17.05.2015 Views

Strength of Materials Design of steel beam under high temperature.

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Poznan University <strong>of</strong> Technology<br />

Institute <strong>of</strong> Structural Engineering<br />

<strong>Strength</strong> <strong>of</strong> <strong>Materials</strong><br />

<strong>Design</strong> <strong>of</strong> <strong>steel</strong> <strong>beam</strong> <strong>under</strong><br />

<strong>high</strong> <strong>temperature</strong>.<br />

Jakub Turbakiewicz, SE<br />

2014/2015


I. Task information<br />

The lowest, right sided <strong>beam</strong> was selected for calculations:<br />

-length <strong>of</strong> the <strong>beam</strong>: 6.5 m<br />

-type <strong>of</strong> the <strong>beam</strong>: simply supported <strong>beam</strong><br />

Assumed <strong>steel</strong>: S355:<br />

-yield strength: f y = 355 MPa<br />

-modulus <strong>of</strong> elasticity: E = 210 GPa<br />

-shear modulus: G = 81 GPa<br />

-Poisson’s ratio in elastic stage: ν = 0,3<br />

Figure 1. Frame scheme<br />

-co-efficient <strong>of</strong> linear thermal expansion: α = 1,2 ∙ 10 −5 1<br />

°C<br />

for T < 100°C<br />

II.<br />

Chosen cross-section:<br />

IPE 550 was chosen:<br />

h = 550 mm I y = 67120 cm 4<br />

b f = 210 mm I z = 2668 cm 4<br />

t f = 17,2 mm W el,y = 2440 cm 3<br />

t w = 11,1 mm W pl,y = 2787 cm 3<br />

r = 24 mm I ω = 1884000 cm 6<br />

A = 134,0 cm 2 I t = 123 cm 4<br />

m = 106 kg/m<br />

Figure 2. Cross-section scheme


Cross-section class:<br />

ε = √ 235<br />

f y<br />

= √ 235<br />

355 = 0,814<br />

-web<br />

-flange<br />

c<br />

t = h − 2 ∙ (t f + r) 550 − 2 ∙ (17,2 + 24)<br />

= = 42,13<br />

t w 11,1<br />

42,13 < 72ε<br />

42,13 < 58,32 → class 1<br />

c<br />

t = 0,5 ∙ (b f − t w − r) 0,5 ∙ (210 − 11,1 − 24)<br />

= = 5,08<br />

t f 17,2<br />

5,08 < 9ε<br />

5,08 < 7,29 → class 1<br />

The whole cross-section if a class 1 cross-section.<br />

III.<br />

<strong>Design</strong> in ambient <strong>temperature</strong><br />

Characteristic loading:<br />

-dead load: <strong>beam</strong> weight,<br />

-dead load: ceiling dead load (3,5 kN/m 2 , with frame spacing <strong>of</strong> 6,2 m equal to 21,7 kN/m),<br />

-live load (2,0 kN/m 2 , with frame spacing <strong>of</strong> 6,2 m equal to 12,4 kN/m).<br />

Figure 3. Beam loading scheme<br />

Figure 4. Moments in the designed <strong>beam</strong> - ULS loading combination<br />

Figure 5. Moments in the designed <strong>beam</strong> - SLS loading combination


Beam capacity due to bending:<br />

W pl,y = 2787 cm 3<br />

M c,Rd = W pl ∙ f y 2787 ∙ 35,5<br />

= = 98938 kNcm = 989,38 kNm<br />

γ M0 1,0<br />

M Ed<br />

≤ 1,0 → 258,40 = 0,261 < 1,0 → conditions met<br />

M c,Rd 989,38<br />

Beam capacity due to shear force:<br />

h w<br />

t w<br />

< 72 ∗ ε η<br />

h w<br />

= h − 2 ∗ (t f + r) 550 − 2 ∙ (17,2 + 24)<br />

= = 42,13<br />

t w t w 11,1<br />

72 ∗ ε 0,814<br />

= 72 ∗<br />

η 1,0 = 58,32<br />

h w<br />

< 72 ∗ ε → 42,13 < 58,32 → conditions met<br />

t w η<br />

Beam capacity due to shearing stress:<br />

Figure 6. Shear force in the designed <strong>beam</strong> - ULS loading combination<br />

V Ed = 114,18 kN<br />

A w = t w ∗ (h − 2 ∗ t f ) = 1,11 ∗ (55 − 2 ∗ 1,72) = 57,23 cm 2<br />

τ Ed = V Ed<br />

= 114,18<br />

A w 57,23<br />

= 2,00<br />

kN<br />

cm 2<br />

τ Ed<br />

f y /(√3 ∙ γ M0 ) < 1,0 → 2,00<br />

< 1,0 → 0,10 < 1,0 − conditions met<br />

35,5/(√3 ∙ 1,0)<br />

Beam capacity due to the elastic critical moment:<br />

π 2 EI z<br />

M cr = C 1<br />

(kL) 2 { √( k 2 I w<br />

) + (kL)2 GI t<br />

k w I z π 2 + (C<br />

EI 2 z g ) 2 − C 2 z g }<br />

z<br />

k = 1,0; k w = 1,0; C 1 = 1,127; C 2 = 0,454


M cr = 1,127 ∗ 3,142 ∗ 21000 ∗ 2668<br />

(1 ∗ 650) 2 ∗<br />

∗ {√( 1 1 )2 1884000<br />

2668 + (1 ∗ 650)2 ∗ 8100 ∗ 123<br />

3,14 2 ∗ 21000 ∗ 2668 + (0,454 ∗ 27,5)2 − 0,454 ∗ 27,5}<br />

= 45670,19 kNcm<br />

λ LT = √ W pl,yf y 2787 ∗ 35,5<br />

= √<br />

M cr 45670,19 = 1,472<br />

α LT = 0,34; (buckling curve b: h b > 2)<br />

Φ LT = 0,5 [1 + α LT (λ LT − 0,2) + λ 2 LT] = 0,5 ∗ [1 + 0,34 ∗ (1,472 − 0,2) + 1,472 2 ] = 1,799<br />

χ LT =<br />

1<br />

Φ LT + √ Φ 2 LT − λ 2 LT<br />

1<br />

1,0<br />

=<br />

= 0,353 ≤<br />

1,799 + √1,799 2 − 1,4722 1,472 2 = 0,46<br />

M b,Rd = χ LT ∗ W y ∗ f y 0,353 ∗ 2787 ∗ 35,5<br />

= = 34904,85 kNcm = 349,05 kNm<br />

γ M1 1,0<br />

M Ed<br />

M = 258,40 = 0,74 → as close to requested design ratio as possible<br />

b,Rd 349,05<br />

IV.<br />

<strong>Design</strong> <strong>of</strong> <strong>steel</strong> <strong>beam</strong> at <strong>high</strong> <strong>temperature</strong><br />

Figure 6. Moments in the designed <strong>beam</strong> – accidental loading combination<br />

Beam bending capacity:<br />

M fi,Ed<br />

M b,fi,t,Rd<br />

≤ 1,0<br />

M b,fi,t,Rd = χ LT,fi ∙ W pl,y ∙ k y,θ ∙ f y<br />

γ M,fi<br />

Assumed critical <strong>temperature</strong>: Θ = 550℃<br />

Max bending moment: M fi,Ed = 120,05 kNm<br />

The elastic critical moment: M cr = 34904,85 kNcm


Ambient <strong>temperature</strong> slenderness: λ LT = 1,472<br />

Reduction factors for <strong>steel</strong> parameters in <strong>high</strong> <strong>temperature</strong> (Θ = 550℃):<br />

k y,Θ = 0,625; k E,Θ = 0,455<br />

λ LT,Θ = λ LT √ k y,Θ<br />

k E,Θ<br />

= 1,472√ 0,625<br />

0,455 = 1,725<br />

α = 0,65 √ 235<br />

f y<br />

= 0,65 √ 235<br />

355 = 0,53<br />

2<br />

Φ LT,Θ = 0,5 ∗ [1 + α ∗ λ LT,Θ + λ LT,Θ ] = 0,5 ∗ [1 + 0,53 ∗ 1,725 + 1,725 2 ] = 2,445<br />

χ LT,fi =<br />

1<br />

2<br />

Φ LT,Θ + √Φ LT,Θ<br />

2<br />

− λ LT,Θ<br />

=<br />

1<br />

2,445 + √2,445 2 − 1,725 2 = 0,239<br />

The design buckling resistance moment in <strong>high</strong> <strong>temperature</strong>:<br />

M b,fi,t,Rd = χ LT,fi ∗ W y,pl ∗ k y,Θ ∗ f y<br />

γ M,fi<br />

= 148,01 kNm<br />

=<br />

0,239 ∗ 2787 ∗ 0,625 ∗ 35,5<br />

1,0<br />

= 14801 kNcm<br />

M fi,Ed<br />

= 120,05 = 0,811 = 81,1 % → Θ = 550℃ is the critical <strong>temperature</strong><br />

M b,fi,t,Rd 148,01<br />

V. Emphasizing the critical <strong>temperature</strong> and the fire resistance<br />

<strong>Design</strong> assumptions:<br />

-partial exposure<br />

-density <strong>of</strong> <strong>steel</strong>: ρ a = 7850 kg/m 3<br />

-increment <strong>of</strong> <strong>temperature</strong> rise: ∆t = 4s<br />

-heat transfer coefficient: α c = 25 W<br />

m 2 K<br />

-configuration factor: Φ = 1,0<br />

-emissivity <strong>of</strong> the <strong>steel</strong> surface: ε m = 0,7<br />

-fire emissivity: ε f = 1,0<br />

-Boltzmann’s constant: σ = 5,67 ∗ 10 −8<br />

Section factors:<br />

⌈ A m<br />

V ⌉ b<br />

= 113 1 m ; A m<br />

V = 140 1 m<br />

W<br />

m 2 K<br />

k sh = 0,9 ∙<br />

⌈ A m<br />

V<br />

⌉<br />

b<br />

A mV<br />

= 0,9 ∙ 113<br />

140 = 0,726


Temperature [°C]<br />

Functions used in MS Excel calculations<br />

Specific heat <strong>of</strong> <strong>steel</strong> for 20 0 C ≤ θ a < 600 0 C: c a = 425 + 7,73 ∙ 10 −1 ∙ θ a − 1,69 ∙ 10 −3 ∙ θ a 2 +<br />

2,22 ∙ 10 −6 ∙ θ a<br />

3 J<br />

kgK<br />

Net design heat flux: ḣ<br />

net,d = ḣ<br />

conv + ḣ<br />

rad<br />

Convection flux: ḣ<br />

conv = α c (Θ g − Θ m )<br />

Radiation heat flux: ḣ<br />

net,r = Φ ∙ ε m ∙ ε f ∙ σ ∙ [(Θ r + 273) 4 − (Θ m + 273) 4 ]<br />

Gas <strong>temperature</strong>: Θ g = 20 + 345 ∙ log 10 (8 ∙ t + 1)<br />

Temperature increase: ΔΘ a,t = k sh ∙<br />

Am<br />

V<br />

c a ∙ρ a<br />

∙ ḣ<br />

net,d ∙ Δ<br />

Results <strong>of</strong> <strong>steel</strong> <strong>temperature</strong> calculations:<br />

Air and element's <strong>temperature</strong><br />

<strong>steel</strong><br />

air<br />

900,0<br />

800,0<br />

700,0<br />

600,0<br />

500,0<br />

400,0<br />

300,0<br />

200,0<br />

100,0<br />

0,0<br />

0,0 10,0 20,0 30,0<br />

Time [min]<br />

Graph 1. Increase in <strong>steel</strong> <strong>temperature</strong> in time<br />

The critical <strong>steel</strong> <strong>temperature</strong> is reached after 816 seconds (13,6 min).


VI.<br />

Fire paint design<br />

Promapaint SC4 was chosen as fire protection paint. Three different assumptions were set:<br />

-fire resistance R15<br />

Figure 7. Fire paint specification – R15<br />

-fire resistance R30<br />

Figure 8. Fire paint specification – R30


-fire resistance R60<br />

Figure 9. Fire paint specification – R60<br />

R15 R30 R60<br />

Layer thickness [μm] 188 191 1094<br />

Amount <strong>of</strong> pain [l/m 2 ] 0,31 0,32 1,82<br />

Table 1. Fire paint specifications<br />

VII. Results<br />

Utilisation factor for<br />

normal conditions<br />

<strong>Design</strong><br />

section<br />

Critical moment in<br />

ambient temp.<br />

Med/Med,fire<br />

Critical<br />

<strong>temperature</strong><br />

Utilistaion for<br />

fire conditions<br />

Fire<br />

resistance<br />

time<br />

74 % IPE 550 349,05 kNm 2,36 550⁰C 81,1 % 816 s<br />

Table 2. Final results <strong>of</strong> the calculations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!