17.05.2015 Views

The first Transistor

The first Transistor

The first Transistor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

[ 半 導 體 元 件 概 論 -2009]<br />

3. 雙 極 性 接 面 電 晶 體<br />

(Bipolar Junction <strong>Transistor</strong>, BJT)<br />

王 水 進 教 授<br />

成 大 電 機 系 微 電 子 研 究 所<br />

1<br />

<strong>The</strong> <strong>first</strong> <strong>Transistor</strong><br />

[S. M. Sze, Semiconductor Device Physics and Technology, John Wiley, 1985]<br />

Emitter<br />

Collector<br />

Base<br />

2<br />

1


<strong>The</strong> discovery of the point<br />

contact transistor in 1947<br />

This work resulted in their<br />

receiving the Nobel Prize<br />

for Physics in 1956.<br />

雙 極 性 電 晶 體 發 明 人<br />

[http://www.att.com/technology/history/chronolog/47transistor.html]<br />

3<br />

典 型 BJT 封 裝<br />

[Earl D. Gates, Introduction to electronics, 4/e, Delmar, Thomson Learning Inc., 2001 ]<br />

4<br />

2


Perspective view of an oxide-isolated BJT<br />

[http://ceiba.cc.ntu.edu.tw/542U0130/u0130/electro/form6.htm]<br />

5<br />

Basic structures of BJTs<br />

[D. A. Neamen, Semiconductor Physics and Devices, IRWIN, 1997]<br />

[Encyclopedia Americana, http://go.grolier.com:80/]<br />

Conventional IC npn BJT<br />

An oxide-isolated npn BJT<br />

6<br />

3


NPN Bipolar <strong>Transistor</strong><br />

Planar junction (Bipolar) transistor<br />

Emitter<br />

Base<br />

Collector<br />

Al•Cu•Si<br />

SiO 2<br />

n p n<br />

p +<br />

+<br />

+ n-epi<br />

Electron flow<br />

n + buried layer<br />

P-substrate<br />

p +<br />

7<br />

Cross sections of BJTs<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

A typical discrete,<br />

double-diffused pnp BJT<br />

An IC npn BJT<br />

8<br />

4


典 型 雙 極 性 接 面 電 晶 體 結 構<br />

[ 王 水 進 , 電 子 學 - 基 礎 篇 , 全 華 科 技 圖 書 ,1998]<br />

B<br />

E<br />

B<br />

垂 直 型<br />

( 縱 向 型 )<br />

n +<br />

p<br />

n<br />

n +<br />

E<br />

C<br />

B<br />

C<br />

10 20<br />

射 極<br />

n +<br />

基 極<br />

p<br />

集 極<br />

n n +<br />

水 平 型<br />

( 橫 向 型 )<br />

p +<br />

n+<br />

p n +<br />

n<br />

p +<br />

n + − 掩 埋 層<br />

SiO 2<br />

-3<br />

摻 雜 濃 度 (cm )<br />

10 18<br />

10 16<br />

p−<br />

Si基 板<br />

雜 質 分 佈 曲 線<br />

深 度<br />

9<br />

Bipolar junction transistor<br />

[From Wikipedia, the free encyclopedia]<br />

[http://en.wikipedia.org/wiki/Bipolar_junction_transistor]<br />

A bipolar (junction) transistor (BJT) is a type of transistor. It is a three-terminal<br />

device constructed of doped semiconductor material and may be used in<br />

amplifying or switching applications.<br />

Although a small part of the transistor current is due to the flow of majority<br />

carriers, most of the transistor current is due to the flow of minority carriers and<br />

so BJTs are classified as minority-carrier devices.<br />

10<br />

5


<strong>The</strong> bipolar Junction <strong>Transistor</strong>s<br />

[http://dspace.mit.edu/bitstream/handle/1721.1/36373/6-012Spring-2003/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-<br />

012Microelectronic-Devices-and-CircuitsSpring2003/DD39CE25-C7AA-4503-999C-5E529728AE6A/0/lecture17.pdf]<br />

11<br />

Concept of<br />

<strong>Transistor</strong> Action<br />

6


雙 極 性 電 晶 體 之 基 本 操 作 :<br />

典 型 pn 接 面 於 偏 壓 下 多 數 與 少 數 載 子 之 電 通 量<br />

[ 王 水 進 , 電 子 學 - 基 礎 篇 , 全 華 科 技 圖 書 ,1998]<br />

順 偏<br />

反 偏<br />

I<br />

n +<br />

p<br />

I o<br />

p<br />

n<br />

I o<br />

I<br />

F pp<br />

>><br />

F nn<br />

F np<br />

F pn<br />

多 數 載 子 電 通 量<br />

少 數 載 子 電 通 量<br />

13<br />

雙 極 性 電 晶 體 之 基 本 操 作 :<br />

不 同 基 極 寬 度 下 由 射 極 注 入 基 極 電 子 流 之 流 動 方 向<br />

順 偏 反 偏<br />

n +<br />

p<br />

n<br />

[ 王 水 進 , 電 子 學 - 基 礎 篇 , 全 華 科 技 圖 書 ,1998]<br />

I E<br />

I C<br />

IE= IC+ IB>><br />

IB<br />

0 W<br />

I B<br />

W


Current components in a BJT<br />

[From Wikipedia, the free encyclopedia]<br />

[http://en.wikipedia.org/wiki/Bipolar_junction_transistor]<br />

15<br />

Carrier transport in a BJT<br />

[http://dspace.mit.edu/bitstream/handle/1721.1/36373/6-012Spring-2003/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-012Microelectronic-Devices-and-<br />

CircuitsSpring2003/DD39CE25-C7AA-4503-999C-5E529728AE6A/0/lecture17.pdf]<br />

16<br />

8


Typical output characteristics of a BJT<br />

[Kwok K. Ng, Complete Guide to Semiconductor Devices, 2/e, McGraw-Hill, 2002]<br />

共 基 (CB) 組 態<br />

共 射 (CE) 組 態<br />

17<br />

<strong>Transistor</strong> (= Transfer Resistor)<br />

<br />

v I<br />

i C<br />

V CC<br />

RC<br />

i B +<br />

v CE<br />

-<br />

v O<br />

Load line<br />

V<br />

CC<br />

= i<br />

Q 1 : low resistance<br />

Q 2 : high resistance<br />

C<br />

R<br />

C<br />

+ v<br />

CE<br />

18<br />

9


Switching operation of BJT<br />

V CC<br />

i C RC<br />

i B v O<br />

v I<br />

5V<br />

0<br />

V CC<br />

0<br />

v I<br />

v O<br />

t<br />

t<br />

V<br />

R<br />

CC<br />

C<br />

C<br />

¹¡¦X<br />

B<br />

A<br />

i B<br />

I off<br />

i C<br />

V CC<br />

v CE<br />

0<br />

19<br />

[http://www.interfacebus.com/FETs.html#a]<br />

Operation <strong>The</strong>ory of<br />

BJTs<br />

10


雙 極 性 電 晶 體 之 基 本 操 作 :<br />

由 射 極 注 入 基 極 載 子 流 之 流 動 方 向<br />

[ 王 水 進 , 電 子 學 - 基 礎 篇 , 全 華 科 技 圖 書 ,1998]<br />

n p n<br />

p n p<br />

I E<br />

I C<br />

I E<br />

I C<br />

I B<br />

I B<br />

- V BE<br />

+ -V CB<br />

+<br />

+ V EB<br />

- +V BC<br />

-<br />

21<br />

Definition of BJT operation regions<br />

[S. M. Sze, Modern Semiconductor Device Physics, John Wiley, 1998]<br />

22<br />

11


Minority carrier distribution in an npn BJT<br />

[D. A. Neamen, Semiconductor Physics and Devices, IRWIN, 1997]<br />

23<br />

Carrier profiles in forward-active regime<br />

[http://dspace.mit.edu/bitstream/handle/1721.1/36373/6-012Spring-2003/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-012Microelectronic-Devices-and-<br />

CircuitsSpring2003/DD39CE25-C7AA-4503-999C-5E529728AE6A/0/lecture17.pdf]<br />

24<br />

12


Ideal pn junction current<br />

J<br />

J<br />

p<br />

n<br />

J p<br />

(x), J n<br />

(x)<br />

-x p<br />

0<br />

x n<br />

總 電 流<br />

J p ( x n )<br />

J n (x)<br />

Jn( −xp)<br />

J p (x)<br />

Key concept<br />

= qA<br />

= qA<br />

Dp<br />

Lp<br />

Dn<br />

Ln<br />

p<br />

n<br />

no<br />

po<br />

⋅e<br />

⋅e<br />

VA<br />

/ VT<br />

VA<br />

/ VT<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

⇒<br />

J<br />

J<br />

p<br />

n<br />

N<br />

∝<br />

N<br />

A<br />

D<br />

x<br />

I = AJ = A[<br />

J<br />

Dn<br />

= qA[(<br />

n<br />

L<br />

I<br />

= I<br />

o<br />

o<br />

( e<br />

= qA[<br />

= qA[(<br />

∝ e<br />

n<br />

VA<br />

V T<br />

−<br />

−1)<br />

D<br />

L<br />

Eg<br />

kT<br />

p<br />

po<br />

n<br />

n<br />

n<br />

D<br />

L<br />

( xn)<br />

+ J<br />

Dp<br />

+ p<br />

L<br />

po<br />

n<br />

nND<br />

p<br />

+<br />

+<br />

n<br />

( −x<br />

no<br />

Dp<br />

Lp<br />

Dp<br />

L N<br />

p<br />

)( e<br />

A<br />

p<br />

p<br />

)]<br />

V A<br />

V T<br />

−1)]<br />

no<br />

]<br />

)] n ]<br />

2<br />

i<br />

25<br />

Derivation of I-V equations of BJTs<br />

x<br />

<br />

x n<br />

Eo<br />

p<br />

x x LE<br />

P n P<br />

pn( x)<br />

nx ( ) = n −Δnx ( ) e<br />

Co<br />

0 ≤ x ≤W B<br />

n<br />

−( x−xn)/<br />

LC<br />

nE ( x)<br />

n Eo<br />

− x p<br />

p Bo<br />

0<br />

W B<br />

nC ( x )<br />

− x n<br />

p Co<br />

−W<br />

/ L<br />

B B<br />

B<br />

ΔpW ( B ) − Δp( 0)<br />

e<br />

x/<br />

L ΔpW ( B ) − Δp( 0)<br />

e<br />

B<br />

px ( ) = pBo[(<br />

) e − (<br />

2 sinh( W / L )<br />

2 sinh( W / L )<br />

B<br />

B<br />

B<br />

W / LB<br />

B<br />

− x/<br />

L<br />

B<br />

) e ]<br />

27<br />

13


Derivation of I-V equations of BJTs<br />

I E = AE<br />

( J pE + J nE ) = AE<br />

[ J p ( x = 0) + J n ( x = − x p )]<br />

∂ p ( x )<br />

∂ n(<br />

x)<br />

= AE<br />

[( − q D B<br />

x = 0 ) + ( − q D E<br />

x = − x )]<br />

p<br />

∂ x<br />

∂ x<br />

q D B p Bo W<br />

= A<br />

coth ( B )[( V EB / VT<br />

E<br />

e − 1)<br />

L B L B<br />

1<br />

− ( −V<br />

BC / V<br />

q D E n EO<br />

e<br />

T − 1)] + A<br />

( V EB / VT<br />

E e − 1)<br />

W B<br />

cosh ( )<br />

L<br />

L<br />

E<br />

B<br />

I C = AC<br />

( J pC + JnC<br />

) = AC<br />

[ J p(<br />

x = WB<br />

) + Jn(<br />

x = xn)]<br />

∂ px ( )<br />

∂ nx ( )<br />

= ( − qDB x= W ) + ( −qDC x=<br />

x )<br />

∂x<br />

B<br />

∂x<br />

n<br />

−<br />

= A qD B p Bo 1 V W<br />

EB VT B VBC VT<br />

C<br />

[( e<br />

−1) −coth( )( e<br />

W<br />

L<br />

B<br />

B sinh( ) L<br />

L<br />

B<br />

B<br />

−1)]<br />

−<br />

−A C n Co VBC<br />

/ VT<br />

C ( e<br />

LC<br />

−1)<br />

28<br />

Minority carrier distribution in an npn BJT<br />

operating in the active mode<br />

[A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford Univ. Press, 1998]<br />

Emitter<br />

(n)<br />

E-B<br />

depletion region<br />

Base<br />

(p)<br />

B-C<br />

depletion region<br />

Collector<br />

(n)<br />

n p (0)<br />

p n (0)<br />

p no<br />

n (0) = n<br />

p<br />

p (0) = p<br />

n<br />

e<br />

vBE<br />

/ VT<br />

po<br />

vBE<br />

VT<br />

noe<br />

/<br />

0<br />

I n<br />

n p (x)<br />

(ideal)<br />

n p (x)<br />

W<br />

(with recombination)<br />

I<br />

n<br />

dnp(<br />

x)<br />

= AE<br />

qDn<br />

dx<br />

np<br />

( o)<br />

= AE<br />

qDn<br />

( − )<br />

W<br />

x<br />

29<br />

14


Minority carrier distribution in an npn BJT<br />

operating in the active mode<br />

[S. M. Sze, Semiconductor Devices, Physics and Technology, John Wiley, 1985]<br />

30<br />

Minority carrier distribution in an npn BJT<br />

[D. A. Neamen, Semiconductor Physics and Devices, IRWIN, 1997]<br />

Saturation<br />

Cut-off<br />

31<br />

15


熱 平 衡 狀 態 下 BJT 之 能 帶 圖<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

32<br />

順 向 作 用 區 工 作 電 晶 體 之 能 帶 圖<br />

結 構 示 意 圖<br />

+ −<br />

E<br />

+<br />

X E<br />

p<br />

X B<br />

n<br />

X C<br />

p<br />

I C<br />

−<br />

C<br />

能 帶 圖<br />

I E<br />

V EB<br />

電 荷 分 佈 圖<br />

V EC<br />

I B<br />

− +<br />

B<br />

V BC<br />

qV<br />

E CB qV c CE<br />

qV EB<br />

E v<br />

qN ( D − NA)<br />

N B<br />

x n<br />

− x p<br />

0 W B<br />

x<br />

N C<br />

N E<br />

33<br />

16


電 晶 體 之 能 帶 圖<br />

p<br />

n<br />

p<br />

n<br />

p<br />

n<br />

E c<br />

E c<br />

E v<br />

E v<br />

熱 平 衡<br />

狀 態<br />

E c<br />

E v<br />

E F<br />

E c<br />

E v<br />

E v<br />

qV Do<br />

E F<br />

qV Do<br />

qV D<br />

順 向 操 作<br />

狀 態<br />

E c<br />

E v<br />

E c<br />

qV CB qV CE qV qVCB<br />

EB<br />

qV CE<br />

qV EB<br />

qV D<br />

34<br />

E<br />

I B<br />

pnp 電 晶 體 之 電 流 成 份<br />

p n p<br />

I E<br />

I Ep<br />

( Ep − ICp)<br />

I Cp I C<br />

+<br />

I CBOp<br />

I En<br />

I CBOn<br />

-<br />

C<br />

I<br />

I<br />

Ep<br />

γ ≡ ≈1−<br />

E<br />

σ BW<br />

σ W<br />

E<br />

V EB<br />

Emitter efficiency<br />

α T<br />

I<br />

I<br />

Cp<br />

≡ ≈1<br />

−<br />

Ep<br />

W<br />

B<br />

E<br />

2<br />

B<br />

2<br />

p<br />

2 L<br />

-<br />

B<br />

Base transport efficiency<br />

CB SC current gain<br />

I<br />

I<br />

C<br />

α( ≡ = γα )<br />

E<br />

T<br />

+<br />

V BC<br />

IE = IEp + I En<br />

I = I + ( I − I ) − I<br />

B En Ep Cp CBO<br />

I E = I C + I B<br />

I ( = I + I )<br />

CBO CBOp CBOn<br />

I = αI + I<br />

C E CBO<br />

I = I + I = γ α I + I<br />

C Cp CBO T E CBO<br />

35<br />

17


Diffusion currents flowing in<br />

a pnp BJT under active mode biasing<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

CB dc current gain α dc<br />

I Cp = αT<br />

I Ep = γ αT<br />

I<br />

Emitter efficiency Base transport factor<br />

E<br />

I<br />

I<br />

γ = EP<br />

ICP<br />

C = α dcIE<br />

+ ICB0<br />

= ICp<br />

+ ICn<br />

α T =<br />

IE<br />

I<br />

= γ α I + I<br />

EP<br />

T<br />

E<br />

Cn<br />

⇒<br />

α<br />

dc<br />

= γ α ,<br />

T<br />

I<br />

CB0<br />

= I<br />

Cn<br />

I<br />

C<br />

= β<br />

= α<br />

CB dc current gain β dc<br />

dc<br />

dc<br />

IB<br />

+ I<br />

( I + I<br />

C<br />

CB0<br />

B<br />

= α<br />

) + I<br />

I<br />

dc E<br />

CB0<br />

+ I<br />

CB0<br />

α dc 1<br />

IC<br />

= IB<br />

+ I<br />

1−α<br />

dc 1−α<br />

dc<br />

= β dcIB<br />

+ (1 + β dc)<br />

I<br />

α dc<br />

β dc<br />

−α<br />

dc<br />

CB0<br />

CB0<br />

36<br />

= 1<br />

37<br />

Current-Voltage Characteristics of BJTs<br />

(Gummel plot)<br />

[B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000]<br />

High level<br />

injection<br />

Base resistance<br />

ideal<br />

ideal<br />

V EB<br />

log I C<br />

ideal<br />

37<br />

18


Gummel plot and dc current gain<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

Ideal<br />

High-level injection,<br />

current crowding,<br />

and/or series resistance<br />

β dc<br />

V BC = 5V<br />

Ideal<br />

V EB<br />

I C<br />

(A)<br />

Data derived from a 2N2605 pnp BJT<br />

38<br />

Gummel plot: semilog plot of IC and IB vs. VBE<br />

[http://dspace.mit.edu/bitstream/handle/1721.1/36373/6-012Spring-2003/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-<br />

012Microelectronic-Devices-and-CircuitsSpring2003/DD39CE25-C7AA-4503-999C-5E529728AE6A/0/lecture17.pdf]<br />

39<br />

19


Gummel plot of BJT (VCE = 3 V )<br />

[http://dspace.mit.edu/bitstream/handle/1721.1/36373/6-012Spring-2003/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-012Microelectronic-Devices-and- 40<br />

CircuitsSpring2003/DD39CE25-C7AA-4503-999C-5E529728AE6A/0/lecture17.pdf]<br />

Current-Voltage<br />

Characteristics of BJTs<br />

41<br />

20


BJT 應 用 之 三 種 組 態<br />

[ 王 水 進 , 電 子 學 - 基 礎 篇 , 全 華 科 技 圖 書 ,1998]<br />

+<br />

I B<br />

V<br />

+<br />

CE<br />

V BE<br />

−<br />

I E<br />

I C<br />

−<br />

V BE<br />

+ I B<br />

−<br />

V CB<br />

V<br />

−<br />

CB<br />

I<br />

+<br />

C<br />

I E I C<br />

−<br />

+<br />

I B<br />

I E<br />

−<br />

V CE<br />

+<br />

共 射 (CE) 組 態<br />

共 基 (CB) 組 態<br />

共 集 (CC) 組<br />

42<br />

共 基 (CB) 組 態 電 晶 體 特 性<br />

I E<br />

(mA)<br />

10<br />

8<br />

6<br />

VCB = 15V<br />

VCB = 10V<br />

VCB = 5V<br />

4<br />

2<br />

0<br />

0.6 0.7 0.8 0.9<br />

V BE<br />

(Volts)<br />

I C<br />

(mA)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

IE = 10 mA<br />

IE = 8 mA<br />

IE = 6 mA<br />

IE = 4 mA<br />

IE = 2 mA<br />

I CBO<br />

IE = 0 mA<br />

0 1 2 3 4 5 6<br />

VBE ( Volts)<br />

I E I C<br />

I B I B<br />

I E I C<br />

−<br />

V BE<br />

+<br />

+<br />

V CB<br />

−<br />

+<br />

V EB<br />

−<br />

−<br />

V BC<br />

+<br />

43<br />

21


共 射 (CE) 組 態 電 晶 體 特 性<br />

3<br />

20<br />

18<br />

16<br />

I B =100 uA<br />

I B<br />

(μA)<br />

2<br />

1<br />

VCE = 5V<br />

VCE = 15V<br />

I C (mA)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

80 uA<br />

60 uA<br />

40 uA<br />

4<br />

20 uA<br />

0 04 . 06 . 08 . 10 . 12 . 14 .<br />

VBE ( Volts)<br />

2<br />

0 uA<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

V CB (V)<br />

I C<br />

I C<br />

I B<br />

+<br />

+<br />

V CE<br />

V BE −<br />

I<br />

−<br />

E<br />

−<br />

V EB<br />

+<br />

I B<br />

I E<br />

−<br />

V EC<br />

+<br />

44<br />

Typical output characteristics of a BJT<br />

[Kwok K. Ng, Complete Guide to Semiconductor Devices, 2/e, McGraw-Hill, 2002]<br />

共 基 (CB) 組 態<br />

共 射 (CE) 組 態<br />

45<br />

22


共 集 (CC) 組 態 電 晶 體 特 性<br />

I B (mA)<br />

20<br />

18<br />

15<br />

13<br />

V CB = 5 V<br />

V CB = 10 V<br />

V CB = 15 V<br />

10<br />

8<br />

5<br />

3<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

V CB (V)<br />

I E (mA)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

IB = 100 μ A<br />

80 μA<br />

60 μA<br />

40 μA<br />

20 μA<br />

0 μA<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

V CE (V)<br />

I E<br />

I E<br />

−<br />

V BC<br />

+<br />

I B<br />

I C<br />

−<br />

V CE<br />

+<br />

+<br />

I B<br />

V BC I −<br />

+<br />

−<br />

C<br />

V EC<br />

46<br />

Figure-of-Merit (FOM) for BJT performance<br />

[S. M. Sze, Modern Semiconductor Device Physics, John Wiley, 1998]<br />

Current gain cutoff frequency, f T<br />

<strong>The</strong> frequency at which the short-circuit current gain (h fe<br />

, or β) drop to<br />

unity.<br />

A key estimator of transistor high-speed performance<br />

1<br />

wc<br />

( kT / q)<br />

= τ b + τ e'<br />

+ + ( RE<br />

+ RC<br />

) CBC<br />

+ ( CBE<br />

+ CBC<br />

)<br />

2π fT<br />

2vs<br />

IC<br />

Maximum frequency of oscillation, f max<br />

<strong>The</strong> frequency at which the maximum available power gain (MAG) of<br />

the transistor drops to unity.<br />

F max<br />

is different from (and typically larger than) f T<br />

, because in<br />

addition to current gain, f max<br />

takes into account the possibility of<br />

voltage gain.<br />

fmax 2 1 Re( Zin)<br />

2<br />

G p = ( ) = [ ] h fe<br />

f 4 Re( Zout<br />

)<br />

T 1/ 2<br />

max ( )<br />

8π RBCBC<br />

f =<br />

f<br />

Figure of Merit: 效 益 指 數 、 評 量 指 標<br />

47<br />

23


Figure-of-Merit for BJT performance<br />

[S. M. Sze, Modern Semiconductor Device Physics, John Wiley, 1998]<br />

48<br />

Non-ideal effects of BJTs<br />

49<br />

24


BJT 之 穿 透 崩 潰 (punch-through breakdown)<br />

W B<br />

E<br />

N + P N<br />

C<br />

punch-through<br />

breakdown voltage<br />

Depletion<br />

region<br />

B<br />

V<br />

2<br />

PT B B s<br />

( = qN W / 2ε )<br />

W B<br />

V B<br />

E<br />

N + P N<br />

B<br />

Depletion<br />

region<br />

C<br />

ΔV B<br />

發 生 穿 透 崩 潰 時<br />

V + V<br />

bi CB<br />

E c<br />

E c<br />

50<br />

電 晶 體 與 兩 端 間 之 崩 潰 曲 線 ( 第 三 端 開 路 )<br />

I<br />

1<br />

M =<br />

V<br />

1 − ( )<br />

I CEO<br />

BV CBO<br />

m<br />

I<br />

CEO<br />

BV CEO<br />

I CBO<br />

BV CBO<br />

1/ m<br />

β<br />

I CBO<br />

=<br />

1−α<br />

M<br />

V<br />

BV<br />

CEO<br />

= BV<br />

BV<br />

≈<br />

CBO<br />

CBO<br />

(1−<br />

α)<br />

I B = 0<br />

I CEO<br />

I CBO<br />

I E = 0<br />

1/ m<br />

51<br />

25


<strong>The</strong> avalanche breakdown in a transistor<br />

[B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000]<br />

52<br />

Carrier multiplication and feedback mechanism<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

0: initial hole injection<br />

1: injected hole entering the CB<br />

depletion junction<br />

2: e-h pair generation by impact ionization<br />

3: generated electrons being swept<br />

into the vase<br />

4: excess base electrons injected<br />

into the emitter<br />

5: hole injected from the emitter<br />

into the base in response to the<br />

step 4 electron injection<br />

53<br />

26


Non-ideal I-V characteristics of BJTs<br />

[R. F. Robert, Semiconductor Device Fundamentals, Addison Wesely, 1996]<br />

Non Early effect<br />

no carrier multiplication<br />

With Early effect and<br />

carrier multiplication<br />

With Early effect<br />

no carrier multiplication<br />

54<br />

<strong>The</strong> Early effect<br />

[B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000]<br />

55<br />

27


Dependence of i C on the collector voltage –<br />

the Early effect<br />

[A. S. Sedra and K. C. Smith, Microelectronic Circuit, Oxfor Univ. Press, 1998]<br />

i<br />

C<br />

v<br />

/ CE<br />

= I v V<br />

Se<br />

BE T (1 + ) Output resistance<br />

V<br />

A<br />

⎡ ∂i<br />

ro<br />

≡ ⎢<br />

⎣∂v<br />

C<br />

CE<br />

vBE<br />

=const.<br />

⎤<br />

⎥<br />

⎦<br />

−1<br />

56<br />

Geometrical effect-<br />

current crowding<br />

Emitter area ≠ collector area<br />

Bulk and contact resistance<br />

(using thin epilayer or heavily doped buried layer)<br />

57<br />

28


Current crowding<br />

58<br />

Cross section of a BJT under active bias<br />

C-B<br />

space-charge<br />

layer<br />

Collector region<br />

Lines of flow of<br />

majority carriers<br />

<strong>The</strong> base current is supplied form two side base contact and flows<br />

toward the center of the emitter causing the BE voltage drop to vary<br />

with position.<br />

62<br />

29


Base resistance<br />

Extrinsic base resistance<br />

ρBX<br />

L ρBX<br />

d<br />

R1<br />

= =<br />

A ( x + x ) W<br />

E<br />

B<br />

Intrinsic base resistance<br />

R<br />

2<br />

ρBIh<br />

=<br />

3x<br />

W<br />

B<br />

Base resistance<br />

R = r<br />

b<br />

= RC<br />

+ R1<br />

+ R2<br />

x<br />

63<br />

Effect of Base Resistance<br />

[B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000]<br />

64<br />

30


An interdigitated geometry<br />

to release the effects of emitter current crowding<br />

[B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000]<br />

top view of<br />

implanted region<br />

65<br />

Geometry design of power BJTs<br />

66<br />

31


<strong>Transistor</strong> collector resistance R CS<br />

In active region<br />

the collector junction is reveres biased<br />

and hence represents a rather high<br />

impedance. <strong>The</strong> collector voltage<br />

drop I C<br />

R CS<br />

is normally small<br />

compared to the collector junction<br />

resistance and can be neglected.<br />

In saturation region<br />

<strong>The</strong> collector junction is forward biased, the collector bulk voltage drop<br />

generally even exceeds the potential drop across the junction.<br />

<strong>The</strong> effect is most pronounced at low CE voltages where the BJT<br />

is in saturation and hence is collecting minority carrier inefficiently<br />

(the collector is back injection to the emitter).<br />

67<br />

Emitter-collector shorts caused by diffusion pipes or spikes<br />

through the base along the dislocations<br />

Diffusion pipes<br />

Diffusion spikes<br />

Dislocations:<br />

oxidation induced stacking faults, epitaxial-growth-induced<br />

slip dislocations, and other process-induced defects<br />

68<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!