16.05.2015 Views

m - ACES

m - ACES

m - ACES

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

Prestressed composite box girder bridges<br />

with corrugated webs<br />

A critical comparison with flat steel webs<br />

Ing. Gabriele Bertagnoli<br />

Politecnico di Torino


2<br />

Some examples of the use of corrugated<br />

webs in bridges<br />

(and other civil structures)


• Pont de la Corniche, France<br />

3


• Himi Yuma Bridge, Japan<br />

4


• Ginzan-Miyuki Bridge, Japan<br />

5


• Hontani Bridge, Japan<br />

6


• Long span building structures<br />

(by “Zeman & Co”)<br />

7


Some examples of the use of flat steel<br />

webs in composite steel-concrete bridges<br />

8


Verrieres bridge – France<br />

9


Roccaprebalza Viaduct : Parma – La Spezia Highway - Italy<br />

10


Gassino bridge – Torino - Italy<br />

11


Gassino bridge – Torino - Italy<br />

12


Some theory stuff<br />

13


14<br />

Bending behaviour of corrugated webs<br />

As the web is corrugated, it has very little ability to sustain longitudinal<br />

stresses. Conventionally the contribution of the web to the ultimate<br />

bending capacity of a beam with corrugated web is assumed<br />

negligible, and the ultimate bending capacity is calculated using the<br />

plastic modulus of the flanges.<br />

Elgaaly (1997) carried out experimental and analytical studies to verify<br />

if the web can contribute to the bending capacity of the whole girder.<br />

Dimentions<br />

in cm


15<br />

Bending behaviour of corrugated webs<br />

In order to verify if the web can contribute to the bending capacity of<br />

the whole girder, the failure moment is compared with the bending<br />

moment corresponding to the yielding of the flanges. It was found<br />

that the web contribution could be neglected.<br />

M f ≃ M y,f M y,w ≃ 0<br />

y,f<br />

The bending capacity of the whole girder is affected by many<br />

parameters. The following factors were analyzed:<br />

a. ratio between the flange and web thickness;<br />

b. ratio between the flange and web yield stresses;<br />

c. corrugation configurations.<br />

The stresses in the web due to bending are equal to zero except for<br />

small regions very close to the flanges where the web is restrained.


16<br />

Shear behaviour of corrugated webs<br />

FAILURE<br />

MODES<br />

Local<br />

buckling<br />

Zonal<br />

buckling<br />

Global<br />

buckling


17<br />

Shear behaviour of corrugated webs<br />

FAILURE<br />

MODES<br />

Local<br />

buckling<br />

Zonal<br />

buckling<br />

Global<br />

buckling


18<br />

Shear behaviour of corrugated webs<br />

FAILURE<br />

MODES<br />

Local<br />

buckling<br />

Zonal<br />

buckling<br />

Global<br />

buckling<br />

θ<br />

6<br />

60° 60° 45° 30°


1/d<br />

19<br />

Shear behaviour of corrugated webs<br />

FAILURE<br />

MODES<br />

Local<br />

buckling<br />

Zonal<br />

buckling<br />

Global<br />

buckling<br />

n=L TOT /a


Shear behaviour of corrugated webs<br />

20


21<br />

Shear behaviour of corrugated webs<br />

Strength of corrugated webs<br />

subjected to shear:<br />

- Local buckling (similar<br />

expression of the local buckling<br />

formula for normal plate girder<br />

developed by Timoshenko and<br />

Gere)<br />

2<br />

2<br />

E π E ⎛ a ⎞<br />

τ<br />

cr,L<br />

= kl<br />

⋅<br />

2 ⎜ ⎟<br />

12 ( 1 − ν<br />

) ⎝ w<br />

⎠<br />

- Global buckling (calculated<br />

from the orthotropic-plate<br />

buckling theory)<br />

τ<br />

E<br />

cr,G<br />

1 3 4<br />

y<br />

⋅D<br />

4<br />

x<br />

2<br />

D<br />

= k<br />

g<br />

⋅<br />

w ⋅h<br />

- The shear yield stress τ y is<br />

defined by the Huber-Von<br />

Mises-Hencky yield criterion<br />

f<br />

y<br />

τ<br />

y<br />

= ≈ 0 58<br />

3<br />

. f<br />

INTERACTIVE BUCKLING<br />

STRENGTH<br />

y


22<br />

LIVE LOADS :<br />

ELASTIC ANALYSIS<br />

DEAD LOAD + CREEP + SHRINKAGE + PRESTRESSING +<br />

CONSTRUCTION PHASES:<br />

VISCOELASTIC ANALYSIS<br />

• The structure is not homogeneous from the rheological point of view:<br />

viscoelasticity theorems CAN NOT be used<br />

• step by step analysis with detailed time history:<br />

ε ( t<br />

c<br />

k<br />

t<br />

k<br />

) = ∫ J ( t,<br />

τ ) dσ<br />

( τ ) + ε<br />

cs<br />

( tk<br />

) ≈<br />

t0<br />

=<br />

i<br />

k<br />

∑<br />

1<br />

⎧<br />

⎨<br />

⎩<br />

1<br />

2<br />

[ σ ( t ) −σ<br />

( t )] ⋅ ⋅[ J ( t , t ) + J ( t , t )] ε ( t )<br />

c<br />

i<br />

c<br />

⎫<br />

⎬<br />

⎭<br />

i− 1<br />

k i k i−1<br />

+<br />

cs<br />

k


23<br />

Creep and relaxation functions used in phased<br />

analysis<br />

t<br />

+ ∫<br />

0<br />

J ( t,<br />

τ ) dσ<br />

( τ<br />

t<br />

ε ( t)<br />

= σ ⋅ J ( t,<br />

t0)<br />

σ ( t)<br />

= ε ⋅ R(<br />

t,<br />

t0<br />

t<br />

+ ∫<br />

0<br />

) R(<br />

t,<br />

τ ) dε<br />

( τ<br />

t<br />

0<br />

0<br />

)<br />

)<br />

J ( t,<br />

t<br />

0<br />

)<br />

=<br />

1<br />

ϕ<br />

(<br />

t<br />

,<br />

t<br />

+<br />

E(<br />

t ) E<br />

0<br />

28<br />

0<br />

)<br />

ϕ( t,<br />

t0)<br />

≥<br />

0<br />

R( t,<br />

t0)<br />

= E(<br />

t0)<br />

+ E28<br />

⋅ ρ(<br />

t,<br />

t0)<br />

ρ(<br />

t,<br />

t0)<br />

≤<br />

0


Comparison of flat webs solution and<br />

corrugated webs solution on the same<br />

“testing” bridge<br />

24


Construction procedure common to both<br />

flat and corrugated webs solutions<br />

25


26<br />

Gassino bridge reduced to 3 hammers scheme<br />

50m<br />

92m 92m 50m<br />

Concrete top slab with<br />

bonded prestressing<br />

Soletta superiore<br />

Steel<br />

webs<br />

Trave in acciaio<br />

Predalle prefabbricata<br />

Precast slab<br />

used as<br />

scaffolding<br />

Soletta inferiore<br />

Concrete<br />

bottom slab


27<br />

Position<br />

Continuity<br />

support<br />

Midspan and<br />

abutments<br />

Deck depth<br />

[m]<br />

Depth/Span<br />

length L/h<br />

4 23<br />

2 46


28<br />

Single hammer construction<br />

phases<br />

Hammers construction<br />

phases


Phase 1 - Positioning of steel box pier segment<br />

(formwork for concrete diaphragm casting)<br />

29


30<br />

Phase 2 - Webs assembling by bolts and adjustment/stiffening by<br />

temporary ties<br />

Phase 3 – Slabs<br />

Phase 3 – Slabs<br />

concreting


31<br />

Phase 4 – Internal prestressing<br />

28 tendons: 6 for each segment apart from segment 1 which has 2<br />

Strand cross Nominal Duct<br />

N°of strands<br />

section area diameter<br />

15 139 mm 2 2085 mm 2 90 mm


33<br />

Phase 4 – Internal prestressing<br />

Layout of the<br />

connection<br />

reinforcement<br />

between precast<br />

anchorage blocks and<br />

upper slab.


34<br />

Phase 5<br />

Repetition of previous<br />

operations working in<br />

parallel on several piers<br />

Phase 6 – Alignment of bolted joint on webs between two segments


Phase 7 – External prestressing: 10 tendons with 27 strands in<br />

main spans and 22 strands in lateral ones<br />

35


Phase 7 – External<br />

prestressing<br />

36


Pay attention to the geometrical interferences between<br />

external tendons and stiffeners<br />

37


38<br />

Transversal truss stiffeners<br />

detail.<br />

Longitudinal spacing = 3m<br />

The shape of plenty of them<br />

is modified to avoid external<br />

tendons geometrical<br />

interferences.<br />

(See arrows in the picture<br />

(See arrows in the picture<br />

beside and in the previous<br />

slide)


Construction time scheduling common to<br />

both flat and corrugated webs solutions<br />

39


40<br />

Hammers 1 and 3<br />

Time steps<br />

Elements activation<br />

Loads activation<br />

Day Time [d] Phase Segment Side Set Segment side Load<br />

Monday 1 1 0 Web+TS+BS<br />

Wednesday 3 1 0 Web+TS+BS<br />

Thursday 46 2 1 Right Web 1 Right Web<br />

Friday 47 3 1 Left Web 1 Left Web<br />

Saturday 48 3 1 Right BS<br />

Monday 50 3 1 Left BS<br />

Tuesday 51 4 1 Right BS<br />

Wednesday 52 5 1 Left BS<br />

Thursday 53 5 1 Right TS<br />

Friday 54 5 1 Left TS<br />

Saturday 55 6 1 Right TS<br />

Monday 57 7 1 Left TS 1 Prestress<br />

Tuesday 58 8 2 Right Web 2 Right Web<br />

Wednesday 59 9 2 Left Web 2 Left Web<br />

Thursday 60 9 2 Right BS<br />

Friday 61 9 2 Left BS<br />

Saturday 62 10 2 Right BS<br />

Monday 64 11 2 Left BS<br />

Tuesday 65 11 2 Right TS


41<br />

Evolution of internal actions during<br />

construction and service life of<br />

FLAT WEB SOLUTION


42<br />

Bending moment diagrams during hammer construction phases<br />

3,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

2,00E+07<br />

1,00E+07<br />

End of<br />

segment 1<br />

Fine concio 1<br />

0,00E+00<br />

40 45 50 55 60 65 70 75 80 85<br />

-1,00E+07<br />

-2,00E+07<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]


43<br />

Bending moment diagrams during hammer construction phases<br />

3,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

2,00E+07<br />

End of<br />

1,00E+07<br />

Fine segment concio 1<br />

0,00E+00<br />

40 45 50 55 60 65 70 75 80 85<br />

-1,00E+07<br />

-2,00E+07<br />

Prestressing<br />

of Tiro tendons cavi 1-21<br />

and 2<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]


44<br />

Bending moment diagrams during hammer construction phases<br />

3,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

2,00E+07<br />

Fine segment concio 2<br />

End of<br />

1,00E+07<br />

Fine segment concio 1<br />

0,00E+00<br />

40 45 50 55 60 65 70 75 80 85<br />

-1,00E+07<br />

-2,00E+07<br />

Prestressing<br />

of Tiro tendons cavi 1-21<br />

and 2<br />

End of<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]


45<br />

Bending moment diagrams during hammer construction phases<br />

3,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

2,00E+07<br />

1,00E+07<br />

0,00E+00<br />

40 45 50 55 60 65 70 75 80 85<br />

-1,00E+07<br />

-2,00E+07<br />

-3,00E+07<br />

End of<br />

segment 1<br />

Fine concio 1<br />

Prestressing<br />

of Tiro tendons cavi 1-21<br />

and 2<br />

Longitudinal Coordinata axis [m] [m]<br />

End of<br />

segment 2<br />

Fine concio 2<br />

Prestressing<br />

Tiro cavi 3-5<br />

of tendons 3,<br />

4, 5


46<br />

Bending moment diagrams during hammer construction phases<br />

6,00E+07<br />

5,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

0,00E+00<br />

20 30 40 50 60 70 80 90 100 110<br />

-1,00E+07<br />

-2,00E+07<br />

End of<br />

Fine concio segment 3<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]


47<br />

Bending moment diagrams during hammer construction phases<br />

6,00E+07<br />

5,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

4,00E+07<br />

3,00E+07<br />

End of<br />

Fine concio 2,00E+07<br />

segment 3<br />

1,00E+07<br />

0,00E+00<br />

20 30 40 50 60 70 80 90 100 110<br />

-1,00E+07<br />

-2,00E+07<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]<br />

Prestressing<br />

of tendons 6,<br />

7, 8<br />

Tiro cavi 6-8


48<br />

Bending moment diagrams during hammer construction phases<br />

6,00E+07<br />

5,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

4,00E+07<br />

End of<br />

3,00E+07<br />

End of<br />

Fine segment concio 4<br />

Fine concio 2,00E+07<br />

segment 3<br />

1,00E+07<br />

0,00E+00<br />

20 30 40 50 60 70 80 90 100 110<br />

-1,00E+07<br />

-2,00E+07<br />

-3,00E+07<br />

Longitudinal Coordinata axis [m] [m]<br />

Prestressing<br />

of tendons 6,<br />

7, 8<br />

Tiro cavi 6-8


49<br />

Bending moment diagrams during hammer construction phases<br />

6,00E+07<br />

5,00E+07<br />

Momenti [Nm]<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

0,00E+00<br />

20 30 40 50 60 70 80 90 100 110<br />

-1,00E+07<br />

-2,00E+07<br />

-3,00E+07<br />

Prestressing<br />

of tendons 9,<br />

10, 11<br />

Tiro cavi 9-11<br />

End of<br />

segment 3<br />

Fine concio 3<br />

Longitudinal axis [m]<br />

Coordinata [m]<br />

End of<br />

segment 4<br />

Fine concio 4<br />

Prestressing<br />

of tendons 6,<br />

7, 8<br />

Tiro cavi 6-8


50<br />

Bending moment diagrams during hammer construction phases<br />

9,00E+07<br />

8,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

7,00E+07<br />

6,00E+07<br />

5,00E+07<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

End of<br />

Fine segment concio 5<br />

0,00E+00<br />

10 30 50 70 90 110<br />

-1,00E+07<br />

Longitudinal Coordinata axis [m] [m]


51<br />

Bending moment diagrams during hammer construction phases<br />

9,00E+07<br />

8,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

7,00E+07<br />

6,00E+07<br />

5,00E+07<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

End of<br />

Fine segment concio 5<br />

Tiro Prestressing cavi 12-14<br />

of tendons<br />

12, 13, 14<br />

0,00E+00<br />

10 30 50 70 90 110<br />

-1,00E+07<br />

Longitudinal Coordinata axis [m] [m]


52<br />

Bending moment diagrams during hammer construction phases<br />

7,00E+07<br />

6,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

5,00E+07<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

Grouting of<br />

all internal<br />

tendons<br />

Sigillatura cavi<br />

interni<br />

0,00E+00<br />

10 30 50 70 90 110<br />

-1,00E+07<br />

Longitudinal Coordinata axis [m] [m]


53<br />

Bending moment diagrams: external prestressing<br />

introduction on lateral spans<br />

7,00E+07<br />

6,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

5,00E+07<br />

4,00E+07<br />

3,00E+07<br />

2,00E+07<br />

1,00E+07<br />

50% of lateral<br />

spans<br />

Precompressione<br />

campate<br />

prestressing<br />

laterali (50%)<br />

Grouting of<br />

all internal<br />

tendons<br />

Sigillatura cavi<br />

interni<br />

0,00E+00<br />

10 30 50 70 90 110<br />

-1,00E+07<br />

Longitudinal Coordinata axis [m] [m]


54<br />

Bending moment diagrams: end of construction of central<br />

hammer<br />

8,00E+07<br />

6,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

4,00E+07<br />

2,00E+07<br />

0,00E+00<br />

-2,00E+07<br />

-4,00E+07<br />

-6,00E+07<br />

Fine stampella<br />

End of<br />

2<br />

construction<br />

of hammer 2<br />

0 50 100 150 200 250 300<br />

-8,00E+07<br />

Longitudinal Coordinata axis [m] [m]


55<br />

Bending moment diagrams: introduction of central spans<br />

external prestressing<br />

8,00E+07<br />

6,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

4,00E+07<br />

2,00E+07<br />

0,00E+00<br />

-2,00E+07<br />

-4,00E+07<br />

-6,00E+07<br />

Fine stampella 2<br />

0 50 100 150 200 250 300<br />

50% of central<br />

span prestressing<br />

Precompressione<br />

campate centrali (50%)<br />

End of<br />

construction<br />

of hammer 2<br />

-8,00E+07<br />

Longitudinal Coordinata axis [m] [m]


56<br />

Bending moment diagrams: permanent loads introduction<br />

8,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

6,00E+07<br />

4,00E+07<br />

2,00E+07<br />

0,00E+00<br />

-2,00E+07<br />

-4,00E+07<br />

-6,00E+07<br />

Perm. Permanent portati<br />

loads<br />

0 50 100 150 200 250 300<br />

-8,00E+07<br />

Longitudinal Coordinata axis [m] [m]


57<br />

Bending moment diagrams: introduction of 2 nd 50% of<br />

external prestressing<br />

8,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

6,00E+07<br />

4,00E+07<br />

2,00E+07<br />

0,00E+00<br />

-2,00E+07<br />

-4,00E+07<br />

-6,00E+07<br />

-8,00E+07<br />

Permanent<br />

loads<br />

Perm. portati<br />

0 50 100 150 200 250 300<br />

Second 50%<br />

of external<br />

prestressing<br />

Ritesatura cavi<br />

Longitudinal Coordinata axis [m] [m]


58<br />

Bending moment diagrams: end of service life (50 years)<br />

8,00E+07<br />

Bending moment [Nm]<br />

Momenti [Nm]<br />

6,00E+07<br />

4,00E+07<br />

2,00E+07<br />

0,00E+00<br />

-2,00E+07<br />

-4,00E+07<br />

-6,00E+07<br />

-8,00E+07<br />

Perm. portati<br />

0 50 100 150 200 250 300<br />

50 50 years anni<br />

Permanent<br />

loads<br />

Second 50%<br />

Ritesatura cavi<br />

50 anni of external<br />

prestressing<br />

Longitudinal Coordinata axis [m] [m]


59<br />

Evolution of stresses during construction<br />

and service life of<br />

FLAT WEBS SOLUTION


60<br />

Axial stress in concrete top slab – continuity support section<br />

0,00<br />

0 50 100 150 200 250 300 350 400<br />

-2,00<br />

Tiro Internal dei cavi tendons interni<br />

prestressing<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-4,00<br />

-6,00<br />

-8,00<br />

-10,00<br />

-12,00<br />

Tiro First dei 50% cavi of esterni external<br />

campate prestressing laterali (50%) on<br />

lateral spans<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

First 50% of external<br />

Tiro dei cavi esterni Second 50% of external<br />

prestressing on central Ritesatura cavi esterni<br />

campate spans centrali (50%) prestressing everywhere<br />

Tempi [gg]<br />

Time [days]


61<br />

Axial stress in concrete top slab – continuity support section<br />

-7,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-8,00<br />

-9,00<br />

-10,00<br />

50 years: end of<br />

50 service anni life<br />

377 gg. 377 days: end of<br />

construction<br />

-11,00<br />

Tempi [gg]<br />

Time [days]


62<br />

Axial stress in concrete bottom slab – continuity support section<br />

0,00<br />

0 50 100 150 200 250 300 350 400<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-1,00<br />

-2,00<br />

-3,00<br />

-4,00<br />

-5,00<br />

-6,00<br />

-7,00<br />

-8,00<br />

-9,00<br />

Tiro Internal dei cavi tendons interni<br />

prestressing<br />

First 50% of external<br />

Tiro prestressing dei cavi esterni on central<br />

campate spans centrali (50%)<br />

First Tiro 50% dei cavi of external esterni<br />

Ritesatura Second 50% cavi esterni of external<br />

prestressing campate on laterali (50%) spans<br />

prestressing everywhere<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

Tempi [gg]<br />

Time [days]


63<br />

Axial stress in concrete bottom slab – continuity support section<br />

-6,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-6,50<br />

-7,00<br />

-7,50<br />

377 377 days: gg. end of<br />

construction<br />

50 50 anni years:<br />

end of<br />

service life<br />

-8,00<br />

Tempi [gg]<br />

Time [days]


64<br />

Axial stress in steel top flange – continuity support section<br />

60,00<br />

0 50 100 150 200 250 300 350 400<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

40,00<br />

20,00<br />

0,00<br />

-20,00<br />

-40,00<br />

Tiro Internal dei cavi tendons interni<br />

prestressing<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

-60,00<br />

-80,00<br />

-100,00<br />

Tiro First dei 50% cavi of esterni external<br />

campate prestressing laterali on (50%)<br />

lateral spans<br />

First 50% of external<br />

Tiro prestressing dei cavi esterni on<br />

campate central centrali spans(50%)<br />

Tempi [gg]<br />

Time [days]<br />

Ritesatura Second 50% cavi esterni of external<br />

prestressing everywhere


65<br />

Axial stress in steel top flange – continuity support section<br />

-80,00<br />

100 1000 10000 100000<br />

-100,00<br />

377 377 days: gg.<br />

end of<br />

construction<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-120,00<br />

-140,00<br />

-160,00<br />

50 50 anni years:<br />

end of<br />

service life<br />

-180,00<br />

Tempi [gg]<br />

Time [days]


66<br />

Axial stress in steel bottom flange – continuity support section<br />

0,00<br />

0 50 100 150 200 250 300 350 400<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-20,00<br />

-40,00<br />

-60,00<br />

-80,00<br />

-100,00<br />

-120,00<br />

-140,00<br />

Tiro First dei 50% cavi of esterni external<br />

campate prestressing laterali (50%) on<br />

lateral spans<br />

Internal tendons<br />

Tiro prestressing dei cavi interni<br />

First 50% of external<br />

Tiro prestressing dei cavi esterni on<br />

campate central centrali spans(50%)<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

Tempi [gg]<br />

Time [days]<br />

Second 50% of external<br />

Ritesatura prestressing cavi everywhere esterni


67<br />

Axial stress in steel top flange – continuity support section<br />

-100,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-120,00<br />

-140,00<br />

-160,00<br />

377 days:<br />

end 377 of gg.<br />

construction<br />

50 years:<br />

end of<br />

50<br />

service<br />

anni<br />

life<br />

-180,00<br />

Tempi [gg]<br />

Time [days]


68<br />

Axial stress in concrete top slab – midspan key segment<br />

1,00<br />

0 50 100 150 200 250 300 350 400<br />

0,00<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-1,00<br />

-2,00<br />

-3,00<br />

-4,00<br />

-5,00<br />

First 50% of external<br />

Tiro<br />

prestressing<br />

dei cavi esterni<br />

on<br />

campate central centrali spans(50%)<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

Second 50% of external<br />

Ritesatura cavi esterni<br />

prestressing everywhere<br />

-6,00<br />

Tempi [gg]<br />

Time [days]


69<br />

Axial stress in concrete top slab – midspan key segment<br />

-4,00<br />

100 1000 10000 100000<br />

-4,50<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-5,00<br />

-5,50<br />

377 days:<br />

end of<br />

construction<br />

377 gg.<br />

50 anni years:<br />

end of<br />

service life<br />

-6,00<br />

Tempi [gg]<br />

Time [days]


70<br />

Axial stress in concrete bottom slab – midspan key segment<br />

2,00<br />

0 50 100 150 200 250 300 350 400<br />

1,00<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

0,00<br />

-1,00<br />

-2,00<br />

-3,00<br />

-4,00<br />

-5,00<br />

-6,00<br />

First 50% of external<br />

Tiro dei cavi esterni<br />

prestressing on<br />

campate<br />

central<br />

centrali<br />

spans<br />

(50%)<br />

Applicazione Permanent loads carichi<br />

permanenti introduction portati<br />

-7,00<br />

-8,00<br />

-9,00<br />

Tempi [gg]<br />

Time [days]<br />

Second 50% of external<br />

prestressing<br />

Ritesatura<br />

everywhere<br />

cavi esterni


71<br />

Axial stress in concrete bottom slab – midspan key segment<br />

-6,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-6,50<br />

-7,00<br />

-7,50<br />

377 days:<br />

end of<br />

construction 377 gg.<br />

50 50 anni years:<br />

end of<br />

service life<br />

-8,00<br />

Tempi [gg]<br />

Time [days]


72<br />

Modeling of<br />

CORRUGATED WEBS


Overall characteristics<br />

73<br />

• High longitudinal deformability (accordion effect)<br />

• better U.L.S. shear buckling behaviour;<br />

• Out of the plane inertia (transverse bending/ folded plate) .


An analytical method to calculate this ratio is developed<br />

through the use of a model that satisfies equilibrium and<br />

compatibility conditions.<br />

74


75<br />

An analytical method to calculate this ratio is developed<br />

through the use of a model that satisfies equilibrium and<br />

compatibility conditions.<br />

Hypothesis: the web is under<br />

pure bending moment and the<br />

axial deformation in each<br />

plate element of the<br />

corrugated web is negligible.<br />

δ<br />

B<br />

VIRTUAL WORKS PRINCIPLE<br />

M<br />

i<br />

⋅ M F ⋅c<br />

⋅ senα<br />

⋅c<br />

⋅ senα<br />

F ⋅c<br />

⋅ senα<br />

⎛ x ⎞ ⎛<br />

∫ dS =<br />

dx +<br />

⎜1<br />

− ⎟ ⋅ c ⋅ sen ⎜1<br />

−<br />

EJ<br />

EJ<br />

EJ<br />

⎝<br />

c<br />

⎠<br />

⎝<br />

= ∫ ∫<br />

3D<br />

α<br />

EJ S<br />

A B<br />

C<br />

x ⎞<br />

⎟dx<br />

c<br />

⎠<br />

δ<br />

3D<br />

=<br />

F ⋅c<br />

2<br />

⋅ sen α<br />

⎜<br />

⎛ a + EJ ⎝<br />

2<br />

c ⎞<br />

⎟<br />

3⎠


76<br />

An analytical method to calculate this ratio is developed<br />

through the use of a model that satisfies equilibrium and<br />

compatibility conditions.<br />

Hypothesis: the web is under<br />

pure bending moment and the<br />

axial deformation in each<br />

plate element of the<br />

corrugated web is negligible.<br />

δ<br />

B<br />

VIRTUAL WORKS PRINCIPLE<br />

M<br />

i<br />

⋅ M F ⋅c<br />

⋅ senα<br />

⋅c<br />

⋅ senα<br />

F ⋅c<br />

⋅ senα<br />

⎛ x ⎞ ⎛<br />

∫ dS =<br />

dx +<br />

⎜1<br />

− ⎟ ⋅ c ⋅ sen ⎜1<br />

−<br />

EJ<br />

EJ<br />

EJ<br />

⎝<br />

c<br />

⎠<br />

⎝<br />

= ∫ ∫<br />

3D<br />

α<br />

EJ S<br />

A B<br />

C<br />

x ⎞<br />

⎟dx<br />

c<br />

⎠<br />

∆<br />

3D<br />

2 2<br />

F ⋅c<br />

⋅ sen α ⎛<br />

= 48 ⎜a<br />

+<br />

3<br />

E ⋅t<br />

⋅ H ⎝<br />

∆<br />

FLAT<br />

=<br />

w<br />

F ⋅ L<br />

H ⋅t<br />

w<br />

h<br />

⋅ E<br />

c ⎞<br />

⎟<br />

3 ⎠<br />

r<br />

eq<br />

=<br />

∆<br />

∆<br />

=<br />

48⋅c<br />

L<br />

2<br />

⋅ sen α ⎛<br />

⎜ a +<br />

2<br />

⋅t<br />

⎝ 3<br />

2<br />

3D<br />

c<br />

flat<br />

h<br />

w<br />

⎞<br />

⎟<br />


77<br />

Longitudinal profile<br />

Reduction of<br />

modulus of<br />

elasticity to take<br />

into account<br />

longitudinal<br />

stiffness<br />

Web corrugation<br />

ES<br />

E<br />

S<br />

=<br />

350


Comparison of results between corrugated<br />

and flat webs<br />

78


79<br />

Axial stress in concrete top slab – continuity support section<br />

0,00<br />

0 50 100 150 200 250 300 350 400<br />

-2,00<br />

Tiro Internal dei cavi tendons interni<br />

prestressing<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-4,00<br />

-6,00<br />

-8,00<br />

-10,00<br />

-12,00<br />

First 50% of external<br />

Tiro dei cavi esterni<br />

campate<br />

prestressing<br />

laterali (50%)<br />

on<br />

lateral spans<br />

First Tiro 50% dei cavi of esterni external<br />

prestressing campate centrali on central (50%)<br />

spans<br />

Tempi [gg]<br />

Time [days]<br />

Permanent loads<br />

introduction<br />

Applicazione carichi<br />

permanenti portati<br />

Ritesatura Second cavi 50% esterni of<br />

external prestressing<br />

everywhere


80<br />

Axial stress in concrete top slab – continuity support section<br />

-7,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-8,00<br />

-9,00<br />

-10,00<br />

-11,00<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

377 377 days: gg.<br />

end of<br />

construction<br />

50 years:<br />

end of<br />

50 anni<br />

service life<br />

-12,00<br />

Tempi [gg]<br />

Time [days]


81<br />

Axial stress in concrete bottom slab – continuity support section<br />

0,00<br />

-2,00<br />

0 50 100 150 200 250 300 350 400<br />

Internal tendons<br />

prestressing<br />

Tiro dei cavi interni<br />

Anime Flat webs lisce<br />

Anime<br />

Corrugated<br />

corrugate<br />

webs<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-4,00<br />

-6,00<br />

First 50% of external<br />

prestressing on central<br />

Tiro dei cavi esterni<br />

campate spans centrali (50%)<br />

First 50% of external<br />

prestressing on lateral spans<br />

Tiro dei cavi esterni<br />

campate laterali (50%)<br />

Second 50% of external<br />

prestressing everywhere<br />

Ritesatura cavi esterni<br />

-8,00<br />

-10,00<br />

Permanent loads<br />

introduction<br />

Applicazione carichi<br />

permanenti portati<br />

Tempi [gg]<br />

Time [days]


82<br />

Axial stress in concrete bottom slab – continuity support section<br />

-6,00<br />

100 1000 10000 100000<br />

-6,50<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-7,00<br />

-7,50<br />

-8,00<br />

-8,50<br />

377 377 days: gg.<br />

end of<br />

construction<br />

50 years:<br />

50 end anni of<br />

service life<br />

-9,00<br />

Tempi [gg]<br />

Time [days]


83<br />

Axial stress in steel top flange – continuity support section<br />

80,00<br />

0 50 100 150 200 250 300 350 400<br />

60,00<br />

40,00<br />

Internal tendons<br />

Tiro dei cavi interni<br />

prestressing<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

20,00<br />

0,00<br />

-20,00<br />

-40,00<br />

Permanent loads<br />

Applicazione carichi<br />

permanenti introduction<br />

portati<br />

-60,00<br />

-80,00<br />

-100,00<br />

Tiro dei cavi esterni<br />

campate laterali (50%)<br />

First 50% of external<br />

prestressing on<br />

lateral spans<br />

First 50% of external<br />

Tiro dei cavi esterni<br />

campate<br />

prestressing<br />

centrali (50%)<br />

on<br />

central spans<br />

Tempi [gg]<br />

Time [days]<br />

Second 50% of<br />

external prestressing<br />

everywhere<br />

Ritesatura cavi esterni


84<br />

Axial stress in steel top flange – continuity support section<br />

-60,00<br />

-80,00<br />

100 1000 10000 100000<br />

377 days:<br />

377 end gg. of<br />

construction<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-100,00<br />

-120,00<br />

-140,00<br />

-160,00<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

50 years:<br />

end of<br />

service life<br />

50 anni<br />

-180,00<br />

Tempi [gg]<br />

Time [days]


85<br />

Axial stress in steel bottom flange – continuity support section<br />

0,00<br />

0 50 100 150 200 250 300 350 400<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-20,00<br />

-40,00<br />

-60,00<br />

-80,00<br />

-100,00<br />

-120,00<br />

-140,00<br />

Internal tendons<br />

prestressing<br />

Tiro dei cavi interni<br />

First Tiro 50% dei of cavi external esterni<br />

prestressing campate on centrali spans (50%)<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

Permanent loads<br />

Applicazione carichi<br />

permanenti introduction portati<br />

Second 50% of external<br />

prestressing everywhere<br />

Ritesatura cavi esterni<br />

-160,00<br />

-180,00<br />

First Tiro dei 50% cavi of esterni external<br />

campate prestressing laterali (50%) on<br />

lateral spans<br />

Tempi [gg]<br />

Time [days]


86<br />

Axial stress in steel bottom flange – continuity support section<br />

-100,00<br />

100 1000 10000 100000<br />

Axial stress [MPa]<br />

Tensioni Normali [MPa]<br />

-120,00<br />

-140,00<br />

-160,00<br />

-180,00<br />

-200,00<br />

377 days:<br />

377 gg.<br />

end of<br />

construction<br />

Anime Flat webs lisce<br />

Anime Corrugated corrugate webs<br />

50 years:<br />

50 anni<br />

end of<br />

service life<br />

-220,00<br />

-240,00<br />

Tempi [gg]<br />

Time [days]


Cumbering design<br />

87


88<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-03<br />

Abbassamento Vert. displacement [m]<br />

[m]<br />

0,00E+00<br />

40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00<br />

-1,00E-03<br />

-2,00E-03<br />

-3,00E-03<br />

-4,00E-03<br />

-5,00E-03<br />

-6,00E-03<br />

-7,00E-03<br />

End of<br />

Fine concio 1<br />

segment one<br />

-8,00E-03<br />

-9,00E-03<br />

Longitudinal Coordinata axis [m]


89<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-03<br />

Abbassamento Vert. displacement [m]<br />

[m]<br />

0,00E+00<br />

40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00<br />

-1,00E-03<br />

-2,00E-03<br />

-3,00E-03<br />

-4,00E-03<br />

-5,00E-03<br />

-6,00E-03<br />

-7,00E-03<br />

Prestressing<br />

Tiro cavi 1-2<br />

of tendons 1<br />

and 2<br />

End of<br />

segment one<br />

Fine concio 1<br />

-8,00E-03<br />

-9,00E-03<br />

Longitudinal Coordinata axis [m]


90<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-03<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00<br />

-1,00E-03<br />

-2,00E-03 Prestressing<br />

of tendons 1<br />

-3,00E-03<br />

Tiro and cavi 2 1-2 Fine End concio of 1<br />

-4,00E-03<br />

segment 1<br />

-5,00E-03<br />

-6,00E-03<br />

-7,00E-03<br />

-8,00E-03<br />

End of<br />

segment 2<br />

Fine concio 2<br />

-9,00E-03<br />

Longitudinal Coordinata axis [m]


91<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-03<br />

Abbassamento Vert. displacement [m]<br />

[m]<br />

0,00E+00<br />

40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00<br />

-1,00E-03<br />

-2,00E-03<br />

-3,00E-03<br />

-4,00E-03<br />

-5,00E-03<br />

-6,00E-03<br />

-7,00E-03<br />

-8,00E-03<br />

Prestressing<br />

of tendons 1<br />

and 2<br />

End of<br />

segment 1<br />

Tiro cavi 1-2 Fine concio 1<br />

Tiro cavi 3-5<br />

Prestressing<br />

tendons 3 , 4, 5<br />

End of<br />

segment 2<br />

Fine concio 2<br />

-9,00E-03<br />

Longitudinal Coordinata axis [m]


92<br />

Cumbering design<br />

Displacements without cumbering<br />

5,00E-03<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

-2,00E-02<br />

-2,50E-02<br />

-3,00E-02<br />

Fine End concio of 3<br />

segment 3<br />

-3,50E-02<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


93<br />

Cumbering design<br />

Displacements without cumbering<br />

5,00E-03<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

-2,00E-02<br />

-2,50E-02<br />

-3,00E-02<br />

Tiro cavi 6-8<br />

Prestressing of<br />

tendons 6, 7 ,8<br />

End of<br />

segment 3<br />

Fine concio 3<br />

-3,50E-02<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


94<br />

Cumbering design<br />

Displacements without cumbering<br />

5,00E-03<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

-2,00E-02<br />

-2,50E-02<br />

-3,00E-02<br />

-3,50E-02<br />

End of<br />

segment 4<br />

Fine concio 4<br />

Tiro cavi 6-8<br />

Prestressing of<br />

tendons 6, 7 ,8<br />

End of<br />

segment 3<br />

Fine concio 3<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


95<br />

Cumbering design<br />

Displacements without cumbering<br />

5,00E-03<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

-2,00E-02<br />

-2,50E-02<br />

-3,00E-02<br />

-3,50E-02<br />

Prestressing<br />

tendons 9 , 10 ,11<br />

Tiro cavi 9-11<br />

End of<br />

segment 4<br />

Fine concio 4<br />

Tiro cavi 6-8<br />

Prestressing of<br />

tendons 6, 7 ,8<br />

End of<br />

segment 3<br />

Fine concio 3<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


96<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

-6,00E-02<br />

-7,00E-02<br />

-8,00E-02<br />

Longitudinal Coordinata axis [m]<br />

End of<br />

segment 5<br />

Fine concio 5


97<br />

Cumbering design<br />

Displacements without cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

-6,00E-02<br />

Prestressing of<br />

tendons 12, 13 ,14<br />

Tiro cavi 12-14<br />

-7,00E-02<br />

-8,00E-02<br />

Longitudinal Coordinata axis [m]<br />

End of<br />

segment 5<br />

Fine concio 5


98<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

-6,00E-02<br />

Grouting of internal<br />

tendons<br />

Sigillatura cavi interni<br />

-7,00E-02<br />

-8,00E-02<br />

Longitudinal Coordinata axis [m]


99<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

-6,00E-02<br />

-7,00E-02<br />

-8,00E-02<br />

Grouting of internal<br />

tendons<br />

Sigillatura cavi interni<br />

Longitudinal Coordinata axis [m]<br />

First 50% of lateral<br />

Precompressione<br />

campate spans laterali external (50%)<br />

prestressing


100<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

Closure of key<br />

segments<br />

Sutura campate<br />

-1,00E-01<br />

Longitudinal Coordinata axis [m]


101<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of central<br />

spans external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]


102<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of central<br />

spans external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]<br />

Introduction of<br />

permanent loads<br />

Applicazione carichi<br />

perm. portati


103<br />

Cumbering design<br />

Displacements without cumbering<br />

2,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of central<br />

spans external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]<br />

Introduction of<br />

Applicazione carichi<br />

perm. permanent portati loads<br />

Second 50% of<br />

external tendons<br />

prestressing<br />

Ritesatura cavi<br />

esterni


104<br />

Cumbering design<br />

Displacements without cumbering<br />

4,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

1 Year after<br />

construction end<br />

1 anno<br />

Longitudinal Coordinata axis [m]


105<br />

Cumbering design<br />

Displacements without cumbering<br />

4,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

1 Year after<br />

construction end<br />

1 anno 4 anni<br />

4 years after<br />

construction end<br />

Longitudinal Coordinata axis [m]


106<br />

Cumbering design<br />

Displacements without cumbering<br />

4,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

1 Year after<br />

construction end<br />

4 years after<br />

construction end<br />

1 anno 4 anni 16 anni<br />

Longitudinal Coordinata axis [m]<br />

16 years after<br />

construction end


107<br />

Cumbering design<br />

Displacements without cumbering<br />

4,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-2,00E-02<br />

-4,00E-02<br />

-6,00E-02<br />

-8,00E-02<br />

-1,00E-01<br />

1 Year after<br />

construction end<br />

4 years after<br />

construction end<br />

16 years after<br />

construction end<br />

1 anno 4 anni 16 anni 50 anni<br />

Longitudinal Coordinata axis [m]<br />

50 years after<br />

construction end


108<br />

Cumbering design<br />

Displacements WITH cumbering<br />

3,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

1,00E-02<br />

End of<br />

segment 3<br />

Fine concio 3<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

Longitudinal Coordinata axis [m]


109<br />

Cumbering design<br />

Displacements WITH cumbering<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

3,00E-02<br />

2,00E-02<br />

1,00E-02<br />

Prestressing of<br />

tendons 6, 7, 8<br />

Tiro cavi 6-8<br />

End of<br />

segment 3<br />

Fine concio 3<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

-5,00E-02<br />

Longitudinal Coordinata axis [m]


110<br />

Cumbering design<br />

Displacements WITH cumbering<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

3,00E-02<br />

2,00E-02<br />

1,00E-02<br />

Prestressing of<br />

tendons 6, 7, 8<br />

Tiro cavi 6-8<br />

End of<br />

segment 3<br />

Fine concio 3<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Fine concio 4<br />

-5,00E-02<br />

Longitudinal Coordinata axis [m]


111<br />

Cumbering design<br />

Displacements WITH cumbering<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

3,00E-02<br />

Prestressing of<br />

tendons Tiro 6, cavi 7, 86-8<br />

2,00E-02<br />

End of<br />

1,00E-02<br />

Fine segment concio 3<br />

0,00E+00<br />

20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

Tiro cavi 9-11<br />

-4,00E-02<br />

Fine concio 4<br />

-5,00E-02<br />

Longitudinal Coordinata axis [m]


112<br />

Cumbering design<br />

Displacements WITH cumbering<br />

2,00E-02<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

End of<br />

segment 5<br />

Fine concio 5<br />

-5,00E-02<br />

-6,00E-02<br />

Longitudinal Coordinata axis [m]


113<br />

Cumbering design<br />

Displacements WITH cumbering<br />

2,00E-02<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Prestressing of<br />

tendons 12, 13, 14<br />

Tiro cavi 12-14<br />

End of<br />

segment 5<br />

Fine concio 5<br />

-5,00E-02<br />

-6,00E-02<br />

Longitudinal Coordinata axis [m]


114<br />

Cumbering design<br />

Displacements WITH cumbering<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

1,00E-02<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

Grouting of internal<br />

Sigillatura cavi interni<br />

tendons<br />

-3,00E-02<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


115<br />

Cumbering design<br />

Displacements WITH cumbering<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

2,00E-02<br />

1,00E-02<br />

0,00E+00<br />

10,00 30,00 50,00 70,00 90,00 110,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

Grouting of internal<br />

Sigillatura cavi interni<br />

tendons<br />

First 50% of lateral<br />

Precompressione<br />

campate spans laterali external (50%)<br />

prestressing<br />

-4,00E-02<br />

Longitudinal Coordinata axis [m]


116<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Closure of key<br />

segments<br />

Sutura campate<br />

Longitudinal Coordinata axis [m]


117<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of central<br />

spans external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]


118<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of<br />

central spans<br />

external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]<br />

Introduction of<br />

Applicazione carichi<br />

perm. permanent portati loads<br />

Second 50% of<br />

external tendons<br />

prestressing<br />

Ritesatura cavi<br />

esterni


119<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Abbassamento [m]<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-1,00E-02<br />

-2,00E-02<br />

-3,00E-02<br />

-4,00E-02<br />

Closure of key<br />

segments<br />

Sutura campate<br />

First 50% of central<br />

spans external<br />

Prec. Est. Campate<br />

centrali prestressing (50%)<br />

Longitudinal Coordinata axis [m]<br />

Introduction of<br />

permanent loads<br />

Applicazione carichi<br />

perm. portati


120<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

5,00E-03<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

1 year after<br />

construction 1 anno<br />

Longitudinal Coordinata axis [m]


121<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

5,00E-03<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

1 year after<br />

construction<br />

1 anno 4 anni<br />

4 years after<br />

construction<br />

Longitudinal Coordinata axis [m]


122<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

5,00E-03<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

1 year after<br />

construction<br />

4 years after<br />

construction<br />

1 anno 4 anni 16 anni<br />

Longitudinal Coordinata axis [m]<br />

16 years after<br />

construction


123<br />

Cumbering design<br />

Displacements WITH cumbering<br />

1,00E-02<br />

Vert. Abbassamento displacement [m]<br />

[m]<br />

5,00E-03<br />

0,00E+00<br />

8,00 58,00 108,00 158,00 208,00 258,00<br />

-5,00E-03<br />

-1,00E-02<br />

-1,50E-02<br />

1 year after<br />

construction<br />

4 years after<br />

construction<br />

16 years after<br />

construction<br />

1 anno 4 anni 16 anni 50 anni<br />

Longitudinal Coordinata axis [m]<br />

50 years after<br />

construction


Conclusions<br />

124


125<br />

Sustainability aspects<br />

Durability ⇒<br />

Economy ⇒<br />

Environmental impact ⇒<br />

Maintenance ⇒<br />

Rehabilitation ⇒<br />

No tensile stresses in concrete in SLS<br />

(Frequent combination)<br />

Time saving and elimination of<br />

launching girder<br />

Elimination of storage areas for<br />

segments<br />

Very easy inspection and control of<br />

external tendons<br />

Substitution of external tendons without<br />

significant limitation to traffic flow


126<br />

Materials amount<br />

Flat webs<br />

Corrugated webs<br />

Concrete 0.80 m 3 /m 2 0.80 m 3 /m 2<br />

Steel 170 kg/m 2 155 kg/m 2<br />

Prestressing steel 60 kg/m 2 56 kg/m 2<br />

Ordinary reinforcement 170 kg/m 2 170 kg/m 2


127<br />

Use of steel<br />

With plane webs<br />

Main girders:<br />

Partial total<br />

61 kg/m 2 web weight<br />

34 Kg/m 2 flanges weight<br />

15 Kg/m 2 connections, studs, bolts, plates, etc…<br />

16 Kg/m 2 web stiffeners<br />

15 Kg/m 2 truss diaphragms<br />

141 kg/m 2 + 29 Kg/m 2 for pier segments and<br />

prestressing deviators


128<br />

Use of steel<br />

With corrugated webs<br />

Main girders:<br />

Partial total<br />

74 kg/m 2 web weight<br />

34 Kg/m 2 flanges weight<br />

17 Kg/m 2 connections, studs, bolts, plates, etc…<br />

0 Kg/m 2 web stiffeners<br />

0 Kg/m 2 truss diaphragms<br />

125 kg/m 2 + 29 Kg/m 2 for pier segments and<br />

prestressing deviators = 154 Kg/m 2


129<br />

Thank u for kind<br />

attention !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!