17.05.2015 Views

Strain differentiation of Mycobacterium tuberculosis complex ...

Strain differentiation of Mycobacterium tuberculosis complex ...

Strain differentiation of Mycobacterium tuberculosis complex ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

<strong>Strain</strong> <strong>differentiation</strong> <strong>of</strong> <strong>Mycobacterium</strong> <strong>tuberculosis</strong> <strong>complex</strong> isolated<br />

from sputum <strong>of</strong> Pulmonary Tuberculosis Patients<br />

1<br />

Abbadi Said, 1 El Hadidy Gehan, 1 Gomaa Nahed, and 2 Robert Cooksey<br />

1 Microbiology & Immunology Department, Faculty <strong>of</strong> Medicine, Suez Canal University, and 2 The<br />

Division <strong>of</strong> AIDS, STD, and TB Laboratory Research, Centers for Disease Control, Atlanta, USA<br />

ABSTRACT<br />

We characterized 45 <strong>Mycobacterium</strong> <strong>tuberculosis</strong> <strong>complex</strong> (MTC) isolates from sputum samples <strong>of</strong> Egyptian<br />

patients with pulmonary <strong>tuberculosis</strong>. One M. bovis and 44 M. <strong>tuberculosis</strong> (MTB) isolates were identified by<br />

PCR RFLP analysis <strong>of</strong> OxyR gene. Twenty-five (56.8%) <strong>of</strong> the 44 MTB isolates were susceptible in vitro to all<br />

anti<strong>tuberculosis</strong> drugs tested; 5 (11.4%) were mono-resistant to INH and STR (4 were resistant to STR and<br />

only one was resistant to INH); 14 (31.8%) were resistant to more than one drug (MDR) .Among the 44 MTB<br />

isolates tested for RFLP analysis in this study, 40 different RFLP patterns were obtained. The number <strong>of</strong><br />

IS6110 copies ranged from 5 to 16 (fig. 1). Studying the IS6110 RFLP patterns indicated that the 44 isolates<br />

did not cluster together but were generally scattered. None <strong>of</strong> the 15 multi-drug resistant (MDR) isolates were<br />

clustered. Twenty-two different spoligotypes were identified among the 44 MTB isolates, <strong>of</strong> which 13 were<br />

unique (Table 3). The remaining 31 isolates (%) were grouped into 9 clusters <strong>of</strong> strains sharing identical<br />

spoligotypes. We demonstrated evidence <strong>of</strong> diversity between the drug-susceptible and resistant MTB strains.<br />

Key words: pulmonary <strong>tuberculosis</strong>; IS6110 RFLP, spoligotyping.<br />

INTRODUCTION<br />

Key factors in the control <strong>of</strong> <strong>tuberculosis</strong><br />

are rapid detection, adequate therapy, and contact<br />

tracing to arrest further transmission. Recent<br />

developments in DNA technology and molecular<br />

biology have led to methods for rapid detection <strong>of</strong><br />

mycobacterial DNA by nucleic acid amplification<br />

(1). These methods include; DNA fingerprinting,<br />

based on the polymorphism <strong>of</strong> the insertion<br />

sequence IS6110 among MTB <strong>complex</strong> strains (2) ,<br />

pTBN12 fingerprinting based on the polymorphic<br />

GC rich sequence (PGRS) (3), spoligotyping<br />

based on the analysis <strong>of</strong> polymorphisms in the DR<br />

locus (1) and variable-number tandem repeats<br />

(VNTR) typing (4). Among these methods, the<br />

IS6110 fingerprinting is the recommended<br />

standard primary genotyping method (5) and has<br />

been used routinely worldwide (6). Clinical<br />

isolates <strong>of</strong> MTB obtained from patients infected<br />

by the same strain <strong>of</strong> bacillus usually exhibit<br />

identical or very similar (with one band variation)<br />

IS6110 fingerprint patterns, and the patients are<br />

more <strong>of</strong>ten found to be epidemiologically linked<br />

(7). The major limitation <strong>of</strong> the IS6110 typing is<br />

its low discriminating power for isolates with<br />

fewer than six copies <strong>of</strong> IS6110. In the case where<br />

the IS6110 is not definitive, Mycobacterial<br />

interspersed repetitive unit- variable number<br />

tandem repeat analysis (MIRU/VNTR) or<br />

spoligotyping is usually needed as a secondary<br />

typing (4]. These secondary typing methods have<br />

the advantage <strong>of</strong> being less time consuming as<br />

they are PCR-based (8).<br />

The increased application <strong>of</strong> DNA<br />

fingerprinting has advanced the understanding <strong>of</strong><br />

the dynamics <strong>of</strong> TB epidemiology (9). Molecular<br />

typing has provided insight into the impact <strong>of</strong><br />

reinfection on recurrent <strong>tuberculosis</strong> in<br />

comparison to reactivation (10). Molecular typing<br />

<strong>of</strong> MTB isolates has also proven to be useful tool<br />

in confirming laboratory cross-contamination (11)<br />

and investigating nosocomial and institutional<br />

transmission (12).<br />

This study represents early attempts at<br />

tracking diversity particularly among drugresistant<br />

strains consistent with low-incidence<br />

countries. In this study we characterized<br />

<strong>Mycobacterium</strong> <strong>tuberculosis</strong> <strong>complex</strong> (MTC)<br />

isolates from sputum <strong>of</strong> patients infected with<br />

MTB from Egypt in order to establish a database<br />

<strong>of</strong> strain types and antimicrobial susceptibility<br />

patterns. We demonstrated evidence <strong>of</strong> diversity<br />

among MDR-MTB and drug-susceptible MTB<br />

strains.<br />

MATERIALS AND METHODS<br />

Bacterial isolates:<br />

Forty- five clinical isolates (one isolate per<br />

patient) were included in this study. All specimens<br />

were isolated from sputum samples from patients<br />

with pulmonary <strong>tuberculosis</strong> at Suez Canal<br />

Region, Egypt.<br />

Isolation and Preliminary identification <strong>of</strong><br />

MTB strains: After concentration/<br />

decontamination <strong>of</strong> sputum samples by NALC<br />

method, culture <strong>of</strong> sputum was done on<br />

Lowenstein-Jensen (LJ) media. Isolation and<br />

identification <strong>of</strong> MTC were performed as<br />

described previously (13).<br />

Antimicrobial susceptibility testing<br />

Isolates <strong>of</strong> <strong>Mycobacterium</strong> <strong>tuberculosis</strong><br />

<strong>complex</strong> (MTC) were tested by the modified<br />

method <strong>of</strong> proportion as described by Kent and<br />

Kubica (13) using Middlebrook 7H10 agar plates<br />

containing rifampin (RIF), isoniazid (INH),<br />

streptomycin (STR), ethambutol (EMB) and<br />

143


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

pyrazinamide (PZA). The following critical<br />

concentrations were used: RIF(1.0 ug/ml),<br />

INH(0.2, 1.0 and 5.0 ug/ml), STR(2.0 and 10.0<br />

ug/ml), EMB(5.0 ug/ml), PZA(25.0 ug/ml).<br />

Molecular identification <strong>of</strong> MTB isolates: DNA<br />

<strong>of</strong> suspected MTB isolates was extracted by the<br />

mini-glass bead agitation procedure as previously<br />

described (15). PCR amplification <strong>of</strong> IS6110<br />

(MTB <strong>complex</strong>-specific) and IS1245 (M.aviumspecific)<br />

(14) was performed in a multiplex PCR<br />

assay.<br />

Multiplex PCR assay was performed on the<br />

purified DNA as follows: In a final volume <strong>of</strong> 25<br />

ul; 1 ul <strong>of</strong> DNA template, 0.6 ul (5 uM) <strong>of</strong> each <strong>of</strong><br />

the four primers and 12.5 ul HotStar Taq Master<br />

Mix (Taq DNA polymerase, 10x Taq buffer, 3<br />

mM MgCl 2 , and 400 uM dNTPs; Quiagen, CA,<br />

USA) were added to 9.1 uL distilled water. The<br />

primers used to amplify 123 bp fragment <strong>of</strong><br />

IS6110 were: KDE1 (5` -CCT GCG AGC GTA<br />

GGC GTC GG) and KDE2 (5` -CTC GTC CAG<br />

CGC CGC TTC GG). The primers used to amplify<br />

a 378 bp fragment <strong>of</strong> IS1245 were: MA1 (5` -CTT<br />

GCT GGA GGT GCT CGA CG) and primer MA2<br />

(5` -GGA GGT GCC GTG CAG GTA GG).<br />

MTB strain H37Rv and M. avium ATCC 871031<br />

were used as PCR controls. Thermocycling was<br />

done in Gene-Amp PCR system 9700<br />

Thermocycler (Perkin-Elmer Inc., CA). PCR<br />

conditions were as follows: initial denaturation at<br />

96 o C for 15 min, then 35 cycles composed <strong>of</strong><br />

denaturation at 96 o C for 30 sec, annealing at 64<br />

o C for 30 sec, and extension at 72 o C for 30 sec.<br />

Final extension at 72 o C for 7 min was done at the<br />

end <strong>of</strong> cycles. PCR amplicons were<br />

electrophoresed through 2% agarose gel<br />

supplemented with 50 ug ethidium bromide, at<br />

100 V for 1 hr. DNA bands were visualized by<br />

UV transilluminator, and compared to control<br />

strains.<br />

PCR RFLP analysis <strong>of</strong> OxyR gene: Isolates<br />

were further characterized Using PCR RFLP<br />

analysis <strong>of</strong> OxyR gene to differentiate between M.<br />

bovis & M. <strong>tuberculosis</strong> within the MTB <strong>complex</strong>.<br />

A 548 bp segment <strong>of</strong> the OxyR gene was<br />

amplified as described previously (16 ) using the<br />

following oligonucleotide primers: forward<br />

primer, 5 ’GGT GAT ATA TCA CAC CATA-3 ’ ;<br />

reverse primer , 5 ’ – CTA TGC GAT CAG GCG<br />

TAC TTG-3’. The following cyclic conditions<br />

were used for amplification <strong>of</strong> the OxyR gene:<br />

denaturation at 96 o C for 5 min, 35 cycles <strong>of</strong> 30<br />

sec at 96 o C, 30 sec at 57 o C, 45 sec at 72 o C and<br />

finally extension for 6 min at 72 o C. DNA gel<br />

Electrophoresis was done to test the amplification<br />

using 2% agarose gel under 100 V for 1 hour. the<br />

PCR product (10 ul) was digested with 4 U <strong>of</strong> AluI<br />

( New England Biolabs, Beverly, Mass., USA),<br />

the reaction mix included 12 ul water, 2.5 ul<br />

enzyme buffer, and 10 ul PCR product. 100 bp<br />

marker was used as a ladder. 4-20% Novex precast<br />

acrylamide gel was used for doing the gel<br />

electrophoresis for 3 hours, at 100V, using TBE<br />

buffer cooled to 6 o C.<br />

<strong>Strain</strong> typing (IS6110 RFLP)<br />

Isolates <strong>of</strong> MTB were typed by the<br />

standard IS6110-RFLP method as described by<br />

van Embden et al (5). In brief, a 2-3 week old<br />

subculture isolates in 7H9 broth was incubated<br />

overnight with cycloserine (1 mg/ml) at 37 o C. The<br />

sedimented cells were harvested to 1.5 ml<br />

microcentrifuge tube and incubated for 20 min at<br />

80 o C. Chromosomal DNA was isolated by<br />

disruption <strong>of</strong> cells with siliconized glass beads as<br />

described previously (14). About 0.75 to 1.25 ug<br />

<strong>of</strong> genomic DNA was digested for 2 h with 10 U<br />

<strong>of</strong> pvuII (BRL Life technologies Inc., Gaitherburg,<br />

MD) and electrophoresed on 1.0% agarose gel<br />

electrophoresis overnight. The restriction<br />

fragments were transferred by vacuum blotting to<br />

a Hybond-N+ nylon membrane (Amersham Corp.,<br />

Arlington heights, IL). Hybridization was carried<br />

out under stringent conditions with 247-bp IS6110<br />

PCR fragment, using the Amersham ECL direct<br />

labeling and detection kit. Banding patterns on<br />

resulting autoradiographs were scanned and<br />

analyzed using molecular analysis s<strong>of</strong>tware (Bio<br />

Image, Ann Arbor, MI) (14).<br />

Spoligotyping<br />

Spoligotyping was performed as previously<br />

described by Kamerbeek et al., (17). The direct<br />

repeat (DR) region was amplified by PCR using<br />

primers derived from the DR sequence. The<br />

primers used were DRa<br />

(GGTTTTGGGTCTGACGAC) and DRb<br />

(CCGAGAGGGGACGGAAAC). Fifty<br />

microliters <strong>of</strong> the following reaction mixture were<br />

used for the PCR: 10 ng <strong>of</strong> DNA, 20 pmol each <strong>of</strong><br />

primers DRa and DRb, each deoxynucleoside<br />

triphosphate at 200 mM, PCR buffer, and 0.5 U <strong>of</strong><br />

taq polymerase. The mixture was heated for 3 min<br />

at 96C and subjected to 20 cycles <strong>of</strong> 1 min at 96C,<br />

1 min at 55C, and 30 s at 72C. The amplified<br />

DNA was hybridized to a set <strong>of</strong> 43 immobilized<br />

oligonucleotides, each corresponding to one <strong>of</strong> the<br />

unique spacer DNA sequences within the D R<br />

locus. The sequences <strong>of</strong> the oligonucleotides used<br />

are given in table 1. These oligonucleotides were<br />

covalently bound to a Hybridization membrane.<br />

The membrane (Biodyne C) was obtained from<br />

Pall Biosupport, Portsmouth, UK, and was<br />

activated as previously described (17). For<br />

hybridization, 20 ul <strong>of</strong> the amplified PCR product<br />

was diluted in 150ul <strong>of</strong> 2X SSPE supplemented<br />

with 0.1% sodium dodecyl sulfate and heat<br />

denatured. The diluted samples (130ul) were<br />

pipetted into the parallel channels in such a way<br />

that the channels <strong>of</strong> the miniblotter apparatus were<br />

perpendicular to the rows <strong>of</strong> oligonucleotides<br />

deposited previously. Hybridization was done for<br />

60 min at 60C. After hybridization, the membrane<br />

was washed as previously described (17).<br />

144


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

Detection <strong>of</strong> hybridizing DNa was done by using<br />

chemiluminescent ECL (Amersham) detection kit.<br />

The 43-digit binary result is converted to a 15-<br />

digit octal designation as previously described<br />

(18).<br />

Table 1 Sequences <strong>of</strong> the oligonucleotides used in the study.<br />

Space Oligonucleotide sequence<br />

Space Oligonucleotide sequence<br />

No.<br />

No.<br />

1 ATAGAGGGTCGCCGGTTCTGGATCA 23 AGCATCGCTGATGCGTCCAGCTCG<br />

2 CCTCATAATTGGGCGACAGCTTTTG 24 CCGCCTGCTGGGTGAGACGTGCTCG<br />

3 CCGTGCTTCCAGTGATCGCCTTCTA 25 GATCAGCGACCACCGCACCCTGTCA<br />

4 ACGTCATACGCCGACCAATCATCAG 26 CTTCAGCACCACCATCATCCGGCGC<br />

5 TTTTCTGACCACTTGTGCGGGATTA 27 GGATTCGTGATCTCTTCCCGCGGAT<br />

6 CGTCGTCATTTCCGGCTTCAATTTC 28 TGCCCCGGCGTTTAGCGATCACAAC<br />

7 GAGGAGAGCGAGTACTCGGGGCTGC 29 AAATACAGCTCCACGACACGACCA<br />

8 CGTGAAACCGCCCCCAGCCTCGCCG 30 GGTTGCCCCGCGCCCTTTTCCAGCC<br />

9 ACTCGGAATCCCATGTGCTGACAGC 31 TCAGACAGGTTCGCGTCGATCAAGT<br />

10 TCGACACCCGCTCTAGTTGACTTCC 32 GACCAAATAGGTATCGGCGTGTTCA<br />

11 GTGAGCAACGGCGGCGGCAACCTGG 33 GACATGACGGCGGTGCCGCACTTGA<br />

12 ATATCTGCTGCCCGCCCGGGGAGAT 34 AAGTCACCTCGCCCACACCGTCGAA<br />

13 GACCATCATTGCCATTCCCTCTCCC 35 TCCGTACGCTCGAAACGCTTCCAAC<br />

14 GGTGTGATGCGGATGGTCGGCTCGG 36 CGAAATCCAGCACCACATCCGCAGC<br />

15 CTTGAATAACGCGCAGTGAATTTCG 37 CGCGAACTCGTCCACAGTCCCCCTT<br />

16 CGAGTTCCCGTCAGCGTCGTAAATC 38 CGTGGATGGCGGATGCGTTGTGCGC<br />

17 GCGCCGGCCCGCGCGGATGACTCCG 39 GACGATGGCCAGTAAATCGGCGTGG<br />

18 CATGGACCCGGGCGAGCTGCAGATG 40 CGCCATCTGTGCCTCATACAGGTCC<br />

19 TAACTGGCTTGGCGCTGATCCTGGT 41 GGAGCTTTCCGGCTTCTATCAGGTA<br />

20 TTGACCTCGCCAGGAGAGAAGATCA 42 ATGGTGGGACATGGACGAGCGCGAC<br />

21 TCGATGTCGATGTCCCAATCGTCGA 43 CGCAGAATCGCACCGGGTGCGGGAG<br />

22 ACCGCAGACGGCACGATTGAGACAA<br />

RESULTS<br />

MTC was cultured from sputum samples<br />

from 45 patients with a presumptive diagnosis <strong>of</strong><br />

pulmonary <strong>tuberculosis</strong> from Suez Canal region.<br />

All isolates contained IS6110 based upon PCR<br />

amplification <strong>of</strong> a 123-bp region <strong>of</strong> the insertion<br />

element. Among the 45 human isolates, one<br />

human isolate was determined to be M. bovis and<br />

44 were M. <strong>tuberculosis</strong> based upon amplification<br />

<strong>of</strong> 270- bp region <strong>of</strong> oxyR.<br />

Antimicrobial Susceptibility testing<br />

Twenty-5ive (56.8%) <strong>of</strong> the 44 MTB isolates<br />

were susceptible in vitro to all anti<strong>tuberculosis</strong><br />

drugs tested; 5 (11.4%) were mono-resistant to<br />

INH and STR (4 were resistant to STR and only<br />

one was resistant to INH); 14 (31.8%) were<br />

resistant to more than one drug (MDR). The 14<br />

MDR strains included 6 strains resistant to 4<br />

drugs, 3 resistant to INH, RIF, 3 resistant to INH<br />

and STR, one resistant to INH, RIF and EMB,<br />

and one resistant to INH, RIF and STR (Table 2).<br />

<strong>Strain</strong> types (IS6110 RFLP)<br />

Among the 44 MTB isolates tested for<br />

RFLP analysis in this study, 40 different RFLP<br />

patterns were obtained (table 3). The number <strong>of</strong><br />

IS6110 copies ranged from 5 to 16 (fig. 1).<br />

Studying the IS6110 RFLP patterns indicated that<br />

the 44 isolates did not cluster together but were<br />

generally scattered. Eight isolates were clustered<br />

together in 4 patterns, 2 isolates each. These two<br />

pairs <strong>of</strong> isolates had more than 90 % similarity but<br />

still had one difference in IS6110-hybridization<br />

band within each pair. The MDR-TB isolates did<br />

not cluster together.<br />

Spoligotyping<br />

Twenty-two different spoligotypes were<br />

identified among the 44 MTB isolates, <strong>of</strong> which<br />

13 were unique (Table 3). The remaining 31<br />

isolates (%) were grouped into 9 clusters <strong>of</strong> strains<br />

sharing identical spoligotypes. One <strong>of</strong> these<br />

clusters contained 12 isolates (%) and represented<br />

the most frequently observed type, which was<br />

designated as spoligotype A. The other major<br />

spoligotypes H & G, were observed for 4 (%) and<br />

3 (%) isolates respectively. While Spoligotypes C,<br />

E, I, K, M, and S were observed for 2 isolates<br />

(3.50%) (Fig. 2).<br />

145


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

Table 2. RFLP types according to the antimicrobial susceptibility patterns <strong>of</strong> the 44 tested M. <strong>tuberculosis</strong><br />

isolates from sputum samples <strong>of</strong> pulmonary <strong>tuberculosis</strong> patients in Egypt<br />

Resistance pattern Number <strong>of</strong> isolates RFLP patterns<br />

INH 1 32<br />

STR 4 22, 30, 5, 16<br />

RIF + INH 3 6, 15, 38<br />

INH + STR 3 2,5,17<br />

INH+RIF+STR 1 3<br />

INH+RIF+EMB 1 39<br />

INH+RIF+ STR +EMB 6 7,9,10,20,21,40<br />

None 25 Multiple *<br />

Total 44<br />

* 21 RFLP patterns.<br />

Table 3. Spoligotypes <strong>of</strong> 44 MTB isolates from sputum <strong>of</strong> patients with pulmonary <strong>tuberculosis</strong> in Egypt.<br />

Spoligotype<br />

Number <strong>of</strong><br />

Isolates<br />

Spoligotype a<br />

RFLP type (s)<br />

A b 12 777777777760771 1, 21 c , 25, 26 c , 27, 28 c ,38,39,40<br />

B 1 777777367720771 2<br />

C 2 777777377760771 9, 3<br />

D 1 777777777740171 4<br />

E 2 477677577760771 6, 19<br />

F b 1 377777607760771 5<br />

G 3 437777777760771 20, 7, 10<br />

H b 4 777777607760771 8, 12, 32, 33<br />

I b 2 703777740003171 31, 11<br />

J b 1 776377777760771 13<br />

K 2 777777607760751 14<br />

L 1 037637767760771 15<br />

M 2 770000777760771 16, 17<br />

N 1 703777740003771 22<br />

O 1 703777600003171 29<br />

P 1 776367777760771 30<br />

Q 1 777777601760771 24<br />

R 1 777777347760471 35<br />

S 2 777777777620771 23, 34<br />

T 1 677777777413731 37<br />

U 1 776377740000031 36<br />

V 1 777737607760771 18<br />

Total 44 40<br />

a, 15-digital octal code (REF).<br />

b, Types were found among Egyptian isolates isolates in previous studies.<br />

c, each FRLP pattern contain 2 isolates.<br />

146


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

RFLP Patterns<br />

S 1 2 5 6 7 8 9 11 1 4 14 17 18 22 23 25 28 28 40 S<br />

FIG. 1: IS6110 RFLP Patterns <strong>of</strong> 18 M. <strong>tuberculosis</strong><br />

Isolates. S, size standard.<br />

H37Rv<br />

BCG<br />

Water<br />

Clinical samples<br />

a<br />

Figure 2. Spoligotypes from amplified mycobacterial DNA <strong>of</strong> purified M. <strong>tuberculosis</strong> DNA from strain<br />

H37Rv (lanes 1), purified M. bovis from strain BCG (lanes 2) and M. <strong>tuberculosis</strong> DNA strains<br />

cultured from clinical specimens lanes (4-40).<br />

147


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

DISCUSSION<br />

Epidemiologic studies <strong>of</strong> <strong>tuberculosis</strong> can<br />

be greatly facilitated by the application <strong>of</strong> strainspecific<br />

markers. The discoveries <strong>of</strong> transposable<br />

elements in <strong>Mycobacterium</strong> <strong>tuberculosis</strong> have<br />

been shown to be <strong>of</strong> great potential for use in<br />

strain identification.<br />

This study represents early attempts at<br />

tracking diversity particularly among drugresistant<br />

strains consistent with low-incidence<br />

countries. In this study we characterized<br />

<strong>Mycobacterium</strong> <strong>tuberculosis</strong> <strong>complex</strong> (MTC)<br />

isolates from sputum <strong>of</strong> patients infected with<br />

MTB from Egypt in order to establish a database<br />

<strong>of</strong> strain types and antimicrobial susceptibility<br />

patterns.<br />

Among the 45 MTC isolates from sputum<br />

samples obtained from Suez Canal Hospitals in<br />

Egypt, 44 were identified as MTB and one as M.<br />

bovis by PCR-RFLP analysis <strong>of</strong> oxyR. This<br />

finding suggests that M. bovis plays a minor role,<br />

compared to MTB, in the etiology <strong>of</strong> pulmonary<br />

<strong>tuberculosis</strong> in Egypt. We found 40 IS6110 RFLP<br />

patterns among the 44 MTB isolates tested. None<br />

<strong>of</strong> these patterns may be considered low-copy<br />

number (


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

Greenland and Denmark. J. Clin. Microbiol. 32:3018-<br />

3025.<br />

8. Jasmer R M, Hahn J A, Small P M, et al. 1999. A<br />

molecular epidemiologic analysis <strong>of</strong> <strong>tuberculosis</strong> trends<br />

in San Francisco, 1991-1997. Annals <strong>of</strong> Int Med. 130:<br />

971-978.<br />

9. Bifani, P. J., B. B. Plikaytis, Vkapur, K. Stockbauer,<br />

X. Pan, M. L. Lutfey, S. L. Moghazeh, W. Eisner, T.<br />

M. Daniel, M.H. Kaplan, J. T. Crawford, J. M.<br />

Musser, and B. N. Krreiswirth. 1996. Origin and<br />

interstate spread <strong>of</strong> a New York City multidrugresistant<br />

<strong>Mycobacterium</strong> <strong>tuberculosis</strong> clone family.<br />

JAMA 275: 452-457.<br />

10. van Rie, A., R. Warren, M. Richardson, T. C.<br />

Victor, R. P. Gie, D. A. Enarson, N. Beyers, and P.<br />

D. van Helden. 1999. Exogenous reinfection as a<br />

cause <strong>of</strong> recurrent <strong>tuberculosis</strong> after curative treatment.<br />

N. Engl. J. Med. 341:1174-1179.World Health<br />

Organization. 1998. Global <strong>tuberculosis</strong> control: WHO<br />

report 1998.<br />

11. Small, P. M., N. B. McClenny, S. P. Singh, G. K.<br />

Schoolnik, L. S. Tomkins, P. A. Mickelsen. 1993.<br />

Molecular strain typing <strong>of</strong> <strong>Mycobacterium</strong> <strong>tuberculosis</strong><br />

to confirm cross-contamination in the<br />

mycobacteriology laboratory and modification <strong>of</strong><br />

procedures to minimize occurrence <strong>of</strong> false-positive<br />

cultures. J. Clin. Microbiol. 31:1677-1682.<br />

12. Dooley, S. W., M. E. Villarino, M. Lawrence, L.<br />

Salinas, S. Amil, J. V. Rullan, W. R. Jarvis, A. B.<br />

Block, and G. M. Cauthen. 1992. Nosocomial<br />

transmission <strong>of</strong> <strong>tuberculosis</strong> in a hospital unit for HIVinfected<br />

patients. JAMA. 267:2632-2635.<br />

13. Kent P. T. and J. P. Kubica 1985. Public Health<br />

Mycobacteriology: A guide for the level III laboratory.<br />

U.S. Department <strong>of</strong> Health and human services<br />

publication no. 86-8230. U.S. Department <strong>of</strong> Health<br />

and human services, Washington D.C, p. 159-184.<br />

14. Kremer, K., D. van Soolingen, R. Frothingham, W.<br />

H. Haas, P. W. M. Hermans, C. Martin, P.<br />

Palitapongarnpim, B. B. Plikaytis, L. W. Riley, M.<br />

A. Yakrus, J. M. Musser, and J. D. A. van Embden.<br />

1999. Comparison <strong>of</strong> methods based on different<br />

molecular epidemiological markers for typing <strong>of</strong><br />

<strong>Mycobacterium</strong> <strong>tuberculosis</strong> <strong>complex</strong> strains:<br />

interlaboratory study <strong>of</strong> discriminatory power and<br />

reproducibility. J. Clin. Microbiol. 37:2607-2618.<br />

15. McAdam, R.A., P.W.M. Hermans, D. van<br />

Soolingen, Z.F. Zainuddin, D.Catty, J.D.A. van<br />

Embden and J.W.Dale. 1990. Characterization <strong>of</strong> a<br />

M. <strong>tuberculosis</strong> insertion seqence belonging to the IS3<br />

family. Mol. Microbiol. 4:1607-1613.<br />

16. Abbadi S.H. 2001. Use <strong>of</strong> PCR –RFLP analysis <strong>of</strong><br />

oxyR gene to differentiate between <strong>Mycobacterium</strong><br />

<strong>tuberculosis</strong> and <strong>Mycobacterium</strong> bovis. Egy. J. Med.<br />

Microbiol. 10 (4): 809-813.<br />

17. Kamerbeek, J., L. Schouls, A. Kolk, M. van<br />

Agtervveld, D. van Soolingen, S. Kuijper, A.<br />

Bunschoten, H. Molhuizen, R. Shaw, M. Goyal, and<br />

J. D. A. van Embden. 1997. Simultaneous detection<br />

and strain <strong>differentiation</strong> <strong>of</strong> <strong>Mycobacterium</strong><br />

<strong>tuberculosis</strong> for diagnosis and epidemiology. J. Clin.<br />

Microbiol. 35:907-914.<br />

18. Dale, J.W. , D. Brittain, A. A. Cataldi, D. Cousins, J.<br />

T. Crawford, J. Driscoll, H. Heersma, T. Lillebaek,<br />

T. Quitugua, N. Rastogi, R. A. Skuce, C. Sola, D.<br />

van Soolingen, and V. Vincent. 2oo1. Spacer<br />

oligonucleotide typing <strong>of</strong> bacteria <strong>of</strong> the<br />

mycobacterium <strong>tuberculosis</strong> <strong>complex</strong>:<br />

recommendations for standard nomenclature. Int. J.<br />

Tuber. Lung Dis. 5: 216-219<br />

19. Cooksey RC, Abbadi SH, Woodley CL, Sikes D,<br />

Wasfy M, Crawford JT, Mahoney F. 2002.<br />

Characterization <strong>of</strong> <strong>Mycobacterium</strong> <strong>tuberculosis</strong><br />

<strong>complex</strong> isolates from the cerebrospinal fluid <strong>of</strong><br />

meningitis patients at six fever hospitals in Egypt. J<br />

Clin Microbiol. 40(5):1651-5.<br />

20. Abbadi, S., H. G. Rashed, G. P. Morlock, C. L.<br />

Woodley, O. El Shannawy, and R. C. Cooksey.<br />

2001. Characterization <strong>of</strong> IS6110 Restriction fragment<br />

length polymorphisms patterns and mechanisms <strong>of</strong><br />

antimicrobial resistance for Multidrug-resistant isolates<br />

<strong>of</strong> <strong>Mycobacterium</strong> <strong>tuberculosis</strong> from a major reference<br />

hospital in Assuit, Egypt. J. Clin. Microbiol. 39: 2330-<br />

2334.<br />

21. Girgis, N., Y. Sultan, Z. Farid, M. Mansour, M.<br />

Erian, L. Hanna, and A. Mateczun. 1998.<br />

Tuberculous meningitis, Abbassia Fever Hospital-<br />

Naval Medical Research Unit No. 3-Cairo, Egypt, from<br />

1976 to 1996. Am. J. Trop. Med. Hyg. 58:28-34.<br />

22. El Moghazy, E. 1997. National <strong>tuberculosis</strong> program<br />

report, Epidemiological review and action plan.<br />

Egyptian Ministry <strong>of</strong> Health, Cairo, Egypt.<br />

149


Egyptian Journal <strong>of</strong> Medical Microbiology, January 2008 Vol. 17, No. 1<br />

التفريق بين سلالات ميكروب الدرن الرئوى المختلفة و المعزولة<br />

من بصاق مرضى الدرن الرئوى<br />

سعيد حامد عبادى،‏ جيهان الحديدى،‏ ناهد جمعة،‏ ، روبرت آوآسى<br />

قسم الميكروبيولوجى والمناعة-‏ آلية طب قناة السويس،‏<br />

مرآز التحكم فى الامراض-‏ اتلانتا-امريكا<br />

من اهم وسائل مقاومة مرض الدرن الرئوى هو وجود وسيلة سريعة للتشخيص،‏ العلاج المناسب وآذلك معرفة نوع<br />

السلالات المعزولة لتحديد مصدر العدوى.‏ وبعد التطور الهائل فى استخدام تقننيات الحامض انووى ظهرت وسائل<br />

عديدة يمكن استخدامها فى معرفة نوع السلالت المعزولة.‏<br />

وفى هذه الدراسة تم الاعتماد على وسيلتى التحليل الجينى لجين اى اس ٦١١٠، والتحليل الجينى لتعددية الشكلية<br />

الموجودة فى جين يى ار للتفريق بين ٤٥ سلالة من سلالات ميكروب الدرن<br />

وقد اظهرت الدراسة وجود ٤٤ سلالة من ميكروب الدرن الرئوى وسلالة واحدة من ميكروب الميكوبكتيريم بوفس<br />

وذلك بافحص نواتج تقطيع جين اوآى ار بعد تكبيره بتفاعل البلمرة المتسلسل.‏ آما اظهرت الدراسة وجود<br />

سلالة متعددة المقاومة لادوية الدرن<br />

١٤<br />

.<br />

وباستخدام التحليل الجينى لجين اى اس ٦١١٠ تبين وجود‎٤٠‎ نوع مختلف من بين ال‎٤٤‎ سلالة لميكروب الدرن<br />

الرئوى ‏(منهم<br />

٣٦ نوع فريد ،<br />

٤ انواع يشمل آل نوع سلالتين).‏ آما تم تقسيم نفس ال‎٤٤‎ سلالة الى<br />

٢٢ نوع<br />

مختلف باستخدام طريقة التحليل الجينى لتعددية الشكلية الموجودة فى جين يى ار منهم ١٣ نوع فريد وتم تقسيم<br />

الباقى وعددهم ٣١ نوع الى ٩ مجوعات مختلفة.‏ آما لوحظ عدم وجود اى تجمع للسلالات المتعددة المقاومة<br />

لادوية الدرن فى مجموعة معينة فى الطريقتين المستخدمتين فى الدراسة.‏<br />

150

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!