16.11.2012 Views

Permutations and Combinations

Permutations and Combinations

Permutations and Combinations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Permutations</strong> <strong>and</strong><br />

<strong>Combinations</strong><br />

Quantitative Aptitude & Business Statistics


The Fundamental Principle of<br />

• If there are<br />

Multiplication<br />

• n 1 ways of doing one operation,<br />

• n 2 ways of doing a second<br />

operation, n 3 ways of doing a<br />

third operation , <strong>and</strong> so forth,<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

2


• then the sequence of k<br />

operations can be performed in<br />

n 1 n 2 n 3 ….. n k ways.<br />

• N= n 1 n 2 n 3 … . n k<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

3


Example 1<br />

• A used car wholesaler has agents<br />

who classify cars by size (full,<br />

medium, <strong>and</strong> compact) <strong>and</strong> age (0<br />

- 2 years, 2- 4 years, 4 - 6 years,<br />

<strong>and</strong> over 6 years).<br />

• Determine the number of possible<br />

automobile classifications.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

4


Full(F)<br />

Medium<br />

(M)<br />

Compact<br />

(C)<br />

Solution<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

0-2<br />

2-4<br />

4-6<br />

>6<br />

0-2<br />

2-4<br />

4-6<br />

>6<br />

0-2<br />

2-4<br />

4-6<br />

>6<br />

The tree diagram enumerates all possible<br />

classifications, the total number of which<br />

is 3x4= 12.<br />

5


Example 2<br />

• Mr. X has 2 pairs of trousers, 3<br />

shirts <strong>and</strong> 2 ties.<br />

• He chooses a pair of trousers, a<br />

shirt <strong>and</strong> a tie to wear everyday.<br />

• Find the maximum number of<br />

days he does not need to repeat<br />

his clothing.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

6


Solution<br />

• The maximum number of days<br />

he does not need to repeat his<br />

clothing is 2×3×2 = 12<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

7


1.2 Factorials<br />

• The product of the first n<br />

consecutive integers is denoted<br />

by n! <strong>and</strong> is read as “factorial n”.<br />

• That is n! = 1×2×3×4×…. ×(n-1)<br />

×n<br />

• For example,<br />

• 4!=1x2x3x4=24,<br />

• 7!=1×2×3×4×5×6×7=5040.<br />

• Note 0! defined to be 1.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

8


•The product of any number of<br />

consecutive integers can be<br />

expressed as a quotient of two<br />

factorials, for example,<br />

• 6×7×8×9 = 9!/5! = 9! / (9 – 4)!<br />

• 11×12×13×14×15= 15! / 10!<br />

=15! / (15 – 5)!<br />

In particular,<br />

• n×(n – 1)×(n – 2)×...×(n – r + 1)<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

9


1.3 <strong>Permutations</strong><br />

• (A) <strong>Permutations</strong><br />

• A permutation is an arrangement<br />

of objects.<br />

• abc <strong>and</strong> bca are two different<br />

permutations.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

10


• 1. <strong>Permutations</strong> with repetition<br />

– The number of permutations of r<br />

objects, taken from n unlike objects,<br />

– can be found by considering the<br />

number of ways of filling r blank<br />

spaces in order with the n given<br />

objects.<br />

– If repetition is allowed, each blank<br />

space can be filled by the objects in n<br />

different ways.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

11


1 2 3 4 r<br />

n n n n n<br />

• Therefore, the number of<br />

permutations of r objects,<br />

taken from n unlike objects,<br />

• each of which may be<br />

repeated any number of times<br />

= n × n × n ×.... × n(r factors) =<br />

n r<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

12


2. <strong>Permutations</strong> without repetition<br />

• If repetition is not allowed,<br />

the number of ways of filling<br />

each blank space is one less<br />

than the preceding one.<br />

1 2 3 4 r<br />

n n-1 n-2 n-3 n-r+1<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

13


Therefore, the number of<br />

permutations of r objects, taken<br />

from n unlike objects, each of<br />

which can only be used once in<br />

each permutation<br />

=n(n— 1)(n—2) .... (n—r + 1)<br />

Various notations are used to<br />

represent the number of<br />

permutations of a set of n<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

elements taken r at a time;<br />

14


• some of them are<br />

Since<br />

We have<br />

n!<br />

( n − r)!<br />

=<br />

=<br />

=<br />

n<br />

Pr<br />

P<br />

n<br />

r n r<br />

n<br />

P r n r<br />

, P , P ( n , r )<br />

n(<br />

n −1)(<br />

n − 2)....(<br />

n −<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

, P , P(<br />

n,<br />

r)<br />

n(<br />

n −1)(<br />

n − 2)....(<br />

n − r + 1)(<br />

n − r)...<br />

3⋅<br />

2 ⋅1<br />

( n − r)...<br />

3⋅<br />

2 ⋅1<br />

P n<br />

r<br />

=<br />

( n<br />

n!<br />

−<br />

r<br />

r)!<br />

+<br />

1)<br />

15


Example 3<br />

• How many 4-digit numbers can be<br />

made from the figures 1, 2, 3, 4, 5,<br />

6, 7 when<br />

• (a) repetitions are allowed;<br />

• (b) repetition is not allowed?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

16


• Solution<br />

• (a) Number of 4-digit numbers<br />

= 7 4 = 2401.<br />

• (b) Number of 4 digit numbers<br />

=7 ×6 ×5 ×4 = 840.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

17


Example 4<br />

• In how many ways can 10 men<br />

be arranged<br />

• (a) in a row,<br />

• (b) in a circle?<br />

• Solution<br />

• (a) Number of ways is<br />

= 3628800<br />

P<br />

10<br />

10<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

18


• Suppose we arrange<br />

the 4 letters A, B, C<br />

<strong>and</strong> D in a circular<br />

arrangement as<br />

shown.<br />

• Note that the<br />

arrangements ABCD,<br />

BCDA, CDAB <strong>and</strong><br />

DABC are not<br />

distinguishable.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

D<br />

A<br />

C<br />

B<br />

19


• For each circular arrangement<br />

there are 4 distinguishable<br />

arrangements on a line.<br />

• If there are P circular<br />

arrangements, these yield 4P<br />

arrangements on a line, which<br />

we know is 4!.<br />

Hence<br />

P<br />

=<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

4!<br />

4<br />

=<br />

( 4<br />

−<br />

1)!<br />

=<br />

3!<br />

20


• The number of distinct circular<br />

arrangements of n objects is<br />

(n —1)!<br />

Solution (b)<br />

• Hence 10 men can be arranged<br />

in a circle in 9! = 362 880 ways.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

21


(B) Conditional<br />

<strong>Permutations</strong><br />

• When arranging elements in<br />

order , certain restrictions may<br />

apply.<br />

• In such cases the restriction<br />

should be dealt with first..<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

22


Example 5<br />

How many even numerals between 200<br />

<strong>and</strong> 400 can be formed by using 1, 2, 3, 4,<br />

5 as digits<br />

(a) if any digit may be repeated;<br />

(b) if no digit may be repeated?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

23


• Solution (a)<br />

• Number of ways of choosing the<br />

hundreds’ digit = 2.<br />

• Number of ways of choosing the<br />

tens’ digit = 5.<br />

• Number of ways of choosing the<br />

unit digit = 2.<br />

• Number of even numerals<br />

between 200 <strong>and</strong> 400 is<br />

2 × 5 × 2 = 20.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

24


•Solution (b)<br />

•If the hundreds’ digit is 2,<br />

then the number of ways of choosing<br />

an even unit digit = 1,<br />

<strong>and</strong> the number of ways of choosing a<br />

tens’ digit = 3.<br />

•the number of numerals formed<br />

1×1×3 = 3.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

25


If the hundreds’ digit is 3, then the<br />

number of ways of choosing an<br />

even. unit digit = 2, <strong>and</strong> the<br />

number of ways of choosing a tens’<br />

digit = 3.<br />

• number of numerals formed<br />

= 1×2×3 = 6.<br />

• the number of even numerals<br />

between 200 <strong>and</strong> 400 = 3 + 6 =<br />

9<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

26


Example 6<br />

In how many ways can<br />

7 different books be<br />

arranged on a shelf<br />

(a) if two particular<br />

books are together;<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

27


• Solution (a)<br />

• If two particular books are<br />

together, they can be considered<br />

as one book for arranging.<br />

• The number of arrangement of 6<br />

books<br />

= 6! = 720.<br />

• The two particular books can be<br />

arranged in 2 ways among<br />

themselves.<br />

• The number of arrangement of 7<br />

books with two particular books<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

28


(b) if two particular books are<br />

separated?<br />

• Solution (b)<br />

• Total number of arrangement of 7<br />

books = 7! = 5040.<br />

• the number of arrangement of 7<br />

books with 2 particular books<br />

separated = 5040 -1440 = 3600.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

29


(C) Permutation with<br />

Indistinguishable Elements<br />

• In some sets of elements there<br />

may be certain members that<br />

are indistinguishable from each<br />

other.<br />

• The example below illustrates<br />

how to find the number of<br />

permutations in this kind of<br />

situation.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

30


Example 7<br />

In how many ways can the letters of<br />

the word “ISOS CELES” be<br />

arranged to form a new “word” ?<br />

• Solution<br />

• If each of the 9 letters of<br />

“ISOSCELES” were different,<br />

there would be P= 9! different<br />

possible words.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

31


• However, the 3 S’s are<br />

indistinguishable from each<br />

other <strong>and</strong> can be permuted in 3!<br />

different ways.<br />

• As a result, each of the 9!<br />

arrangements of the letters of<br />

“ISOSCELES” that would<br />

otherwise spell a new word will<br />

be repeated 3! times.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

32


• To avoid counting repetitions<br />

resulting from the 3 S’s, we must<br />

divide 9! by 3!.<br />

• Similarly, we must divide by 2! to<br />

avoid counting repetitions<br />

resulting from the 2<br />

indistinguishable E’s.<br />

• Hence the total number of words<br />

that can be formed is<br />

9! ÷3! ÷2! = 30240<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

33


• If a set of n elements has k1 indistinguishable elements of one<br />

kind, k2 of another kind,<br />

<strong>and</strong> so on for r kinds of elements,<br />

then the number of permutations of<br />

the set of n elements is<br />

n!<br />

! ! ⋅⋅⋅<br />

⋅<br />

Quantitative Aptitude & 2Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

1 r k k k<br />

!<br />

34


1.4 <strong>Combinations</strong><br />

• When a selection of objects is<br />

made with no regard being paid to<br />

order, it is referred to as a<br />

combination.<br />

• Thus, ABC, ACB, BAG, BCA, CAB,<br />

CBA are different permutation, but<br />

they are the same combination of<br />

letters.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

35


• Suppose we wish to appoint a<br />

committee of 3 from a class of 30<br />

students.<br />

• We know that P 3 30 is the number of<br />

different ordered sets of 3 students<br />

each that may be selected from<br />

among 30 students.<br />

• However, the ordering of the<br />

students on the committee has no<br />

significance,<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

36


• so our problem is to determine<br />

the number of three-element<br />

unordered subsets that can be<br />

constructed from a set of 30<br />

elements.<br />

• Any three-element set may be<br />

ordered in 3! different ways, so<br />

P 3 30 is 3! times too large.<br />

• Hence, if we divide P 30<br />

3 by 3!,the<br />

result will be the number of<br />

unordered subsets of 30<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

elements taken 3 at a time.<br />

37


• This number of unordered<br />

subsets is also called the<br />

number of combinations of 30<br />

elements taken 3 at a time,<br />

denoted by C 3 30 <strong>and</strong><br />

C<br />

=<br />

30<br />

3<br />

= P<br />

3!<br />

30!<br />

27!<br />

3!<br />

1 30<br />

3<br />

=<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

4060<br />

38


• In general, each unordered relement<br />

subset of a given nelement<br />

set (r≤ n) is called a<br />

combination.<br />

• The number of combinations of<br />

n elements taken r at a time is<br />

denoted by C n r or nCr or C(n, r) .<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

39


• A general equation relating<br />

combinations to permutations<br />

is<br />

C<br />

n<br />

r<br />

=<br />

1<br />

r!<br />

P<br />

n<br />

r<br />

=<br />

n!<br />

( n − r)!<br />

r!<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

40


• Note:<br />

• (1) C n n = C n 0 = 1<br />

• (2) C n 1 = n<br />

• (3) C n n = C n n-r<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

41


Example8<br />

• If 167 C 90+167 C x =168 C x then x<br />

is<br />

• Solution: nC r-1+nC r=n+1 C r<br />

• Given 167 C 90+167c x =168C x<br />

• We may write<br />

• 167C 91-1 + 167 C 91=167+1 C 61<br />

• =168 C 91<br />

• X=91<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

42


Example9<br />

• If 20 C 3r= 20C 2r+5 ,find r<br />

• Using nC r=nC n-r in the right –side<br />

of the given equation ,we find ,<br />

• 20 C 3 r =20 C 20-(2r+5)<br />

• 3r=15-2r<br />

• r=3<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

43


Example 10<br />

• If 100 C 98 =999 C 97 +x C 901 find x.<br />

• Solution 100C 98 =999C 98 +999C 97<br />

• = 999C 901+999C 97<br />

• X=999<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

44


Example11<br />

• If 13 C 6 + 2 13 C 5 +13 C 4 =15 C x ,the value of<br />

x is<br />

• Solution :<br />

• 15C x= 13C 6 + 13 C 5 + 13 C 4 =<br />

• =(13c 6+13 C 5 ) +<br />

• (13 C 5 + 13 C 4)<br />

• = 14 C 6 +14 C 5 =15C6<br />

• X=6 or x+6 =15<br />

• X=6 or 8<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

45


Example12<br />

• If n C r-1=36 ,n Cr =84 <strong>and</strong> n C r+1 =126 then<br />

find r<br />

• Solution<br />

• n-r+1 =7/3 * r<br />

r−1<br />

84<br />

36<br />

• 3/2 (r+1)+1 =7/3 * r<br />

• r=3<br />

nC<br />

nC<br />

126<br />

84<br />

r + 1 = =<br />

r<br />

nC<br />

nC<br />

3<br />

2<br />

r<br />

=<br />

=<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

7<br />

3<br />

46


Example 13<br />

• How many different 5-card<br />

h<strong>and</strong>s can be dealt from a deck<br />

of 52 playing cards?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

47


Solution<br />

• Since we are not concerned with<br />

the order in which each card is<br />

dealt, our problem concerns the<br />

number of combinations of 52<br />

elements taken 5 at a time.<br />

• The number of different h<strong>and</strong>s is<br />

C 52 5= 2118760.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

48


Example 14<br />

6 points are given <strong>and</strong> no three of<br />

them are collinear.<br />

(a) How many triangles can be<br />

formed by using 3 of the given<br />

points as vertices?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

49


• Solution<br />

Solution:<br />

• (a) Number of triangles<br />

• = number of ways<br />

• of selecting 3 points out of 6<br />

• = C 6 3 = 20.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

50


• b) How many pairs of triangles<br />

can be formed by using the 6<br />

points as vertices ?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

51


• Let the points be A, B, C, D, E, F.<br />

• If A, B, C are selected to form a<br />

triangles, then D, E, F must form<br />

the other triangle.<br />

• Similarly, if D, E, F are selected to<br />

form a triangle, then A, B, C must<br />

form the other triangle.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

52


• Therefore, the selections A, B,<br />

C <strong>and</strong> D, E, F give the same pair<br />

of triangles <strong>and</strong> the same<br />

applies to the other selections.<br />

• Thus the number of ways of<br />

forming a pair of triangles<br />

= C6 3 ÷ 2 = 10<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

53


Example 15<br />

• From among 25 boys who play<br />

basketball, in how many different<br />

ways can a team of 5 players be<br />

selected if one of the players is to<br />

be designated as captain?<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

54


Solution<br />

• A captain may be chosen from any of the 25<br />

players.<br />

• The remaining 4 players can be chosen in C 25 4<br />

different ways.<br />

• By the fundamental counting principle, the<br />

total number of different teams that can be<br />

formed is<br />

25 × C 24 4=265650.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

55


(B) Conditional<br />

<strong>Combinations</strong><br />

• If a selection is to be<br />

restricted in some way, this<br />

restriction must be dealt with<br />

first.<br />

• The following examples<br />

illustrate such conditional<br />

combination problems.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

56


A committee of 3 men<br />

<strong>and</strong> 4 women is to be<br />

selected from 6 men <strong>and</strong><br />

9 women.<br />

If there is a married<br />

couple among the 15<br />

persons, in how many<br />

ways can the committee<br />

be selected so that it<br />

contains the married<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

57


• Solution<br />

• If the committee contains the<br />

married couple, then only 2 men<br />

<strong>and</strong> 3 women are to be selected<br />

from the remaining 5 men <strong>and</strong> 8<br />

women.<br />

• The number of ways of selecting 2<br />

men out of 5 = C 5 2 = 10.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

58


• The number of ways of selecting<br />

3 women out of 8 =C 8 3 = 56.<br />

• the number of ways of selecting<br />

the committee = lO × 56 = 560.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

59


Example 17<br />

• Find the number of ways a team<br />

of 4 can be chosen from 15 boys<br />

<strong>and</strong> 10 girls if<br />

(a) it must contain 2 boys <strong>and</strong> 2<br />

girls,<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

60


• Solution (a)<br />

• Boys can be chosen in C 15 2 = 105<br />

ways<br />

• Girls can be chosen in C 10 2 = 45<br />

ways.<br />

• Total number of ways is 105 × 45<br />

= 4725.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

61


(b) it must contain at least 1 boy <strong>and</strong> 1<br />

girl.<br />

• Solution :<br />

• If the team must contain at least 1<br />

boy <strong>and</strong> 1 girl it can be formed in<br />

the following ways:<br />

• (I) 1 boy <strong>and</strong> 3 girls, with C15 1 × C10 3<br />

= 1800 ways,<br />

• (ii) 2 boys <strong>and</strong> 2 girls, with 4725<br />

ways,<br />

• (iii) 3 boys <strong>and</strong> 1 girl, with C15 3 ×<br />

C10 1 = 4550 ways.<br />

Quantitative Aptitude & Business<br />

62<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

• the total number of teams is


Example 18<br />

• Mr. .X has 12 friends <strong>and</strong><br />

wishes to invite 6 of them to a<br />

party. Find the number<br />

of ways he may do this if<br />

(a) there is no restriction on<br />

choice,<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

63


• Solution (a)<br />

• An unrestricted choice of 6<br />

out of 12 gives C 12 6= 924.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

64


• (b) two of the friends is a couple<br />

<strong>and</strong> will not attend separately,<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

65


B Solution<br />

• If the couple attend, the<br />

remaining 4 may then be chosen<br />

from the other 10 in C10 4 ways.<br />

• If the couple does not attend,<br />

then He simply chooses 6 from<br />

the other 10 in C10 6 ways.<br />

• total number of ways is C10 4 +<br />

C10 6 = 420.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

66


Example 19<br />

Find the number of ways in which<br />

30 students can be divided into<br />

three groups, each of 10 students,<br />

if the order of the groups <strong>and</strong> the<br />

arrangement of the students in a<br />

group are immaterial.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

67


• Solution<br />

• Let the groups be denoted by A,<br />

B <strong>and</strong> C. Since the arrangement<br />

of the students in a group is<br />

immaterial,<br />

• group A can be selected from<br />

the 30 students in C 30 10 ways .<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

68


• Group B can be selected from the<br />

remaining 20 students in C 20 10<br />

ways.<br />

• There is only 1 way of forming<br />

group C from the remaining 10<br />

students.<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

69


• Since the order of the groups is<br />

immaterial, we have to divide<br />

the product C30 10 × C20 10 × C10 10<br />

by 3!,<br />

• hence the total number of ways<br />

of forming the three groups is<br />

1<br />

3!<br />

30<br />

3<br />

20<br />

10<br />

×<br />

C × C ×<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

C<br />

10<br />

10<br />

70


Example20<br />

• If n Pr = 604800 10 C r =120 ,find<br />

the value of r<br />

• We Know that nC r .r P r = nPr .<br />

• We will use this equality to find r<br />

• 10Pr =10Cr .r|<br />

• r |=604800/120=5040=7 |<br />

• r=7<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

71


Example 21<br />

• Find the value of n <strong>and</strong> r<br />

• n P r = n P r+1 <strong>and</strong><br />

n C r = n C r-1<br />

Solution : Given n P r = n P r+1<br />

n –r=1 (i)<br />

n C r = n C r-1 n-r = r-1 (ii)<br />

Solving i <strong>and</strong> ii<br />

r=2 <strong>and</strong> n=3<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

72


Multiple choice Questions<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

73


1. Eleven students are<br />

participating in a race. In how<br />

many ways the first 5 prizes can<br />

be won?<br />

A) 44550<br />

B) 55440<br />

C) 120<br />

D) 90<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

74


1. Eleven students are<br />

participating in a race. In how<br />

many ways the first 5 prizes can<br />

be won?<br />

A) 44550<br />

B) 55440<br />

C) 120<br />

D) 90<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

75


• 2. There are 10 trains plying between<br />

Calcutta <strong>and</strong> Delhi. The number of ways in<br />

which a person can go from Calcutta to Delhi<br />

<strong>and</strong> return<br />

• A) 99.<br />

• B) 90<br />

• C) 80<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

76


• 2. There are 10 trains plying between<br />

Calcutta <strong>and</strong> Delhi. The number of ways in<br />

which a person can go from Calcutta to Delhi<br />

<strong>and</strong> return<br />

• A) 99.<br />

• B) 90<br />

• C) 80<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

77


• 3. 4P4 is equal to<br />

• A) 1<br />

• B) 24<br />

• C) 0<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

78


• 3. 4P4 is equal to<br />

• A) 1<br />

• B) 24<br />

• C) 0<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

79


• 4.In how many ways can 8<br />

persons be seated at a round<br />

table?<br />

• A) 5040<br />

• B) 4050<br />

• C) 450<br />

• D) 540<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

80


• 4.In how many ways can 8<br />

persons be seated at a round<br />

table?<br />

• A) 5040<br />

• B) 4050<br />

• C) 450<br />

• D) 540<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

81


• 5. If n<br />

P :<br />

n+1<br />

P =3:4<br />

then<br />

13 12<br />

value of n is<br />

• A) 15<br />

• B) 14<br />

• C) 13<br />

• D) 12<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

82


• 5. If n<br />

P :<br />

n+1<br />

P =3:4<br />

then<br />

13 12<br />

value of n is<br />

• A) 15<br />

• B) 14<br />

• C) 13<br />

• D) 12<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

83


• 6.Find r if 5Pr = 60<br />

• A) 4<br />

• B) 3<br />

• C) 6<br />

• D) 7<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

84


• 6.Find r if 5Pr = 60<br />

• A) 4<br />

• B) 3<br />

• C) 6<br />

• D) 7<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

85


• 7. In how many different ways can<br />

seven persons st<strong>and</strong> in a line for a<br />

group photograph?<br />

• A) 5040<br />

• B) 720<br />

• C) 120<br />

• D) 27<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

86


• 7. In how many different ways can<br />

seven persons st<strong>and</strong> in a line for a<br />

group photograph?<br />

• A) 5040<br />

• B) 720<br />

• C) 120<br />

• D) 27<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

87


18 18<br />

• 8. If C then the value<br />

n = Cn+2<br />

of n is ______<br />

A) 0<br />

B) –2<br />

C) 8<br />

D) None of above<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

88


18 18<br />

• 8. If C then the value<br />

n = Cn+2<br />

of n is ______<br />

A) 0<br />

B) –2<br />

C) 8<br />

D) None of above<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

89


• 9. The ways of selecting 4 letters<br />

from the word EXAMINATION is<br />

• A) 136.<br />

• B) 130<br />

• C) 125<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

90


• 9. The ways of selecting 4 letters<br />

from the word EXAMINATION is<br />

• A) 136.<br />

• B) 130<br />

• C) 125<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

91


• 10 If 5Pr = 120, then the value of<br />

r is<br />

• A) 4,5<br />

• B) 2<br />

• C) 4<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

92


• 10 If 5Pr = 120, then the value of<br />

r is<br />

• A) 4,5<br />

• B) 2<br />

• C) 4<br />

• D) None of these<br />

Quantitative Aptitude & Business<br />

Statistics:<strong>Permutations</strong> <strong>and</strong> <strong>Combinations</strong><br />

93


<strong>Permutations</strong> <strong>and</strong><br />

<strong>Combinations</strong><br />

THE END

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!