper was selected for presentati<strong>on</strong> by an <str<strong>on</strong>g>SPE</str<strong>on</strong>g> program committee following review of informati<strong>on</strong> c<strong>on</strong>tained in an abstract submitted by the author(s). C<strong>on</strong>tents of the paper have not been reviewed<br />

by the Society of Petroleum Engineers and are subject to correcti<strong>on</strong> by the author(s). The material does not necessarily reflect any positi<strong>on</strong> of the Society of Petroleum Engineers, its officers, or<br />

members. Electr<strong>on</strong>ic reproducti<strong>on</strong>, distributi<strong>on</strong>, or storage of any part of this paper without the written c<strong>on</strong>sent of the Society of Petroleum Engineers is prohibited. Permissi<strong>on</strong> to reproduce in print is<br />

restricted to an abstract of not more than 300 words; illustrati<strong>on</strong>s may not be copied. The abstract must c<strong>on</strong>tain c<strong>on</strong>spicuous acknowledgment of <str<strong>on</strong>g>SPE</str<strong>on</strong>g> copyright.<br />

Abstract<br />

This paper presents Buckley-Leverett type analytical soluti<strong>on</strong>s for n<strong>on</strong>-Darcy displacement of two<br />

immiscible fluids in linear and radial composite porous media. High velocity or n<strong>on</strong>-Darcy flow comm<strong>on</strong>ly<br />

occurs in the vicinity of wellbore because of smaller flowing cross-secti<strong>on</strong>al area, however, the effect of such<br />

n<strong>on</strong>-Darcy has been traditi<strong>on</strong>ally ignored. To examine physical behavior of multiphase immiscible fluid n<strong>on</strong>-<br />

Darcy displacement, an extended Buckley-Leverett type of soluti<strong>on</strong> is discussed.<br />

There exists a Buckley-Leverett type soluti<strong>on</strong> for describing n<strong>on</strong>-Darcy displacement in a linear<br />

homogeneous reservoir. This work extends the soluti<strong>on</strong> to flow in linear and radial composite flow systems.<br />

We present several new Buckley-Leverett type analytical soluti<strong>on</strong>s for n<strong>on</strong>-Darcy flow in more complicated<br />

flow geometry of linear and radial composite reservoirs, based <strong>on</strong> n<strong>on</strong>-Darcy flow models of Forchheimer<br />

and Barree-C<strong>on</strong>way. As applicati<strong>on</strong> examples, we use the analytical soluti<strong>on</strong>s to verify numerical simulati<strong>on</strong><br />

results as well as to discuss n<strong>on</strong>-Darcy displacement behavior. The results show how n<strong>on</strong>-Darcy<br />

displacement in linear and radial composite systems are c<strong>on</strong>trolled not <strong>on</strong>ly by relative permeability, but also<br />

n<strong>on</strong>-Darcy coefficients, characteristic length, injecti<strong>on</strong> rates, and as well as disc<strong>on</strong>tinuities in saturati<strong>on</strong><br />

profile across the interfaces between adjacent flow domains.<br />

Introducti<strong>on</strong><br />

Multiphase flow and displacement occurs in a large variety of subsurface systems ranging from gas, oil, and<br />

geothermal reservoirs, vadose z<strong>on</strong>e hydrology, and soil sciences. In oil and gas industry, fluid displacement<br />

has l<strong>on</strong>g been used as an effective EOR process. Buckley and Leverett [1942] established the fundamental<br />

principle for flow and displacement of immiscible fluids through porous media in their classic study of<br />

fracti<strong>on</strong>al flow theory. Their soluti<strong>on</strong> involves the displacement process of two incompressible, immiscible<br />

fluids in a <strong>on</strong>e-dimensi<strong>on</strong>al, homogeneous system without c<strong>on</strong>sidering capillary effect. The soluti<strong>on</strong>, then,<br />

has been extended in many aspects e.g. including capillary effects [Yortsos and Fokas, 1983; Chen, 1988;<br />

Mc-Whorter and Sunada, 1990], heterogeneous reservoir, linear composite,Wu [1993].<br />

The effects of n<strong>on</strong>-Darcy or high-velocity flow regimes in porous media have l<strong>on</strong>g been noticed and<br />

investigated for porous media flow (e.g., Tek et al., 1962; Scheidegger, 1972; Katzand Lee, 1990;Wu, 2002).


2 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

Theoretical, field, and experimental studies performed <strong>on</strong> n<strong>on</strong>-Darcy flow in porous media both <strong>on</strong><br />

singlephase [Tek et al., 1962; Swift and Kiel, 1962; Lee et al., 1987] and multiphase flow [Lai et al 2009].<br />

Clasical n<strong>on</strong>-Darcy flow is described using Forchheimer equati<strong>on</strong> for a singlephase system. Many studies<br />

[e.g., Evans and Evans, 1988; Liu et al., 1995; Wu et al., 2002] extended the equati<strong>on</strong> to multiphase flow.<br />

Recent studies [Baree and C<strong>on</strong>way, 2004, 2007] have indicated that Forchheimer equati<strong>on</strong> could not<br />

accurately predict fluid flow behavior in porous media at very high velocity. As such, an alternative<br />

correlati<strong>on</strong> in both singlephase and multiphase flows was presented. Laboratory studies [Lai et al, 2009]<br />

c<strong>on</strong>firmed this, Baree-C<strong>on</strong>way, model. However, as Forchheimer are still in use widely, in this work, both<br />

n<strong>on</strong>-Darcy equati<strong>on</strong>s are used.<br />

This paper presents a Buckley-Leverett analytical soluti<strong>on</strong> for <strong>on</strong>e-dimensi<strong>on</strong> n<strong>on</strong>-Darcy displacement of<br />

two-phase immiscible fluids in linear and radial composite porous media. The classical Buckley-Leverett<br />

principle is used as well as n<strong>on</strong>-Darcy flow in a heterogeneous porous media, in which the two-phase fluids<br />

c<strong>on</strong>form to n<strong>on</strong>-Darcy displacement and the formati<strong>on</strong> is treated as c<strong>on</strong>sisting of two flow domains with<br />

different rock property. A practical procedure for calculate the wetting phase saturati<strong>on</strong> profile for n<strong>on</strong>-Darcy<br />

immiscible displacement in <strong>on</strong>e-dimensi<strong>on</strong> linear and radial composite system is provided. The analytical<br />

soluti<strong>on</strong> and the resulting procedure can be regarded as an extensi<strong>on</strong> of the Buckley-Leverett theory.<br />

Mathematical Model<br />

C<strong>on</strong>sider the flow of two immiscible fluids (<strong>on</strong>e wetting and <strong>on</strong>e n<strong>on</strong>wetting phase) in a homogeneous,<br />

isothermal, and isotropic porous medium. Assume that no interphase mass transfer occurs between the two<br />

fluids and ignore dispersi<strong>on</strong> and adsorpti<strong>on</strong> effects. The governing equati<strong>on</strong> for fluid f is given by the mass<br />

c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>,<br />

v q S <br />

(1)<br />

<br />

f f f f f <br />

t<br />

where, f is fluid (f=w for the wetting phase and f=n for the n<strong>on</strong>wetting phase), ρ is the density of fluid, v is<br />

the volume matrix (or Darcy flow) velocity, q is sink/source term, S is the saturati<strong>on</strong>, t is time, and ϕ is the<br />

effective porosity of formati<strong>on</strong><br />

To incorporate n<strong>on</strong>-Darcy flow behavior, volume matrix velocity (v f ) is treated using n<strong>on</strong>-Darcy flow<br />

equati<strong>on</strong>s. In this study, two equati<strong>on</strong>s are of interest. First, the Forchheimer n<strong>on</strong>-Darcy flow equati<strong>on</strong>.<br />

<br />

f<br />

<br />

f<br />

v<br />

f<br />

f f v<br />

f<br />

v<br />

f<br />

(2)<br />

kk<br />

rf<br />

where, v f is volume matrix (Darcy) velocity, Φ is flow potential, k is the absolute permeability of the porous<br />

media, g is the gravitati<strong>on</strong>al c<strong>on</strong>stant, k rf is the relative permeability to fluid f, µ f is the dynamic viscosity of<br />

fluid f, and β f is the effective n<strong>on</strong>-Darcy flow coefficient (per meter) for fluid f under multiphase flow<br />

c<strong>on</strong>diti<strong>on</strong>s described as follows [Evans and Evans, 1988].<br />

<br />

f<br />

<br />

C<br />

5/4<br />

kk 3/4<br />

rf<br />

S<br />

f<br />

S <br />

fr<br />

<br />

<br />

<br />

(3)<br />

where C β is a n<strong>on</strong>-Darcy flow c<strong>on</strong>stant with a unit of meters 3/2 if c<strong>on</strong>verted to SI units. A recent study [Liu et


<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 3<br />

al., 1995] indicates that the β coefficient may be also correlated to tortuosity or the representative length of<br />

tortuous flow paths in pore structure of a porous media. According to Wu [2002], volume matrix velocity can<br />

be computed in a simplified form for a c<strong>on</strong>stant cross-secti<strong>on</strong>al area as follows:<br />

v<br />

íï<br />

éæ<br />

ö<br />

ö<br />

ù<br />

ç ÷ ÷<br />

çè<br />

ø è øú<br />

ë<br />

û<br />

2<br />

1<br />

μf μf æ<br />

Φ<br />

2 f<br />

f<br />

= ï<br />

ì- + ÷ - 4k ρf β<br />

f<br />

2kρ f<br />

β ï<br />

f<br />

krf ê<br />

ç<br />

k ç<br />

rf<br />

÷ x<br />

ïî<br />

1/2<br />

ü<br />

ï<br />

ý<br />

ïþ<br />

(4)<br />

Recent studies [Baree and C<strong>on</strong>way, 2004, 2007] indicated that Forchheimer equati<strong>on</strong> could not accurately<br />

predict fluid flow behavior in porous media at very high velocity and presented an alternative equati<strong>on</strong> in<br />

both singlephase and multiphase flows.<br />

<br />

fv<br />

f<br />

<br />

f<br />

<br />

(5)<br />

(1 kmr<br />

) <br />

f<br />

kdk<br />

rf<br />

kmr<br />

<br />

<br />

f<br />

<br />

f<br />

v <br />

<br />

f <br />

where k d is absolute (Darcy) permeability, k mr is the minimum permeability ratio at high rate, relative to<br />

absolute (Darcy) permeability, τ is the characteristic length.<br />

Wu [2009] proposed the method to include Baree-C<strong>on</strong>way model into numerical simulati<strong>on</strong> and Buckley-<br />

Leverett analytical typw of soluti<strong>on</strong>s.the simplified from of volume matrix velocity of Baree and C<strong>on</strong>way<br />

n<strong>on</strong>-Darcy flow for a c<strong>on</strong>stant cross-secti<strong>on</strong>al area as follows [Lai, 2009]:<br />

v<br />

f<br />

Φ<br />

2<br />

f<br />

- a1+ a1<br />

- 2μ f<br />

ρ<br />

f<br />

kdkrf krmμβS βτ<br />

=<br />

x<br />

(6)<br />

2μ ρ<br />

f<br />

f<br />

where<br />

a = μ S τ + k k k ρ<br />

1<br />

2<br />

β β d rf rm f<br />

<br />

Φ f<br />

x<br />

,<br />

Equati<strong>on</strong> (4) and (6) implicitly defines the volume matrix velocity as a functi<strong>on</strong> of pressure gradient as well<br />

as saturati<strong>on</strong>, relative permeability, effective n<strong>on</strong>-Darcy flow coefficient, minimum permeability ratio, and<br />

characteristic length. A more general relati<strong>on</strong> for the Darcy velocity in multiphase n<strong>on</strong>-Darcy flow may be<br />

proposed as follows:<br />

v = v Ñ Φ , S<br />

(7)<br />

( )<br />

f f f f<br />

Analytical Soluti<strong>on</strong> for One-Dimensi<strong>on</strong> Linear and Radial Systems<br />

The classical Buckley-Leverett soluti<strong>on</strong> was derived assuming the following flow c<strong>on</strong>diti<strong>on</strong>s. (1) Both fluids<br />

and the porous medium are incompressible. (2) Capillary pressure gradient is negligible. (3) Gravity<br />

segregati<strong>on</strong> effect is negligible (i.e., stable displacement exists near the displacement fr<strong>on</strong>t).<br />

For a <strong>on</strong>e-dimensi<strong>on</strong> flow and displacement in a linear system, a semi-infinite linear flow system with a


4 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

c<strong>on</strong>stant cross-secti<strong>on</strong>al area (A), Equati<strong>on</strong> (1) can be rewritten as follows:<br />

xs<br />

q f<br />

<br />

i f<br />

(8)<br />

t A S <br />

<br />

f s<br />

where, x s is the locati<strong>on</strong> of tracking saturati<strong>on</strong> al<strong>on</strong>g x-directi<strong>on</strong>, q i is injecti<strong>on</strong> rate, A is cross-secti<strong>on</strong>al area,<br />

f f is fracti<strong>on</strong>al flow of fluid f, S f is saturati<strong>on</strong> of fluid f<br />

Using the same assumpti<strong>on</strong>s, the mass c<strong>on</strong>servati<strong>on</strong> of a <strong>on</strong>e-dimensi<strong>on</strong> flow and displacement in a radial<br />

system can be rewritten as follows:<br />

2<br />

rs<br />

q f<br />

<br />

i f<br />

(9)<br />

t h S <br />

<br />

f s<br />

where, r s is the locati<strong>on</strong> of tracking saturati<strong>on</strong> away from the injecting point, h is reservoir thickness<br />

To complete the mathematical descripti<strong>on</strong> of the physical problem, the initial and boundary c<strong>on</strong>diti<strong>on</strong>s must<br />

be specified. The system is initially assumed to be uniformly saturated with both wetting and n<strong>on</strong>wetting<br />

fluids. The wetting phase is at its residual saturati<strong>on</strong>, and a n<strong>on</strong>wetting fluid, such as oil or gas, is at its<br />

maximum saturati<strong>on</strong> in the system as follows:<br />

Sn( x / r, t = 0)<br />

= 1- Swr<br />

(10)<br />

where S wr is the initial, residual wetting phase saturati<strong>on</strong>. Wetting fluid, such as water, is c<strong>on</strong>tinuously being<br />

injected at a known rate q i (t), generally a functi<strong>on</strong> of injecti<strong>on</strong> time (t). Therefore the boundary c<strong>on</strong>diti<strong>on</strong>s at<br />

the inlet are<br />

for a linear system<br />

qi<br />

( t)<br />

vw( x = 0, t)<br />

= (11)<br />

A<br />

vn<br />

( x = 0, t)<br />

= 0<br />

(12)<br />

for a radial system<br />

qi<br />

( t)<br />

vw( r = rw,<br />

t)<br />

= (13)<br />

2πrw<br />

h<br />

vn( r = r , w<br />

t)<br />

= 0<br />

(14)<br />

The fracti<strong>on</strong>al flow of a fluid phase is defined as a volume fracti<strong>on</strong> of the phase flowing at a given locati<strong>on</strong><br />

and time to the total volume of the flowing phases [Willhite, 1986]. The fracti<strong>on</strong>al flow can be written as<br />

f<br />

f<br />

vf<br />

vf<br />

= =<br />

v + v v () t<br />

w n t<br />

(15)<br />

From volume balance due to incompressibility of the system we have<br />

f + f = 1<br />

(16)<br />

w<br />

n


<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 5<br />

Soluti<strong>on</strong> Procedure<br />

The general soluti<strong>on</strong> procedure is shown in Fig. 1. This procedure applies for both linear and radial<br />

composite systems as well as for Forchheimer and Baree-C<strong>on</strong>way n<strong>on</strong>-Darcy models.<br />

1. In order to calculate saturati<strong>on</strong> profile in such complex systems, we have to discretize flow domain<br />

into series of homogeneous with a c<strong>on</strong>stant total volume matrix velocity (v t ).<br />

2. Calculate total volume matrix velocity (v t ) from the following equati<strong>on</strong>s:<br />

v<br />

t<br />

=<br />

i<br />

( )<br />

q t<br />

A<br />

(17)<br />

where A is a c<strong>on</strong>stant cross-secti<strong>on</strong>al area for a linear composite and A 2<br />

rh for a radial composite<br />

f<br />

f<br />

3. Calculate potential gradient profile: from Equati<strong>on</strong> (3), (4), and (5), fluid velocity is a functi<strong>on</strong> of<br />

potential gradient ( ) and phase saturati<strong>on</strong> ( S ).As no capillary pressure is assumed for a wateroil<br />

system, oil potential and water potential are the same. Using the fact that a total velocity is<br />

c<strong>on</strong>stant for a particular segment, we can setup Equati<strong>on</strong> (16) and use Newt<strong>on</strong>’s Iterati<strong>on</strong> method to<br />

solve for a potential gradient for a given saturati<strong>on</strong><br />

v v ( , S ) v ( ,1 S ) 0<br />

(18)<br />

t w w w n n w<br />

4. Calculate fracti<strong>on</strong>al flow: for each segment, a fracti<strong>on</strong>al flow curve can be computed from Equati<strong>on</strong><br />

(15)<br />

5. Select any tracked saturati<strong>on</strong>: this apparent saturati<strong>on</strong> in the first segment is used to track its locati<strong>on</strong><br />

and the apparent saturati<strong>on</strong> in other segments after injecti<strong>on</strong> for a given time. Using the c<strong>on</strong>tinuity<br />

c<strong>on</strong>diti<strong>on</strong> for interface of each segment , an apparent saturati<strong>on</strong> can be determined as follows<br />

where, m is any segment number<br />

f ( S ) f ( S )<br />

(19)<br />

w1 w1<br />

wm wm


6 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

1. Discretize flow domain into<br />

segments<br />

2. Using Newt<strong>on</strong>’s iterati<strong>on</strong>,<br />

solve for a potential gradient<br />

profile<br />

Repeat for all<br />

segments<br />

3. Calculate a total fluid velocity<br />

(v t ) for a given rock properties<br />

4. Calculate fracti<strong>on</strong>al flow<br />

profile<br />

5. Select a particular saturati<strong>on</strong><br />

(S w ) in the first segment<br />

Repeat for all<br />

saturati<strong>on</strong> profile<br />

6. Calculate travel time in each<br />

segment until reaching the<br />

given time<br />

7. Calculate its locati<strong>on</strong> and<br />

apparent saturati<strong>on</strong><br />

8. Check the shock fr<strong>on</strong>t<br />

locati<strong>on</strong><br />

Fig. 1 Soluti<strong>on</strong> Procedure Diagram<br />

6. Compute the travel time in each segment as follows, see Appendix A for example of calculati<strong>on</strong>:<br />

A f<br />

1<br />

j w<br />

tj<br />

xj<br />

qi sw S<br />

<br />

h<br />

where, S j is an apparent saturati<strong>on</strong> in segment j<br />

<br />

<br />

f<br />

j<br />

1<br />

j w<br />

tj<br />

<br />

qi sw S<br />

<br />

j<br />

r<br />

j<br />

2<br />

for a linear composite 200.<br />

for a radial composite (20)


<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 7<br />

Then check segment number that the selected saturati<strong>on</strong> locates for a given time<br />

m1<br />

m<br />

t j<br />

t t<br />

j<br />

(21<br />

j1 j1<br />

where, m is the segment number that the selected saturati<strong>on</strong> locate<br />

7. Calculate the locati<strong>on</strong> of the saturati<strong>on</strong>:<br />

q f<br />

<br />

x x t t <br />

<br />

m1 m1<br />

i w<br />

s<br />

<br />

j<br />

<br />

j<br />

j1 mA<br />

Sw S j1<br />

m<br />

for a linear composite 200.<br />

q<br />

f<br />

<br />

<br />

<br />

m1 m1<br />

2 2 i w<br />

rs<br />

r <br />

j<br />

t t<br />

j<br />

j1 h<br />

m<br />

S<br />

for a radial composite (22)<br />

w S<br />

j1<br />

<br />

m<br />

where. x s and r s are locati<strong>on</strong> of the saturati<strong>on</strong>, S m is an apparent saturati<strong>on</strong> in segment m<br />

8. Check the shock fr<strong>on</strong>t locati<strong>on</strong>: we can use total amount of injecti<strong>on</strong> volume to check saturati<strong>on</strong> of<br />

the shock fr<strong>on</strong>t as follows<br />

Discussi<strong>on</strong>s<br />

x s<br />

<br />

i w wr<br />

0<br />

<br />

q t <br />

A S S dx 0 for a linear composite 200.<br />

r<br />

s<br />

<br />

2<br />

qit <br />

h Sw Swr<br />

dr 0 for a radial composite (23)<br />

If the c<strong>on</strong>diti<strong>on</strong> hold, the calculated saturati<strong>on</strong> is bel<strong>on</strong>g to the shock fr<strong>on</strong>t<br />

r<br />

w<br />

The extensi<strong>on</strong> Buckley-Leverett soluti<strong>on</strong> described above is used to dem<strong>on</strong>strate influences of input<br />

parameters, e.g. injecti<strong>on</strong> rate, n<strong>on</strong>-Darcy coefficient in Forchheimer correlati<strong>on</strong>, characteristic length and<br />

minimum permeability ratio in Barree-C<strong>on</strong>way correlati<strong>on</strong>, <strong>on</strong> water saturati<strong>on</strong> profile as well as<br />

displacement efficiency. One-dimensi<strong>on</strong> linear-composite, where porosity, permeability of rocks are the<br />

same for both rocks, <strong>on</strong>ly relative permeability are different, see Table 1, models are setup with the same<br />

initial c<strong>on</strong>diti<strong>on</strong>. Water saturati<strong>on</strong> distributes uniformly at the irreducible water saturati<strong>on</strong> (S wr =0.2) and<br />

water is injected with a c<strong>on</strong>stant volumetric rate at inlet (x=0).<br />

Fig.2-4 illustrate base case scenario where the operating c<strong>on</strong>diti<strong>on</strong> and time are given in Table 1. Water<br />

saturati<strong>on</strong> disc<strong>on</strong>tinuity appears at the rock interface due to change in rock properties. Fig 5-8 show the<br />

sensitivity of input parameters for both Forchheimer and Baree-C<strong>on</strong>way correlati<strong>on</strong>s. These input parameters<br />

c<strong>on</strong>trol fracti<strong>on</strong>al flow curve and, as the results, c<strong>on</strong>trol water saturati<strong>on</strong> profile and displacement efficiency.


8 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

One important thing is that n<strong>on</strong>-Darcy phenomena improves displacement efficiency because any saturati<strong>on</strong><br />

moving with high velocity is held back by n<strong>on</strong>-Darcy effect. C<strong>on</strong>sequently, saturati<strong>on</strong> profile moves in a<br />

more-uniform manner, see the injecti<strong>on</strong> rate sensitivity Fig 7.<br />

For sensitivity cases of Baree-C<strong>on</strong>way n<strong>on</strong>-Darcyequati<strong>on</strong>, Equati<strong>on</strong> (5), if the characteristic length (τ) goes<br />

to infinity, the equati<strong>on</strong> can be reduced to the standard Darcy’s equati<strong>on</strong> as such the higher the characteristic<br />

length, the less the n<strong>on</strong>-Darcy effect is. This effect can be seen in Fig 5. High characteristic length or high<br />

n<strong>on</strong>-Darcy effect reduces the shock fr<strong>on</strong>t speed and uniform saturati<strong>on</strong> fr<strong>on</strong>t. In the minimum permeability<br />

ratio case, the ratio value ranges from zero to <strong>on</strong>e. According to Equati<strong>on</strong> (5) if the ratio approaches <strong>on</strong>e, the<br />

equati<strong>on</strong> is in the same form as Darcy described. A small minimum permeability ratio physically means that<br />

it is the smallest equivalent Darcy permeability possible of n<strong>on</strong>-Darcy system can be. As such the smaller the<br />

ratio, the more the n<strong>on</strong>-Darcy effects is, this effect is observed here in Fig 6.<br />

Applicati<strong>on</strong> Example<br />

One applicati<strong>on</strong> of this extended Buckley-Leverett soluti<strong>on</strong> is to use as a verificati<strong>on</strong> tools for numerical<br />

simulati<strong>on</strong> development. In this case, MSFLOW code [Wu, 1998], a general purpose, three-phase reservoir<br />

simulator, is verified with the soluti<strong>on</strong>. Two <strong>on</strong>e-dimensi<strong>on</strong>al reservoir systems are modeled for linear and<br />

radial composite. To reduce the effects of discretizati<strong>on</strong> <strong>on</strong> numerical simulati<strong>on</strong> results, very fine, uniform<br />

mesh spacing (∆x = 0.01 m and ∆r = 0.01 m) are chosen. The flow descripti<strong>on</strong> and the parameters for this<br />

problem are identical to those in Table 1 for the case of characteristic length is 1000 and Minimum<br />

Permeability ratio is 0.01.<br />

The comparis<strong>on</strong>s between the analytical and numerical soluti<strong>on</strong>s for linear and radial composite are shown in<br />

Fig 10 and 12, respectively. Both indicate that the numerical results are in excellent agreement with the<br />

analytical predicti<strong>on</strong> of the n<strong>on</strong>-Darcy displacement for the entire wetting phase sweeping z<strong>on</strong>e. Except at<br />

the shock, advancing saturati<strong>on</strong> fr<strong>on</strong>t, the numerical soluti<strong>on</strong> deviates <strong>on</strong>ly slightly from the analytical<br />

soluti<strong>on</strong>, resulting from a typical “smearing fr<strong>on</strong>t” phenomen<strong>on</strong> of numerical dispersi<strong>on</strong> effects when<br />

matching the Buckley-Leverett soluti<strong>on</strong> using numerical results [Aziz and Settari, 1979].<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

This paper presents a Buckley-Leverett analytical soluti<strong>on</strong> and a theoretical study for n<strong>on</strong>-Darcy<br />

displacement of two immiscible fluids through linear and radial composite porous media. A general<br />

procedure is developed to solve such a complex reservoir system analytically. This procedure can be used for<br />

any n<strong>on</strong>-Darcy equati<strong>on</strong>.<br />

In this work, n<strong>on</strong>-Darcy effect is treated using Forchheimer and Baree-C<strong>on</strong>way equati<strong>on</strong>s. Effects of<br />

variati<strong>on</strong> of physical parameters for each n<strong>on</strong>-Darcy equati<strong>on</strong> are run to investigate how these parameters<br />

influence water saturati<strong>on</strong> profile as well as displacement efficiency. The results show that n<strong>on</strong>-Darcy<br />

displacement in linear and radial composite systems are c<strong>on</strong>trolled not <strong>on</strong>ly by relative permeability, but also<br />

n<strong>on</strong>-Darcy coefficients, characteristic length, injecti<strong>on</strong> rates, and as well as disc<strong>on</strong>tinuities in saturati<strong>on</strong><br />

profile across the interfaces between adjacent flow domains. One important thing to emphasize here is that<br />

n<strong>on</strong>-Darcy effect help improve displacement efficiency because any saturati<strong>on</strong> moving with high velocity is<br />

held back by n<strong>on</strong>-Darcy effect. C<strong>on</strong>sequently, saturati<strong>on</strong> profile moves in a more-uniform manner. As an<br />

example of applicati<strong>on</strong>, the analytical soluti<strong>on</strong> is applied to verify a numerical simulator modeling<br />

multiphase n<strong>on</strong>-Darcy flow.


Fracti<strong>on</strong>al Flow (fracti<strong>on</strong>)<br />

Derivative of fracti<strong>on</strong>al flow<br />

Potential Gradient (Pa/m)<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 9<br />

-1.2E+06<br />

Rock 2<br />

Rock 1<br />

-1.0E+06<br />

-8.0E+05<br />

-6.0E+05<br />

-4.0E+05<br />

-2.0E+05<br />

Rock 1<br />

Rock 2<br />

Table 1 Parameter for N<strong>on</strong>-Darcy Barree-C<strong>on</strong>way<br />

Immiscible Displacement in a Linear Composite System<br />

0.0E+00<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Fig. 2 Potential Gradient Profile<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Rock 1<br />

Rock 2<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Fig. 3 Fracti<strong>on</strong>al Flow and Its Derivative<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

1.0<br />

Rock 1 Rock 2<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 4 Saturati<strong>on</strong> Profile


Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

10 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

0.8<br />

0.8<br />

0.7<br />

0.7<br />

0.6<br />

0.6<br />

0.5<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

τ=1.0e+03<br />

τ=1.0e+02<br />

τ=1.0e+01<br />

0.4<br />

0.3<br />

0.2<br />

Kmr= 5.0E-1<br />

Kmr= 1.0E-1<br />

Kmr= 1.0E-2<br />

0.1<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 5 Saturati<strong>on</strong> Profile<br />

Comparing characteristic length Sensitivity<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 6 Saturati<strong>on</strong> Profile Comparing<br />

Minimum Permeability ratio Sensitivity<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

q=1.0e-5 m3/s<br />

q=1.0e-4 m3/s<br />

q=1.0e-3 m3/s<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 7 Saturati<strong>on</strong> Profile<br />

Comparing Injecti<strong>on</strong> Rate Sensitivity


Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 11<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Cβ=3.2e-5<br />

Cβ=3.2e-6<br />

Cβ=3.2e-7<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Table 2 Parameter for N<strong>on</strong>-Darcy Forchheimer<br />

Displacement in a Linear Composite System<br />

Fig. 8 Saturati<strong>on</strong> Profile Comparing<br />

n<strong>on</strong>-Darcy Flow c<strong>on</strong>stant Sensitivity<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

0.8<br />

0.7<br />

0.6<br />

Rock 2<br />

0.5<br />

Injecti<strong>on</strong><br />

Rock 1<br />

α<br />

Fig. 9 Reservoir Schematic for<br />

a Linear Composite System<br />

0.4<br />

0.3<br />

Analytical<br />

0.2<br />

Numerical<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 10 Comparis<strong>on</strong> of Saturati<strong>on</strong> profiles between<br />

Analytical and Numerical for a Linear Composite System


Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

12 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

0.8<br />

Injecti<strong>on</strong> Well<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Analytical<br />

Numerical<br />

Rock 1<br />

Rock 2<br />

Fig. 11 Reservoir Schematic for<br />

a Radial Composite System<br />

0.2<br />

0.1<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Distance (m)<br />

Fig. 12 Comparis<strong>on</strong> of Saturati<strong>on</strong> Profiles between<br />

Analytical and Numerical for a Radial Composite System<br />

Nomenclature<br />

A = Crossecti<strong>on</strong>al area, m 2<br />

C β = N<strong>on</strong>-Darcy flow c<strong>on</strong>stant, m 3/2<br />

f f = Fracti<strong>on</strong>al flow of fluid f, fracti<strong>on</strong><br />

h = Reservoir thickness, m<br />

k d = Darcy permeability, m 2<br />

k r = Relative permeability ,fracti<strong>on</strong><br />

k mr = Minimum permeability relative toDarcy permeability ,fracti<strong>on</strong><br />

q i = Injecti<strong>on</strong> rate, m 3 /s<br />

r w = Well bore radius, m<br />

r s = Distance away from wellbore in radial system of saturati<strong>on</strong> S, m<br />

S f = Saturati<strong>on</strong> of fluid f, fracti<strong>on</strong><br />

t = Given travel time after start injecti<strong>on</strong>, sec<br />

t * = Travel time from start to interface of the saturati<strong>on</strong> fr<strong>on</strong>t in Rock 1, sec<br />

x s = Distance from inlet in the x-directi<strong>on</strong> of saturati<strong>on</strong> S, m<br />

v t = Volume metrix velocity of phase f, m/s<br />

v t = Total volume metrix velocity, m/s<br />

β = N<strong>on</strong>-Darcyflow coefficient<br />

Φ = Potential, Pa<br />

τ = Characteristic length, m/10000<br />

ρ f = Density of fluid f,kg/m 3


<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 13<br />

µ = Viscosity, Pa.s<br />

References<br />

Aziz, K., and A. Settari, Petroleum Reservoir Simulati<strong>on</strong>, Appl. Sci.,L<strong>on</strong>d<strong>on</strong>, 1979.<br />

Buckley, S. E., and M. C. Leverett, Mechanism of fluid displacement in sands, Trans. Am. Inst. Min. Metall.<br />

Pet. Eng., 146, 107–116, 1942.<br />

Buckley-Leverett theory, Trans. Am. Inst. Min. Metall. Pet. Eng., 216, 271–276, 1959.<br />

Chen, Z. X., Some invariant soluti<strong>on</strong>s to two-phase fluid displacement problems including capillary effect,<br />

<str<strong>on</strong>g>SPE</str<strong>on</strong>g> Reservoir Eng., 28, 691–700, 1988.<br />

de Zabala, E. F., J. M. Vislocky, E. Rubin, and C. J. Radke, A chemical theory for linear alkaline flooding,<br />

Soc. Pet. Eng. J., 22, 245–258, 1982.<br />

Evans, E. V., and R. D. Evans, Influence of an immobile or mobile saturati<strong>on</strong> <strong>on</strong> n<strong>on</strong>-Darcy compressible<br />

flow of real gases in propped fractures, JPT J. Pet. Technol., 40(10), 1343–1351, 1988.<br />

Evans, R. D., C. S. Huds<strong>on</strong>, and J. E. Greenlee, The effect of an immobile liquid saturati<strong>on</strong> <strong>on</strong> the n<strong>on</strong>-Darcy<br />

flow coefficient in porous media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> Prod. Eng., 283, 331–338, 1987.<br />

Fayers, F. J., and R. L. Perrine, Mathematical descripti<strong>on</strong> of detergent flooding in oil reservoirs, Trans. Am.<br />

Inst. Min. Metall. Pet. Eng., 216, 277–283, 1959.<br />

Guppy, K. H., H. Cinco-Ley, and H. J. Ramey Jr., Effects of n<strong>on</strong>-Darcy flow <strong>on</strong> the c<strong>on</strong>stant-pressure<br />

producti<strong>on</strong> of fractured wells, <str<strong>on</strong>g>SPE</str<strong>on</strong>g>J Soc. Pet. Eng. J., 21, 390–400, 1981.<br />

Guppy, K. H., H. Cinco-Ley, H. J. Ramey Jr., and F. Samaniego, N<strong>on</strong>-Darcy flow in wells with finitec<strong>on</strong>ductivity<br />

vertical fractures, <str<strong>on</strong>g>SPE</str<strong>on</strong>g>J Soc. Pet. Eng. J., 22, 681–698, 1982.<br />

Helfferich, F. G., Theory of multicomp<strong>on</strong>ent, multiphase displacement in porous media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g>J Soc. Pet. Eng.<br />

J., 21, 51–62, 1981.<br />

Henders<strong>on</strong>, G. D., A. Danesh, and D. H. Tehrani, The effect of velocity and interfacial tensi<strong>on</strong> <strong>on</strong> relative<br />

permeability of gas c<strong>on</strong>densate fluids in the wellbore regi<strong>on</strong>, J. Pet. Sci. Eng., 17, 256–273,1997.<br />

Hirasaki, G. J., Applicati<strong>on</strong> of the theory of multicomp<strong>on</strong>ent, multiphase displacement to three-comp<strong>on</strong>ent,<br />

two-phase surfactant flooding, <str<strong>on</strong>g>SPE</str<strong>on</strong>g>J Soc. Pet. Eng. J., 21, 191–204, 1981.<br />

Hirasaki, G. J., and G. A. Pope, Analysis of factors influencing mobility and adsorpti<strong>on</strong> in the flow of<br />

polymer soluti<strong>on</strong> through porous media, Soc. Pet. Eng. J., 14, 337–346, 1974.<br />

Karakas, N., S. Saneie, and Y. Yortsos, Displacement of a viscous oil by the combined injecti<strong>on</strong> of hot water<br />

and chemical additive, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> Reservoir Eng., 1, 391–402, 1986.<br />

Katz, D. L., and R. L. Lee, Natural Gas Engineering, Producti<strong>on</strong> and Storage, McGraw-Hill, New York,<br />

1990. Lars<strong>on</strong>, R. G., and G. J. Hirasaki, Analysis of the physical mechanisms in surfactant flooding,<br />

Soc. Pet. Eng. J., 18, 42–58, 1978.<br />

Lai, B., Miskimins, J. L., and Wu, Y. S., N<strong>on</strong>-Darcy Porous Media Flow According to the Barree and<br />

C<strong>on</strong>way Model: Laboratory and Numerical Modeling Studies, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 122611, 2009.<br />

Lars<strong>on</strong>, R. G., H. T. Davis, and L. E. Scriven, Elementary mechanisms of oil recovery by chemical methods,<br />

JPT J. Pet. Technol., 34(2), 243–258, 1982.<br />

Lee, R. L., R. W. Logan, and M. R. Tek, Effects of turbulence <strong>on</strong> transient flow of real gas through porous<br />

media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> Form. Eval., 108–120, 1987.<br />

Liu, X., F. Civan, and R. D. Evans, Correlati<strong>on</strong>s of the n<strong>on</strong>-Darcy flow coefficient, J. Can. Pet. Technol.,<br />

34(10), 50–54, 1995.<br />

McWhorter, D. B., and D. K. Sunada, Exact integral soluti<strong>on</strong>s for two-phase flow, Water Resour. Res.,<br />

26(3), 399–413, 1990.<br />

Wu, Y. S., K. Pruess, and Z. X. Chen, Buckley-Leverett flow in composite porous media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> Adv. Technol.<br />

Ser., 1(2), 36–39, 1993.


14 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

Wu, Y. S., N<strong>on</strong>-Darcy displacement of immiscible fluids in porous media, Water Resources Research. Vol.<br />

37, NO. 12, 2943–2950, 2001.<br />

Wu, Y. S., K. Pruess, and P. A. Witherspo<strong>on</strong>, Displacement of a Newt<strong>on</strong>ian fluid by a n<strong>on</strong>-Newt<strong>on</strong>ian fluid<br />

in a porous medium,Transp. Porous Media, 6, 115–142, 1991.<br />

Wu, Y. S., K. Pruess, and P. A. Witherspo<strong>on</strong>, Flow and displacement of Bingham n<strong>on</strong>-Newt<strong>on</strong>ian fluids in<br />

porous media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g> Reservoir Eng., 7, 369–376, 1992.<br />

Wu, Y.S., Lai, B. T. et al. Simulati<strong>on</strong> of multiphase n<strong>on</strong>-Darcy flow in porous and fractured media, <str<strong>on</strong>g>SPE</str<strong>on</strong>g><br />

122612, 2009.<br />

Appendix A Example Calculati<strong>on</strong> for a Linear Composite System<br />

This example is selected to dem<strong>on</strong>strate the calculati<strong>on</strong> method for a linear composite system. The approach<br />

is also applied to a radial composite, <strong>on</strong>ly minimum modificati<strong>on</strong> is required. It is assumed that fracti<strong>on</strong>al<br />

flow curve is known using rock property is given in Table 1.<br />

From the fracti<strong>on</strong>al flow curves, we can calculate the shock fr<strong>on</strong>t saturati<strong>on</strong> of Rock 1 and Rock 2 using<br />

Welge’s graphical method, see Fig. A-1. In this example, it is indicated that . Note that there is<br />

another case ( . Here, the case ( ) is the most interested. Saturati<strong>on</strong> of Rock 1 at interface<br />

(S - ) is calculated by<br />

f<br />

<br />

w<br />

1AL1<br />

<br />

Sw<br />

q<br />

S it<br />

(A-1)<br />

where, L 1 is length of Rock 1 or interface locati<strong>on</strong><br />

From c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong> between interface, Equati<strong>on</strong> (19), we can calculated the water saturati<strong>on</strong> at the<br />

interface of Rock 2 (S + ) . For this example, water saturati<strong>on</strong> profile in Rock 2 has a disc<strong>on</strong>tinuity because<br />

when the shock fr<strong>on</strong>t in Rock 1 reaches interface, the fr<strong>on</strong>t saturati<strong>on</strong> (S f1 ) has the corresp<strong>on</strong>ding apparent<br />

saturati<strong>on</strong> in domain 2 (S*) higher than the shock fr<strong>on</strong>t saturati<strong>on</strong> (S f2 ). C<strong>on</strong>sequently, <strong>on</strong>ly the shock fr<strong>on</strong>t<br />

saturati<strong>on</strong> travels with the fastest speed whereas saturati<strong>on</strong> higher than that (S f2


<str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343 15<br />

x<br />

s f 2<br />

*<br />

qi( t t ) fw<br />

L1<br />

<br />

1<br />

A Sw<br />

S<br />

f 2<br />

Where t* is the time of shock fr<strong>on</strong>t saturati<strong>on</strong><br />

by the following equati<strong>on</strong>:<br />

t<br />

<br />

AL<br />

<br />

f<br />

<br />

w<br />

qi<br />

<br />

sw<br />

<br />

* 1 1<br />

<br />

(A-3)<br />

arriving at the interface and can be computed<br />

s f 1<br />

(A-4)<br />

b) (S f2


Fracti<strong>on</strong>al Flow (fracti<strong>on</strong>)<br />

Derivative of fracti<strong>on</strong>al flow<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

16 <str<strong>on</strong>g>SPE</str<strong>on</strong>g> 130343<br />

1.0<br />

0.9<br />

S +<br />

5.0<br />

4.5<br />

S -<br />

0.8<br />

S -<br />

4.0<br />

S *<br />

0.8<br />

0.7<br />

3.5<br />

0.7<br />

0.6<br />

S f1<br />

3.0<br />

0.6<br />

0.5<br />

2.5<br />

S<br />

S<br />

0.5<br />

f2<br />

0.4<br />

2.0<br />

S *<br />

0.4<br />

0.3<br />

1.5<br />

S f2<br />

0.3<br />

0.2<br />

Rock 1<br />

1.0<br />

0.2<br />

0.1<br />

Rock 2 0.5<br />

0.1<br />

0.0<br />

0.0<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0.0 1.0 2.0 3.0 4.0<br />

Water Saturati<strong>on</strong> (fracti<strong>on</strong>)<br />

Distance (m)<br />

Fig. A-1 Fracti<strong>on</strong>al Flow and Its Derivative<br />

1.0<br />

0.9<br />

Rock 1 Rock 2<br />

Fig. A-2 Saturati<strong>on</strong> Profile

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!