17.05.2015 Views

Alkaline phosphatase in stallion semen - Research at Penn Vet

Alkaline phosphatase in stallion semen - Research at Penn Vet

Alkaline phosphatase in stallion semen - Research at Penn Vet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theriogenology 60 (2003) 1±10<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> <strong>in</strong> <strong>stallion</strong> <strong>semen</strong>:<br />

characteriz<strong>at</strong>ion and cl<strong>in</strong>ical applic<strong>at</strong>ions<br />

R.M.O. Turner * , S.M. McDonnell<br />

Department of Cl<strong>in</strong>ical Studies, New Bolton Center, University of <strong>Penn</strong>sylvania School<br />

of <strong>Vet</strong>er<strong>in</strong>ary Medic<strong>in</strong>e, Kennett Square, PA19348-1692, USA<br />

Received 2 August 2001; accepted 22 January 2002<br />

Abstract<br />

Signi®cant amounts of alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> (AP) activity have been found <strong>in</strong> <strong>semen</strong> plasma from<br />

numerous species. In species <strong>in</strong> which the majority of <strong>semen</strong> plasma AP (SPAP) activity orig<strong>in</strong><strong>at</strong>es<br />

from the epididymis and testicle, SPAP activity can be used cl<strong>in</strong>ically as a marker to differenti<strong>at</strong>e<br />

testicular orig<strong>in</strong> azoospermia or oligospermia from ejacul<strong>at</strong>ory failure. Inform<strong>at</strong>ion on SPAP activity<br />

<strong>in</strong> <strong>stallion</strong>s to d<strong>at</strong>e has been limited. In this study, a standard cl<strong>in</strong>ical chemistry analyzer was used to<br />

determ<strong>in</strong>e AP activity <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid and ejacul<strong>at</strong>es from groups of normal <strong>stallion</strong>s.<br />

Additionally, accessory glands, epididymides, testicles and other components of the urogenital tract<br />

of normal <strong>stallion</strong>s were assayed to determ<strong>in</strong>e which tissues conta<strong>in</strong> SPAP activity. The results<br />

<strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong> levels of AP activity are low <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid, but signi®cantly higher <strong>in</strong><br />

ejacul<strong>at</strong>ory ¯uid from normal <strong>stallion</strong>s. Sperm<strong>at</strong>ozoa were not a signi®cant source of SPAP activity.<br />

High levels of SPAP activity were found <strong>in</strong> the testes and epididymides. These ®nd<strong>in</strong>gs suggest th<strong>at</strong><br />

SPAP activity is a candid<strong>at</strong>e for a sperm-<strong>in</strong>dependent marker for ejacul<strong>at</strong>ion <strong>in</strong> the <strong>stallion</strong>. F<strong>in</strong>ally,<br />

AP activity was determ<strong>in</strong>ed <strong>in</strong> ejacul<strong>at</strong>ory ¯uid from a <strong>stallion</strong> with bil<strong>at</strong>erally blocked ampullae,<br />

both before and after relief of the blockage. While the blockage was present, AP activity <strong>in</strong><br />

ejacul<strong>at</strong>ory ¯uid was low. However, follow<strong>in</strong>g relief of the blockage, AP activity <strong>in</strong> ejacul<strong>at</strong>ory<br />

¯uid rose dram<strong>at</strong>ically, thus suggest<strong>in</strong>g th<strong>at</strong> AP activity will be useful as an <strong>in</strong>expensive, simple<br />

cl<strong>in</strong>ical assay for differenti<strong>at</strong><strong>in</strong>g ejacul<strong>at</strong>ory failure or excurrent duct blockages from testicular orig<strong>in</strong><br />

azoospermia and oligospermia.<br />

# 2002 Elsevier Science Inc. All rights reserved.<br />

Keywords: Stallion; <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong>; Ejacul<strong>at</strong>e; Azoospermia; Oligospermia<br />

* Correspond<strong>in</strong>g author. Tel.: ‡1-610-444-5800; fax: ‡1-610-925-8100.<br />

E-mail address: rmturner@vet.upenn.edu (R.M.O. Turner).<br />

0093-691X/02/$ ± see front m<strong>at</strong>ter # 2002 Elsevier Science Inc. All rights reserved.<br />

PII: S 009 3 - 691X(02)00956-1


2 R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10<br />

1. Introduction<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> (AP) is a dephosphoryl<strong>at</strong><strong>in</strong>g enzyme th<strong>at</strong> is active <strong>in</strong> many tissues<br />

<strong>in</strong>clud<strong>in</strong>g bone, liver, kidney, <strong>in</strong>test<strong>in</strong>e, lung and placenta. Variable levels of AP activity<br />

also have been reported <strong>in</strong> the <strong>semen</strong> plasma of men, dogs, toms, bulls, rabbits, rams, go<strong>at</strong>s,<br />

buffalo, cocks, turkeys, boars and camels [1±9] where it is believed to be <strong>in</strong>volved <strong>in</strong> sperm<br />

glycolytic reactions and fructose form<strong>at</strong>ion [2]. The site of production of <strong>semen</strong> plasma AP<br />

(SPAP) has been determ<strong>in</strong>ed <strong>in</strong> some species. In dogs, the majority of SPAP is produced <strong>in</strong><br />

the epididymis [10]. In the rabbit, the testicle, epididymis, vas deferens and ampulla all<br />

synthesize signi®cant amounts of the enzyme [7,11,12]. In contrast, the majority of SPAP<br />

<strong>in</strong> bulls orig<strong>in</strong><strong>at</strong>es from the sem<strong>in</strong>al vesicles and, to a lesser extent, from the testes and<br />

epididymides [13] while <strong>in</strong> men, the majority of SPAP activity orig<strong>in</strong><strong>at</strong>es from the prost<strong>at</strong>e<br />

[14]. In species <strong>in</strong> which the majority of SPAP activity orig<strong>in</strong><strong>at</strong>es from the epididymis and<br />

testicle, SPAP activity can be used cl<strong>in</strong>ically as an ejacul<strong>at</strong>ory marker to differenti<strong>at</strong>e<br />

azoospermia or oligospermia from ejacul<strong>at</strong>ory failure [15]. Little <strong>in</strong>form<strong>at</strong>ion is available<br />

on AP activity <strong>in</strong> the <strong>semen</strong> plasma of <strong>stallion</strong>s. One early report suggested th<strong>at</strong> a<br />

signi®cant amount of SPAP activity was present <strong>in</strong> secretions from the ampullae [16].<br />

Additionally, a prelim<strong>in</strong>ary study found high levels of AP activity <strong>in</strong> <strong>stallion</strong> testes and<br />

epididymides [17]. As part of an overall goal of develop<strong>in</strong>g better diagnostic and<br />

therapeutic approaches for <strong>stallion</strong>s with ejacul<strong>at</strong>ory problems, the aims of this study<br />

were: to determ<strong>in</strong>e if AP activity is present <strong>in</strong> the ejacul<strong>at</strong>e of normal <strong>stallion</strong>s and, if<br />

present, to determ<strong>in</strong>e its normal concentr<strong>at</strong>ion and total activity; to determ<strong>in</strong>e which tissues<br />

of the <strong>stallion</strong> reproductive tract conta<strong>in</strong> AP activity, and to determ<strong>in</strong>e if AP might be useful<br />

as a cl<strong>in</strong>ical marker for ejacul<strong>at</strong>ion <strong>in</strong> the <strong>stallion</strong>.<br />

2. M<strong>at</strong>erials and methods<br />

2.1. Determ<strong>in</strong><strong>at</strong>ion of presence and levels of AP activity <strong>in</strong> normal <strong>stallion</strong> ejacul<strong>at</strong>es<br />

Pre-ejacul<strong>at</strong>ory ¯uid and ejacul<strong>at</strong>e samples were obta<strong>in</strong>ed from n<strong>in</strong>e horse and pony<br />

<strong>stallion</strong>s actively <strong>in</strong>volved <strong>in</strong> successful breed<strong>in</strong>g programs. The <strong>stallion</strong>s represented<br />

various breeds and ranged <strong>in</strong> age from 6 to 24 years. All <strong>stallion</strong>s were classi®ed as fertile<br />

based on breed<strong>in</strong>g history, testicular palp<strong>at</strong>ion, testicular measurement and <strong>semen</strong> analysis<br />

(>60% progressively motile sperm<strong>at</strong>ozoa, >60% percent morphologically normal sperm<strong>at</strong>ozoa,<br />

total sperm numbers with<strong>in</strong> normal limits for testicular size, total number of<br />

morphologically normal, progressively motile sperm<strong>at</strong>ozoa >1 10 9 <strong>in</strong> each ejacul<strong>at</strong>e and<br />

s<strong>at</strong>isfactory longevity of motility <strong>at</strong> 4 8C [18,19]). Samples were obta<strong>in</strong>ed as part of rout<strong>in</strong>e<br />

<strong>semen</strong> collections for shipment dur<strong>in</strong>g April±July of a s<strong>in</strong>gle year. Follow<strong>in</strong>g collection,<br />

each <strong>semen</strong> sample was ®ltered to remove the gel portion (Kleen-Test In-L<strong>in</strong>e Milk Filters,<br />

Agway, Oxford, PA). Pre-ejacul<strong>at</strong>ory ¯uid samples were collected either by manual<br />

stimul<strong>at</strong>ion of the erect glans penis prior to mount<strong>in</strong>g or, <strong>in</strong> cases <strong>in</strong> which an unproductive<br />

mount occurred, directly <strong>in</strong>to a collection bag <strong>at</strong>tached to a Missouri Arti®cial Vag<strong>in</strong>a<br />

(MAV). Ejacul<strong>at</strong>e samples were collected rout<strong>in</strong>ely <strong>in</strong> a MAV while <strong>stallion</strong>s were<br />

mounted on a dummy or on an ovariectomized mount mare. All pre-ejacul<strong>at</strong>ory ¯uid


R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10 3<br />

Table 1<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> (AP) activity <strong>in</strong> ejacul<strong>at</strong>es and pre-ejacul<strong>at</strong>ory fluid from normal <strong>stallion</strong>s<br />

Stallion ID<br />

Ejacul<strong>at</strong>e<br />

volume (ml)<br />

AP activity <strong>in</strong><br />

pre-ejacul<strong>at</strong>ory fluid (IU/l)<br />

AP activity <strong>in</strong><br />

ejacul<strong>at</strong>e (IU/l)<br />

Total AP activity<br />

per ejacul<strong>at</strong>e (IU)<br />

1 7018 263 01841<br />

2 70 16 48700 3409<br />

3 5028 119 0595<br />

4 40 36 30400 1216<br />

5 3020 297 0891<br />

6 100 33 26700 2670<br />

7 Not available 906390Not assessed<br />

8 4010 15397 616<br />

9 4029 22180887<br />

Mean (S.D.) 29 (22) 24185 (12398) 1516 (1039)<br />

and ejacul<strong>at</strong>e samples were stored <strong>at</strong> 4 8C for no longer than 24 h prior to be<strong>in</strong>g assayed for<br />

SPAP activity.<br />

The concentr<strong>at</strong>ion of SPAP activity (IU/l) was determ<strong>in</strong>ed <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid and<br />

ejacul<strong>at</strong>e samples for each <strong>stallion</strong>. The concentr<strong>at</strong>ion of SPAP activity was measured us<strong>in</strong>g<br />

a Kodak Ektachem Cl<strong>in</strong>ical Chemistry Analyzer accord<strong>in</strong>g to the manufacturer's recommend<strong>at</strong>ion<br />

(Eastman Kodak Company, Rochester, NY). Samples conta<strong>in</strong><strong>in</strong>g AP activity<br />

th<strong>at</strong> exceeded the analyzer's dynamic range (>1500 IU/l) were diluted with 7% bov<strong>in</strong>e<br />

serum album<strong>in</strong> <strong>in</strong> reagent grade w<strong>at</strong>er and reanalyzed. The results then were multiplied by<br />

the dilution factor to obta<strong>in</strong> the orig<strong>in</strong>al sample's AP activity. For eight of the n<strong>in</strong>e <strong>stallion</strong>s,<br />

total ejacul<strong>at</strong>e AP activity (IU) was determ<strong>in</strong>ed by multiply<strong>in</strong>g the concentr<strong>at</strong>ion of AP<br />

activity (IU/l) by the gel-free ejacul<strong>at</strong>e volume (ml) and then divid<strong>in</strong>g by 1000 (Table 1).<br />

The concentr<strong>at</strong>ion of AP activity <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid samples was compared to th<strong>at</strong> <strong>in</strong><br />

gel-free ejacul<strong>at</strong>e samples us<strong>in</strong>g the paired t-test.<br />

2.2. Determ<strong>in</strong><strong>at</strong>ion of the tissue of orig<strong>in</strong> of SPAP activity<br />

To rule out sperm<strong>at</strong>ozoa as the primary source of SPAP activity, ejacul<strong>at</strong>es were<br />

collected from 11 fertile horse and pony <strong>stallion</strong>s and the concentr<strong>at</strong>ion of AP activity<br />

was compared between unprocessed ejacul<strong>at</strong>es and sperm-free <strong>semen</strong> plasma. Ejacul<strong>at</strong>es<br />

were collected <strong>in</strong> April and May of a s<strong>in</strong>gle year us<strong>in</strong>g either a MAV while mounted on a<br />

dummy or an ovariectomized mount mare or manual stimul<strong>at</strong>ion while mounted on a<br />

dummy [20]. The <strong>stallion</strong>s represented various breeds and ranged <strong>in</strong> age from 4 to 18 years.<br />

All ejacul<strong>at</strong>es were classi®ed as normal based on the criteria described previously. Half of<br />

each ejacul<strong>at</strong>e was centrifuged <strong>at</strong> 16,000 g for 20m<strong>in</strong> and the sperm-free <strong>semen</strong> plasma<br />

supern<strong>at</strong>ant was removed from the sperm pellet. The other half of each ejacul<strong>at</strong>e was left<br />

unprocessed. Unprocessed ejacul<strong>at</strong>es and paired sperm-free <strong>semen</strong> plasma were stored <strong>at</strong><br />

4 8C for no more than 12 h before be<strong>in</strong>g assayed for AP activity. For 9 of the 11 <strong>stallion</strong>s,<br />

total AP activity was determ<strong>in</strong>ed <strong>in</strong> sperm-free <strong>semen</strong> plasma and <strong>in</strong> the unprocessed<br />

ejacul<strong>at</strong>e by multiply<strong>in</strong>g the appropri<strong>at</strong>e AP concentr<strong>at</strong>ion (IU/l) by 1/2 of the total<br />

ejacul<strong>at</strong>e volume (ml) and divid<strong>in</strong>g by 1000. Total ejacul<strong>at</strong>e AP activity (IU) was


4 R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10<br />

Table 2<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> (AP) activity <strong>in</strong> paired sperm-free sem<strong>in</strong>al plasma and unprocessed ejacul<strong>at</strong>es from normal<br />

<strong>stallion</strong>s<br />

Stallion ID<br />

Ejacul<strong>at</strong>e<br />

volume (ml)<br />

AP activity <strong>in</strong> sperm<br />

free sem<strong>in</strong>al<br />

plasma (IU/l)<br />

AP activity <strong>in</strong><br />

unprocessed<br />

ejacul<strong>at</strong>e (IU/l)<br />

Total AP activity<br />

per ejacul<strong>at</strong>e (IU)<br />

2 4024112 22180887<br />

3 4014363 15397 616<br />

12 2018141 17313 346<br />

13 18 20217 20556 370<br />

14 15 1937019530293<br />

15 408074 7993 320<br />

16 2014294 16047 321<br />

17 Not available 16403574 Not assessed<br />

18 37 20733 19132 708<br />

19 Not available 1987021236 Not assessed<br />

20105 6183 6913 726<br />

Mean (S.D.) 15182 (7075) 15443 (6391) 509 (233)<br />

determ<strong>in</strong>ed by multiply<strong>in</strong>g the concentr<strong>at</strong>ion of AP activity <strong>in</strong> the unprocessed ejacul<strong>at</strong>e<br />

(IU/l) by the orig<strong>in</strong>al total ejacul<strong>at</strong>e volume (ml) and divid<strong>in</strong>g by 1000 (Table 2).<br />

The concentr<strong>at</strong>ion of AP activity <strong>in</strong> unprocessed ejacul<strong>at</strong>es was compared to th<strong>at</strong> <strong>in</strong><br />

sperm-free <strong>semen</strong> plasma us<strong>in</strong>g the paired t-test. Concentr<strong>at</strong>ion of and total AP activity <strong>in</strong><br />

unprocessed ejacul<strong>at</strong>es were compared between the <strong>stallion</strong>s <strong>in</strong> this group and the <strong>stallion</strong>s<br />

listed <strong>in</strong> Table 1 us<strong>in</strong>g the unpaired t-test.<br />

Normal tissue samples from testicle (n ˆ 4), epididymal tail (n ˆ 4) and ductus deferens<br />

(n ˆ 5) were obta<strong>in</strong>ed from horse <strong>stallion</strong>s follow<strong>in</strong>g rout<strong>in</strong>e castr<strong>at</strong>ion. Normal tissue<br />

samples from ampulla, sem<strong>in</strong>al vesicle, prost<strong>at</strong>e, bulbourethral gland and urethra were<br />

obta<strong>in</strong>ed from horse and pony <strong>stallion</strong>s follow<strong>in</strong>g euthanasia (n ˆ 5 for each tissue type).<br />

All tissues were stored <strong>at</strong> 20 8C until process<strong>in</strong>g. Before process<strong>in</strong>g, tissue was thawed <strong>at</strong><br />

room temper<strong>at</strong>ure. A section of each tissue weigh<strong>in</strong>g between 125 and 140mg was<br />

homogenized manually <strong>in</strong> a glass tissue gr<strong>in</strong>der <strong>in</strong> 3 ml of 0.1% Triton X-100. The<br />

result<strong>in</strong>g ¯uid was centrifuged <strong>at</strong> 16,000 g for 20m<strong>in</strong>. The supern<strong>at</strong>ant was removed<br />

from the pelleted cellular debris and assayed for the concentr<strong>at</strong>ion of AP activity as<br />

described previously. Secretions were aspir<strong>at</strong>ed or manually expressed from the lum<strong>in</strong>a of<br />

the epididymal tail (n ˆ 4), ampulla (n ˆ 3) and sem<strong>in</strong>al vesicle (n ˆ 4) of normal horse<br />

and pony <strong>stallion</strong>s follow<strong>in</strong>g euthanasia. Samples were stored <strong>at</strong> 4 8C for no more than<br />

12 h. The concentr<strong>at</strong>ion of AP activity was determ<strong>in</strong>ed as described above. Signi®cant<br />

differences <strong>in</strong> mean concentr<strong>at</strong>ion of AP activity among the various tissue and lum<strong>in</strong>al ¯uid<br />

samples were determ<strong>in</strong>ed us<strong>in</strong>g ANOVA with the Tukey±Kramer HSD Correction.<br />

2.3. Determ<strong>in</strong><strong>at</strong>ion of AP activity <strong>in</strong> a <strong>stallion</strong> with blocked ampullae<br />

An 11-year-old Morgan <strong>stallion</strong> presented to our cl<strong>in</strong>ic for evalu<strong>at</strong>ion of a sudden onset<br />

of <strong>in</strong>fertility and azoospermia. This <strong>stallion</strong> was diagnosed with bil<strong>at</strong>erally blocked<br />

ampullae us<strong>in</strong>g the criteria established by Love et al. [21] and based on response to


R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10 5<br />

tre<strong>at</strong>ment. The <strong>stallion</strong>'s testicles were subjectively soft on palp<strong>at</strong>ion and total scrotal width<br />

was 7.8 cm (slightly less than the width of 8.0cm recommended by the Society for<br />

Theriogenology for classi®c<strong>at</strong>ion as a S<strong>at</strong>isfactory Prospective Breeder [18]). Ultrasonographic<br />

exam<strong>in</strong><strong>at</strong>ion of the testicles revealed no abnormalities. Pre-ejacul<strong>at</strong>ory ¯uid and<br />

ejacul<strong>at</strong>e samples were collected prior to relief of the blockage and an ejacul<strong>at</strong>e sample was<br />

obta<strong>in</strong>ed immedi<strong>at</strong>ely follow<strong>in</strong>g relief of the blockage. The concentr<strong>at</strong>ion of AP activity<br />

was determ<strong>in</strong>ed <strong>in</strong> each sample as described above.<br />

3. Results<br />

3.1. <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid and<br />

ejacul<strong>at</strong>e samples from normal <strong>stallion</strong>s<br />

The concentr<strong>at</strong>ion of AP activity <strong>in</strong> ejacul<strong>at</strong>e samples was signi®cantly higher than AP<br />

activity <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid samples (P < 0:001, Table 1). Mean concentr<strong>at</strong>ion of AP<br />

activity <strong>in</strong> normal <strong>stallion</strong> pre-ejacul<strong>at</strong>ory ¯uid was 29 22 IU/l while th<strong>at</strong> <strong>in</strong> ejacul<strong>at</strong>e<br />

samples was 24,185 12; 398 IU/l. The range of AP activity concentr<strong>at</strong>ion <strong>in</strong> preejacul<strong>at</strong>ory<br />

¯uid samples was 10±90 IU/l while th<strong>at</strong> <strong>in</strong> ejacul<strong>at</strong>e samples was 6390±<br />

48,700 IU/l. Mean total AP activity <strong>in</strong> normal ejacul<strong>at</strong>es was 1516 1039 IU. The range of<br />

total AP activity <strong>in</strong> normal ejacul<strong>at</strong>es was 595±3409 IU.<br />

3.2. <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> unprocessed ejacul<strong>at</strong>es and<br />

sperm-free <strong>semen</strong> plasma from normal <strong>stallion</strong>s<br />

Mean concentr<strong>at</strong>ion of AP activity <strong>in</strong> the 11 unprocessed ejacul<strong>at</strong>es from this group was<br />

15,443 6391 IU/l. Values ranged from 3574 to 22,180IU/l. Mean concentr<strong>at</strong>ion of AP<br />

activity <strong>in</strong> sperm-free <strong>semen</strong> plasma from the <strong>stallion</strong>s <strong>in</strong> this group was 15,182 7075 IU/<br />

l. These values ranged from 1640to 24,112 IU/l. The concentr<strong>at</strong>ion of AP activity <strong>in</strong><br />

unprocessed ejacul<strong>at</strong>e samples was not signi®cantly different from th<strong>at</strong> <strong>in</strong> sperm-free<br />

<strong>semen</strong> plasma (P ˆ 0:5, Table 2). Similarly, total AP activity <strong>in</strong> unprocessed ejacul<strong>at</strong>e<br />

samples and sperm-free <strong>semen</strong> plasma did not differ signi®cantly (P ˆ 0:97, d<strong>at</strong>a not<br />

shown). The mean total ejacul<strong>at</strong>e AP activity was 509 233 IU.<br />

Concentr<strong>at</strong>ion of AP activity <strong>in</strong> the unprocessed ejacul<strong>at</strong>es from the <strong>stallion</strong>s <strong>in</strong> this<br />

group was not signi®cantly different from th<strong>at</strong> <strong>in</strong> the ejacul<strong>at</strong>es from the n<strong>in</strong>e <strong>stallion</strong>s <strong>in</strong><br />

the group reported <strong>in</strong> Table 1 (P > 0:05). However, total ejacul<strong>at</strong>e AP activity was<br />

signi®cantly lower <strong>in</strong> this second group of <strong>stallion</strong>s compared to the <strong>stallion</strong>s listed <strong>in</strong><br />

Table 1 (P < 0:05).<br />

3.3. <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> tissue and lum<strong>in</strong>al ¯uid samples<br />

from the reproductive tracts of normal <strong>stallion</strong>s<br />

Mean AP activities <strong>in</strong> tissue and lum<strong>in</strong>al ¯uid samples from normal <strong>stallion</strong> reproductive<br />

tracts are shown <strong>in</strong> Table 3. Extremely high levels of AP activity were identi®ed <strong>in</strong> lum<strong>in</strong>al<br />

¯uid from the epididymal tail (mean AP activity 557,350 277; 066 IU/l). Although AP


Bulbourethral gland tissue 48 32<br />

Prost<strong>at</strong>ic tissue 17 9<br />

Sem<strong>in</strong>al vesicular gland tissue 4040<br />

Ampullary tissue 1137 1189<br />

Ductus deferens tissue 220107<br />

Urethral tissue 4022<br />

Testicular tissue 3585 906<br />

Epididymal tail tissue 6157 1906<br />

Sem<strong>in</strong>al vesicular gland fluid 1292 1209<br />

Ampullary fluid 35724 40070<br />

Epididymal tail fluid 557350277066<br />

6 R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10<br />

Table 3<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> (AP) activity <strong>in</strong> tissue and fluid samples from normal <strong>stallion</strong>s<br />

Tissue Mean AP activity (IU/l) S.D.<br />

activity <strong>in</strong> ampullary lumen ¯uid was still high (mean 35; 723 40; 079 IU/l) compared to<br />

<strong>semen</strong> vesicular ¯uid (mean 1292 1209 IU/l), it was noticeably lower than th<strong>at</strong> <strong>in</strong> the<br />

lumen of the epididymal tail.<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> testis and epididymal tail tissue (mean concentr<strong>at</strong>ion of<br />

AP activity 3585 906 and 6157 1906 IU/l, respectively) was signi®cantly higher than<br />

AP activity <strong>in</strong> the other reproductive tract tissues (P < 0:05).<br />

3.4. <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> ejacul<strong>at</strong>e samples from a <strong>stallion</strong> with blocked<br />

ampullae<br />

<strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> activity was 18 IU/l <strong>in</strong> one pre-ejacul<strong>at</strong>e and one ejacul<strong>at</strong>e sample<br />

collected from a <strong>stallion</strong> with bil<strong>at</strong>erally blocked ampullae. These values are similar to the<br />

AP activity <strong>in</strong> normal pre-ejacul<strong>at</strong>ory ¯uid and are much lower than the AP activity <strong>in</strong><br />

normal ejacul<strong>at</strong>es. Follow<strong>in</strong>g relief of the blockage (as evidenced by superphysiologic<br />

sperm numbers and a high percentage of detached heads), the concentr<strong>at</strong>ion of AP activity<br />

<strong>in</strong> the ejacul<strong>at</strong>e rose to 4855 IU/l (total AP activity <strong>in</strong> the ejacul<strong>at</strong>e was 97 IU).<br />

4. Discussion<br />

4.1. High levels of AP activity are present <strong>in</strong> the normal <strong>stallion</strong> ejacul<strong>at</strong>e<br />

Biochemical analysis of the ejacul<strong>at</strong>es of normal <strong>stallion</strong>s reveals very high levels of AP<br />

activity. These values are signi®cantly higher than those found <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid or<br />

than those reported for normal horse serum (normal serum AP activity range for our lab is<br />

109±315 IU/l). SPAP activity was determ<strong>in</strong>ed <strong>in</strong> two separ<strong>at</strong>e groups of normal <strong>stallion</strong>s.<br />

SPAP concentr<strong>at</strong>ion was not signi®cantly different between these two groups (P > 0:05).<br />

However, total AP activity was signi®cantly different between the two groups (P


R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10 7<br />

pony <strong>stallion</strong>s typically have lower ejacul<strong>at</strong>e volumes than horse <strong>stallion</strong>s [20], it might be<br />

expected th<strong>at</strong> total AP activity <strong>in</strong> pony <strong>stallion</strong> ejacul<strong>at</strong>es would be lower than th<strong>at</strong> <strong>in</strong> horse<br />

<strong>stallion</strong> ejacul<strong>at</strong>es.<br />

4.2. The major source of SPAP activity is not sperm<strong>at</strong>ozoa<br />

An experiment was designed to determ<strong>in</strong>e how much of the SPAP activity was<br />

contributed by sperm cells. AP activity <strong>in</strong> unprocessed ejacul<strong>at</strong>es did not differ signi®cantly<br />

from AP activity <strong>in</strong> sperm-free <strong>semen</strong> plasma, <strong>in</strong>dic<strong>at</strong><strong>in</strong>g th<strong>at</strong> the vast majority of AP<br />

activity <strong>in</strong> the <strong>stallion</strong> ejacul<strong>at</strong>e orig<strong>in</strong><strong>at</strong>es from the <strong>semen</strong> plasma and not from the<br />

sperm<strong>at</strong>ozoa. This is consistent with studies <strong>in</strong> men <strong>in</strong> which AP activity <strong>in</strong> isol<strong>at</strong>ed<br />

sperm<strong>at</strong>ozoa was very low compared to activity <strong>in</strong> <strong>semen</strong> plasma [22].<br />

4.3. The highest tissue levels of AP activity <strong>in</strong> the <strong>stallion</strong> reproductive tract are found <strong>in</strong><br />

the epididymis and the testicle<br />

Our d<strong>at</strong>a <strong>in</strong>dic<strong>at</strong>e th<strong>at</strong> <strong>in</strong> normal <strong>stallion</strong>s AP activity levels <strong>in</strong> the testis and epididymis<br />

are signi®cantly higher than <strong>in</strong> other reproductive tract tissues. Additionally, our d<strong>at</strong>a<br />

suggest th<strong>at</strong> AP activity is concentr<strong>at</strong>ed to extremely high levels <strong>in</strong> the lumen of the<br />

epididymal tail. After leav<strong>in</strong>g the epididymal tail, AP activity is diluted to ejacul<strong>at</strong>e levels<br />

probably as a result of the addition of secretions from the accessory glands. These ®nd<strong>in</strong>gs<br />

are similar to those found <strong>in</strong> dogs and rabbits [7,10] but differ from ®nd<strong>in</strong>gs <strong>in</strong> men [2] and<br />

bulls [13]. Because the highest levels of AP activity apparently orig<strong>in</strong><strong>at</strong>e from the testicle<br />

and epididymis <strong>in</strong> <strong>stallion</strong>s, SPAP activity may be a useful marker for the presence of<br />

epididymal or testicular secretions (i.e., a marker for ejacul<strong>at</strong>ion). Because sperm<strong>at</strong>ozoa do<br />

not contribute signi®cantly to SPAP activity, SPAP activity can be used as an ejacul<strong>at</strong>ory<br />

marker which is <strong>in</strong>dependent of the presence or number of sperm<strong>at</strong>ozoa.<br />

4.4. Bil<strong>at</strong>eral blockage of the ampullae resulted <strong>in</strong> basel<strong>in</strong>e SPAP activity<br />

In one <strong>stallion</strong> with bil<strong>at</strong>erally blocked ampullae, AP activity was similar <strong>in</strong> preejacul<strong>at</strong>ory<br />

¯uid and ejacul<strong>at</strong>e samples and was similar to AP activity <strong>in</strong> pre-ejacul<strong>at</strong>ory<br />

¯uid from normal <strong>stallion</strong>s. After resolution of the blockage, SPAP concentr<strong>at</strong>ion rose to<br />

levels similar to those found <strong>in</strong> ejacul<strong>at</strong>ory ¯uid of normal <strong>stallion</strong>s. The change <strong>in</strong> SPAP<br />

activity from basel<strong>in</strong>e dur<strong>in</strong>g the blockage (when contributions from the testicles and<br />

epididymides were prevented from reach<strong>in</strong>g the ejacul<strong>at</strong>e) to levels similar to those <strong>in</strong> the<br />

ejacul<strong>at</strong>es of normal <strong>stallion</strong>s follow<strong>in</strong>g relief of the blockage (when contributions from the<br />

testicles and epididymides were conta<strong>in</strong>ed <strong>in</strong> the ejacul<strong>at</strong>e) strongly supports the hypothesis<br />

th<strong>at</strong> the testicles and epididymides are the major sources of SPAP activity <strong>in</strong> the<br />

<strong>stallion</strong>. This is consistent with our ®nd<strong>in</strong>gs th<strong>at</strong> the highest levels of AP activity <strong>in</strong> the<br />

reproductive tracts of normal <strong>stallion</strong>s are found <strong>in</strong> the testicles and epididymides. Taken<br />

together, this <strong>in</strong>form<strong>at</strong>ion suggests th<strong>at</strong> measurement of SPAP activity <strong>in</strong> <strong>stallion</strong>s with<br />

azoospermia will be very useful <strong>in</strong> differenti<strong>at</strong><strong>in</strong>g <strong>stallion</strong>s with azoospermia result<strong>in</strong>g<br />

from ampullary blockage (good prognosis for future fertility) and those with azoospermia<br />

result<strong>in</strong>g from testicular abnormalities (poor prognosis for future fertility).


8 R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10<br />

It should be noted th<strong>at</strong> even after relief of the blockage, total SPAP activity <strong>in</strong> the blocked<br />

<strong>stallion</strong> (97 IU) rema<strong>in</strong>ed lower than those values reported for normal <strong>stallion</strong>s (range 595±<br />

3409 IU). Nonetheless, it rema<strong>in</strong>ed signi®cantly higher than total SPAP activity <strong>in</strong> preejacul<strong>at</strong>ory<br />

¯uid (d<strong>at</strong>a not shown). In this regard, even after complete resolution of the<br />

blockage, <strong>semen</strong> parameters for this <strong>stallion</strong> were well below those values required for<br />

classi®c<strong>at</strong>ion as a S<strong>at</strong>isfactory Prospective Breeder [18]. SPAP levels were not available for<br />

subsequent ejacul<strong>at</strong>es. Due to marg<strong>in</strong>al <strong>semen</strong> quality and problems with recurrent<br />

ampullary blockage, this <strong>stallion</strong> was gelded <strong>at</strong> the owner's request. Histop<strong>at</strong>hologic<br />

exam<strong>in</strong><strong>at</strong>ion of the testicles revealed mild to moder<strong>at</strong>e testicular degener<strong>at</strong>ion. S<strong>in</strong>ce <strong>in</strong><br />

normal <strong>stallion</strong>s the testicles conta<strong>in</strong> high levels of AP activity, it is possible th<strong>at</strong> the<br />

testicular p<strong>at</strong>hology present <strong>in</strong> this <strong>stallion</strong> may have resulted <strong>in</strong> a reduction <strong>in</strong> SPAP<br />

activity, even after relief of the blockage. In support of this hypothesis, we have recently<br />

exam<strong>in</strong>ed SPAP activity <strong>in</strong> several <strong>stallion</strong>s with testicular p<strong>at</strong>hologies. In these <strong>stallion</strong>s,<br />

prelim<strong>in</strong>ary d<strong>at</strong>a suggests th<strong>at</strong> SPAP activity rema<strong>in</strong>s signi®cantly elev<strong>at</strong>ed above preejacul<strong>at</strong>e<br />

levels (P < 0:001) but is consistently lower than SPAP activity <strong>in</strong> normal<br />

<strong>stallion</strong>s (P < 0:01) [23].<br />

4.5. Sem<strong>in</strong>al plasma alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> as a cl<strong>in</strong>ical marker for ejacul<strong>at</strong>ion<br />

These results expand on previously reported d<strong>at</strong>a [17] and, together with the ready<br />

availability of <strong>in</strong>expensive cl<strong>in</strong>ical assays for AP activity, suggest th<strong>at</strong> SPAP activity will be<br />

useful cl<strong>in</strong>ically as a marker for ejacul<strong>at</strong>ion <strong>in</strong> <strong>stallion</strong>s. SPAP activity may be useful, for<br />

example, for differenti<strong>at</strong><strong>in</strong>g true azoospermia (high SPAP, no sperm<strong>at</strong>ozoa) from ejacul<strong>at</strong>ion<br />

failure (low SPAP, no sperm<strong>at</strong>ozoa) or azoospermia result<strong>in</strong>g from ampullary blockage<br />

(low SPAP, no sperm<strong>at</strong>ozoa). In the future, it will be important to exam<strong>in</strong>e SPAP activity <strong>in</strong><br />

<strong>stallion</strong>s with testicular orig<strong>in</strong> azoospermia and oligospermia. S<strong>in</strong>ce the testis is a<br />

signi®cant source of SPAP activity, it is possible th<strong>at</strong> testicular p<strong>at</strong>hology result<strong>in</strong>g <strong>in</strong><br />

low sperm numbers also could result <strong>in</strong> reductions <strong>in</strong> SPAP activity. This may have been the<br />

case for the <strong>stallion</strong> with blocked ampullae <strong>in</strong> this report. Additionally, it has been shown <strong>in</strong><br />

bulls th<strong>at</strong> production of SPAP is, <strong>at</strong> least <strong>in</strong> part, androgen dependent [24]. If the same is<br />

true <strong>in</strong> <strong>stallion</strong>s, then hormonal aberr<strong>at</strong>ions also could result <strong>in</strong> secondary reductions <strong>in</strong><br />

SPAP. In spite of this, our prelim<strong>in</strong>ary d<strong>at</strong>a suggests th<strong>at</strong>, even <strong>in</strong> <strong>stallion</strong>s with testicular<br />

abnormalities, SPAP activity rema<strong>in</strong>s signi®cantly higher than levels found <strong>in</strong> preejacul<strong>at</strong>ory<br />

¯uid.<br />

4.6. Normal values for AP <strong>in</strong> pre-ejacul<strong>at</strong>ory and ejacul<strong>at</strong>ory ¯uid<br />

The work reported here de®nes a start<strong>in</strong>g po<strong>in</strong>t for the cl<strong>in</strong>ical use of SPAP activity as a<br />

marker for ejacul<strong>at</strong>ion <strong>in</strong> <strong>stallion</strong>s. Based on the popul<strong>at</strong>ion of normal horse and pony<br />

<strong>stallion</strong>s described <strong>in</strong> this manuscript, <strong>in</strong>itial ranges for normal pre-ejacul<strong>at</strong>ory ¯uid and<br />

ejacul<strong>at</strong>e AP activities are:<br />

AP concentr<strong>at</strong>ion <strong>in</strong> pre-ejacul<strong>at</strong>ory ¯uid (n ˆ 9): 10±90 IU/l.<br />

AP concentr<strong>at</strong>ion <strong>in</strong> ejacul<strong>at</strong>e (n ˆ 20): 1640±48,700 IU/l.<br />

Total AP <strong>in</strong> ejacul<strong>at</strong>e (n ˆ 17): 293±3409 U.


R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10 9<br />

From these values, it is likely th<strong>at</strong> AP concentr<strong>at</strong>ions under 100 IU/l <strong>in</strong> an unprocessed<br />

sample <strong>in</strong>dic<strong>at</strong>e either th<strong>at</strong> ejacul<strong>at</strong>ion did not occur (i.e., pre-ejacul<strong>at</strong>ory ¯uid, ejacul<strong>at</strong>ory<br />

dysfunction, false mount) or th<strong>at</strong> epididymal and testicular secretions are not present <strong>in</strong> the<br />

ejacul<strong>at</strong>e (i.e., ampullary blockage). Conversely, AP concentr<strong>at</strong>ions over 1000 IU/l or total<br />

AP activity over 200 IU <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> complete ejacul<strong>at</strong>ion occurred (i.e., the sample<br />

conta<strong>in</strong>s epididymal and testicular secretions). Because of the large standard devi<strong>at</strong>ions<br />

observed <strong>in</strong> AP concentr<strong>at</strong>ions <strong>in</strong> ejacul<strong>at</strong>es from normal <strong>stallion</strong>s, evalu<strong>at</strong>ion of total AP<br />

activity r<strong>at</strong>her than AP concentr<strong>at</strong>ion may prove to be more useful once the <strong>in</strong>¯uence of<br />

<strong>stallion</strong> size and ejacul<strong>at</strong>e volume is better de®ned.<br />

The cl<strong>in</strong>ical signi®cance of AP concentr<strong>at</strong>ions gre<strong>at</strong>er than 100 IU/l and less than<br />

1000 IU/l is not yet known. If values with<strong>in</strong> this range are obta<strong>in</strong>ed, it may be bene®cial to<br />

repe<strong>at</strong> the assay on additional samples to better establish AP concentr<strong>at</strong>ion. Further studies<br />

on subfertile and <strong>in</strong>fertile <strong>stallion</strong>s are warranted as it is possible th<strong>at</strong> AP concentr<strong>at</strong>ions<br />

between 100 and 1000 IU/l may be <strong>in</strong>dic<strong>at</strong>ive of hormonal abnormalities or testicular and<br />

epididymal p<strong>at</strong>hology.<br />

Acknowledgements<br />

The authors thank Dr. Laura Diaz-Cueto for assistance with st<strong>at</strong>istical analyses, and Drs.<br />

Eric Twitchell and Perry Habecker for assistance <strong>in</strong> obta<strong>in</strong><strong>in</strong>g and process<strong>in</strong>g tissue<br />

samples. Thanks to Dr. Shirley Johnston for suggest<strong>in</strong>g the project.<br />

References<br />

[1] Bell DJ, Lake PE. A comparison of phosphomonoesterase activities <strong>in</strong> the sem<strong>in</strong>al plasma of the domestic<br />

cock, turkey, tom, boar, bull, buck, rabbit and man. J Fertil 1962;3:262±8.<br />

[2] Mann T. The biochemistry of <strong>semen</strong>. London: Methuen and Co. Ltd., 1964.<br />

[3] Abdou MS, el-Gu<strong>in</strong>di MM, Mostafa MA, el-Wishy AB, Farah<strong>at</strong> AA. Compar<strong>at</strong>ive study of the<br />

<strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> the <strong>semen</strong> of bov<strong>in</strong>es (Bos bubalis and Bos taurus) <strong>in</strong> Egypt. Zentralbl<br />

<strong>Vet</strong>er<strong>in</strong>armed [A] 1974;21:759±67.<br />

[4] El-Naggar VMA. Comparison of <strong>phosph<strong>at</strong>ase</strong> activity <strong>in</strong> the sem<strong>in</strong>al plasma of different types of domestic<br />

livestock <strong>in</strong> Egypt. Deutsche Tierarztliche Wochenschrift 1975;82:322±4.<br />

[5] Dubiel A. Evalu<strong>at</strong>ion of <strong>semen</strong> properties and ejacul<strong>at</strong>ion re¯ex <strong>in</strong> dogs with reference to fertility. In:<br />

Proceed<strong>in</strong>gs of the VIIIth Intern<strong>at</strong>ional Congress on Animal Reproduction and Arti®cial Insem<strong>in</strong><strong>at</strong>ion,<br />

1976. p. 75.<br />

[6] James RW, Heywood R. Biochemical observ<strong>at</strong>ions on beagle dog <strong>semen</strong>. <strong>Vet</strong> Rec 1979;104:480±2.<br />

[7] Dubiel A, Krol<strong>in</strong>ski J, Karpiak C. Activity of gamma-glutamyltransferase, alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> and<br />

aspart<strong>at</strong>e am<strong>in</strong>otransferase <strong>in</strong> the ejacul<strong>at</strong>es of rabbits before and after elim<strong>in</strong><strong>at</strong>ion of the testes,<br />

epididymides and vasa deferentia secretions. Medycyna Weterynaryjna 1982;38:608±10.<br />

[8] Keller VP, Freudiger U. Enzyme activities <strong>in</strong> ur<strong>in</strong>e, cerebrosp<strong>in</strong>al ¯uid, bile, saliva and ejacul<strong>at</strong>e of dogs.<br />

Kle<strong>in</strong>tier Praxis 1984;29:15±34.<br />

[9] M<strong>at</strong>theeuws DR, Verhaeghe BJ, Borghijs H, Comhaire F. The signi®cance of alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> activity<br />

<strong>in</strong> dog <strong>semen</strong> and accessory sex glands. Proceed<strong>in</strong>gs of the IVth Congress of the Intern<strong>at</strong>ional Society for<br />

Animal Cl<strong>in</strong>ical Biochemistry, 1990. p. 171±8.<br />

[10] Frenette G, Dube JY, Tremblay RR. Orig<strong>in</strong> of alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> of can<strong>in</strong>e sem<strong>in</strong>al plasma. Arch<br />

Androl 1986;16:235±41.


10 R.M.O. Turner, S.M. McDonnell / Theriogenology 60 (2003) 1±10<br />

[11] Johnson WL, Hunter AG. Distribution of sem<strong>in</strong>al antigens and enzymes <strong>in</strong> the rabbit ductus epididymis. J<br />

Anim Sci 1979;49:143±50.<br />

[12] Muller B. Genital tract prote<strong>in</strong>s <strong>in</strong> the male rabbit II: alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong>Ðenzyme action and site of<br />

synthesis. Andrologia 1983;15:676±81.<br />

[13] Alexander FC, Zemjanis R, Graham EF, Schmehl ML. Semen characteristics and chemistry from bulls<br />

before and after sem<strong>in</strong>al vesiculectomy and after vasectomy. J Dairy Sci 1971;54:1530±5.<br />

[14] Mann T. The biochemistry of <strong>semen</strong> and of the male reproductive tract. London: Methuen and Co. Ltd.,<br />

1954.<br />

[15] Olson PN. Cl<strong>in</strong>ical approach to evalu<strong>at</strong><strong>in</strong>g dogs with azoospermia or aspermia. <strong>Vet</strong> Cl<strong>in</strong> North Am<br />

1991;21:591±608.<br />

[16] Szumowski P. Physiop<strong>at</strong>hology of the secretory functions of the genital glands <strong>in</strong>volved <strong>in</strong> the form<strong>at</strong>ion<br />

of the <strong>stallion</strong> ejacul<strong>at</strong>e. In: Proceed<strong>in</strong>gs of the VIIth Intern<strong>at</strong>ional Congress on Animal Reproduction and<br />

Arti®cial Insem<strong>in</strong><strong>at</strong>ion, Munich, 1972. p. 461.<br />

[17] Turner RMO. <strong>Alkal<strong>in</strong>e</strong> <strong>phosph<strong>at</strong>ase</strong> <strong>in</strong> <strong>stallion</strong> <strong>semen</strong>: characteriz<strong>at</strong>ion and cl<strong>in</strong>ical applic<strong>at</strong>ions. In:<br />

Society for Theriogenology Annual Meet<strong>in</strong>g. 1996. p. 284±93.<br />

[18] Kenney RM, Hurtgen JP, Pierson RH, Witherspoon D, Simons J. Cl<strong>in</strong>ical fertility evalu<strong>at</strong>ion of the<br />

<strong>stallion</strong>. J Soc Theriogenol 1983;9:7±62.<br />

[19] Love CC, Garcia MC, Riera FR, Kenney RM. Evalu<strong>at</strong>ion of measures taken by ultrasonography and<br />

caliper to estim<strong>at</strong>e testicular volume and predict daily sperm output <strong>in</strong> the <strong>stallion</strong>. J Reprod Fertil Suppl<br />

1991;44:99±105.<br />

[20] McDonnell SM, Love CC. Manual stimul<strong>at</strong>ion collection of <strong>semen</strong> from <strong>stallion</strong>s: tra<strong>in</strong><strong>in</strong>g time, sexual<br />

behavior and <strong>semen</strong>. Theriogenology 1990;33:1201±10.<br />

[21] Love CC, Riera FL, Turner RMO. Sperm occluded (plugged) ampullae <strong>in</strong> the <strong>stallion</strong>. In: Proceed<strong>in</strong>gs of<br />

the Annual Meet<strong>in</strong>g of the Society for Theriogenology, 1992. p. 117±25.<br />

[22] S<strong>in</strong>ger R, Barnet M, Allalouf D, Schwartzman S, Sagiv M, Landau B, et al. Some properties of acid and<br />

alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> <strong>in</strong> sem<strong>in</strong>al ¯uid and isol<strong>at</strong>ed sperm. Arch Androl 1980;5:195±9.<br />

[23] Turner RMO, Sertich PL. Use of alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> activity as a diagnostic tool <strong>in</strong> <strong>stallion</strong>s with<br />

azoospermia and oligospermia. In: Third Intern<strong>at</strong>ional Symposium on Stallion Reproduction, Fort Coll<strong>in</strong>s,<br />

CO. 2000. p. 35.<br />

[24] Goyal HO, Vig MM. Histochemical activity of alkal<strong>in</strong>e <strong>phosph<strong>at</strong>ase</strong> and acid <strong>phosph<strong>at</strong>ase</strong> <strong>in</strong> the<br />

epididymis of m<strong>at</strong>ure <strong>in</strong>tact and androgen-deprived bulls. Am J <strong>Vet</strong> Res 1996;45:444±50.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!