15.05.2015 Views

OSD1 - IJPB

OSD1 - IJPB

OSD1 - IJPB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

La Méiose<br />

Le point sur les connaissances et<br />

Exemples d’études chez la plante modèle Arabidopsis thaliana


Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(haploid cells, n)<br />

Fertilization


One replication + two divisions = ploidy halving<br />

Recombination


Objectif de la méiose: réduire le niveau de ploïdie<br />

Le principe : regrouper pour mieux séparer<br />

Un bivalent<br />

Un monovalent<br />

Phase S<br />

Méiose I<br />

Méiose II


Two sister chromatids<br />

Phase S<br />

Two homologues


Phase S<br />

DAPI<br />

PROPHASE I<br />

Leptotene<br />

ASY1 (axis)<br />

SCC3 (cohesins)


DBA breaks formation<br />

Phase S<br />

PROPHASE I<br />

Leptotène


Double Strand Break formation (DSBs)<br />

PROPHASE I<br />

Leptotene


ASY1 (axis)<br />

DMC1 (recombinase)<br />

DAPI<br />

PROPHASE I<br />

Zygotene<br />

ASY1 (axis)<br />

ZYP1<br />

(synaptonemal complex)


PROPHASE I<br />

Pachytene<br />

ASY1 (axis)<br />

ZYP1<br />

(synaptonemal complex)


DAPI<br />

MLH1<br />

PROPHASE I<br />

Pachytene


PROPHASE I<br />

Diplotene


PROPHASE I<br />

Diakinesis<br />

MLH1


The bivalent!<br />

End of prophase


Metaphase I


Metaphase I/AnaphaseI


Metaphase I/AnaphaseI


Metaphase I/AnaphaseI


Anaphase I


Anaphase I


Anaphase I


telophase I


Metaphase II


Metaphase/Anaphase II


Metaphase/Anaphase II


What meiosis needs?<br />

recombination : at least one<br />

Crossing-Over/bivalent<br />

orientation of the kinetochores<br />

Sister chromatid cohesion<br />

+ Cell cycle control


La cohesion


L’orientation des kinetochores


Christian Huyghe


Le cycle cellulaire


Cyclin/CDK activity<br />

Cyclin<br />

Cyclin Degradation<br />

by APC/C<br />

Cyclin<br />

Cyclin<br />

CDK<br />

APC<br />

CDK<br />

CDK<br />

Active CDK-Cyclin<br />

M-phase entry<br />

Progression through M-phase<br />

Inactive CDK<br />

M-phase exit<br />

Cyclins bind and activate cyclin-dependent kinase (Cdk) to effect cell cycle progression.<br />

Degradation of cyclin by the anaphase-promoting complex<br />

APC : Anaphase-Promoting Complex (E3 ubiquitin ligase) target cell cycle proteins for degradation<br />

by the 26S proteasome


Mitosis<br />

Meiosis<br />

Meiosis Cell Cycle


La recombinaison<br />

• CO essential comme lien entre homologues<br />

• CO et NCO<br />

• Distribution des CO (non homogène, points<br />

chauds, CO obligatoire, interference)


MI<br />

In the absence of COs<br />

AI<br />

Wild type<br />

spo11-1 -/-<br />

Random segregation of<br />

chromosomes….


La Recombinaison méiotique<br />

1) Initiée par des cassures double-brin programmées<br />

2) Consiste en la réparation de ces cassures<br />

3) Deux types de produits: - Crossing-over (CO)<br />

- Conversion génique (NCO)<br />

CO<br />

Nbre de NCO > Nbre de CO<br />

NCO


Wild type<br />

tetrads of pollen grains<br />

CO<br />

Berchowitz LE, Copenhaver GP.<br />

Nat Protoc. 2008;


Gene conversion in A. thaliana<br />

Francis KE, et al. (2007) Proc Natl Acad Sci U S A 104(10): 3913-3918.<br />

NCO


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


SPO11 and friends: Initiation of recombination<br />

Metaphase I<br />

Anaphase I<br />

Wild type<br />

spo11-1<br />

spo11-2<br />

prd1<br />

prd2<br />

prd3<br />

Grelon et al. EMBO J. 2001<br />

Demuyt et al EMBO J. 2007<br />

Demuyt et al, PloS Genet 2009


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


Wild type:<br />

Anaphase I<br />

Atmre11<br />

Puizina et al. 2004<br />

Atrad51<br />

Li et al. 2004


Test for meiotic DSB formation<br />

Wild type:<br />

Anaphase I<br />

Atspo11-1 Atmre11<br />

or<br />

Atspo11-1 Atrad51<br />

Atmre11<br />

Puizina et al. 2004<br />

Atrad51<br />

Li et al. 2004


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


Wild-type<br />

zmm-/-<br />

(msh4, msh5, mer3,zip4,<br />

shoc1, ptd1, hei10)<br />

Higgins et al, G&D 2004<br />

Mercier at al. Curr Biol 2005<br />

Chelysheva et al, PLoS gen 2007<br />

Macaisne et al, Curr Biol 2008<br />

Higgins, Vignard et al, Plant J. 2008<br />

Macaisne et al, J cell Science 2011


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~1.5


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~230<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3<br />

RMI/TOP3/BLM<br />

MUS81<br />

~9<br />

~220<br />

~1.5


Homologous Recombination Pathways<br />

modified after Lorenz & Whitby, 2006<br />

9 th European Meiosis Meeting, 20/09/2009


La distribution des COs<br />

Kong A, et al. (2002) Nat Genet 31(3):<br />

241-247.<br />

Non homogène<br />

Peu de crossover<br />

Interférence<br />

CO obligatoire


La distribution des COs n’est pas homogène le<br />

long des chromosomes<br />

male<br />

female<br />

cM / Mb<br />

20<br />

Kong A, et al. (2002) Nat Genet 31(3):<br />

241-247.<br />

15<br />

10<br />

5<br />

Human Chromosome 3<br />

Kong et al., Nature Genet. , 2002<br />

Mb<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

Mb<br />

15 10<br />

5<br />

knob<br />

NOR<br />

Drouaud J, et al. (2007) PLoS Genet 3(6): e106.<br />

Chromosome 4<br />

Arabidopsis thaliana


La distribution et le taux des COs le long des chromosomes<br />

entre la méiose mâle et la méiose femelle<br />

male<br />

female<br />

cM / Mb<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Mb<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Mb<br />

15 10<br />

5<br />

knob<br />

NOR<br />

Drouaud Chromosome J, et al. (2007) 4 Arabidopsis PLoS Genet thaliana 3(6): e106.


CO rate (cM/Mb)<br />

taux de crossovers<br />

(cM/Mb)<br />

Pre<br />

Points chauds de recombinaison méiotique<br />

cM/Mb<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18000 kb<br />

10<br />

0<br />

80<br />

60<br />

400<br />

350<br />

20<br />

300<br />

250<br />

A<br />

0<br />

200<br />

150<br />

14a1<br />

AT4G35070<br />

AT4G35080<br />

14a2<br />

100<br />

50<br />

cM/Mb<br />

0<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

chromosome coordinate (kb)<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Kb


Crossing-over<br />

Crossing-over obligatoire et interférence


Crossing-over<br />

Crossing-over obligatoire et interférence


Crossing-over<br />

Crossing-over obligatoire et interférence


Crossing-over<br />

Crossing-over obligatoire et interférence


Measure of genetic interference<br />

No interference<br />

r I1<br />

Without CO in I2<br />

r I1<br />

With CO in I2<br />

Complete<br />

interference<br />

***


De grandes questions restent sans réponse :<br />

- Comment les chromosomes se reconnaissent-ils?<br />

- Décision CO / NCO ?<br />

- Comment sont contrôlés les crossing-overs :<br />

formation ?<br />

distribution ? …<br />

- Mécanisme de l’interférence<br />

-Mécanismes cohésion/relargage de la cohésion<br />

- Rôle du complexe synaptonémal<br />

- Contrôle du cycle cellulaire<br />

……


What are the molecular mechanisms?<br />

The main model species in the field:


Molecular data available on plant meiosis<br />

50<br />

45<br />

40<br />

Number of identified genes<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

1998 2009<br />

A. thaliana<br />

Maize<br />

Rice


Forward and Reverse genetics<br />

Collection of mutants<br />

Phenotype ?<br />

Meiotic<br />

mutant<br />

Phenotypic screen<br />

Mutants<br />

400 000<br />

Insertions<br />

Phenotypic<br />

reversion<br />

mutagenesis<br />

Mutants<br />

Genes<br />

Genes<br />

Genes<br />

Sequence<br />

similarity<br />

OR<br />

Expression<br />

profile


Summary: The genes identified through these screens:<br />

• Initiation of recombination<br />

– SPO11 (Grelon et al. EMBO J. 2001)<br />

– MEI1 (Grelon et al., Plant J 2003)<br />

– PRD1 (Demuyt et al EMBO 2007)<br />

– SKI8 (Jolivet et al, Genes to Cells, 2006)<br />

– PRD2, PRD3 (Demuyt et al, PloS Genet 2009)<br />

• Progression of recombination<br />

– MER3 (Mercier at al. Curr Biol 2005)<br />

– MND1 (Kerzendorfer at al JCS 2006, Vignard et<br />

al, PLoS Gen. 2007)<br />

– ZIP4 (Chelysheva et al, PLoS gen 2007)<br />

– SHOC1/PTD1 (Macaisne et al, Curr Biol 2008;<br />

JCS 2011)<br />

– RMI1 (Chelysheva et al, PloS gen 2008)<br />

– MSH5 (Higgins et al, Plant J. 2008)<br />

• cohesion, cell cycle…<br />

– SWI1 (Mercier et al. Gen. and Dev. 2001)<br />

– MEI1 (Grelon et al., Plant J 2003)<br />

– SCC3/REC8 (Chelysheva et al, JCS 2005)<br />

– AtPS1 (D’erfurth et al, PLoS genet 2008)<br />

– <strong>OSD1</strong> (D’erfurth et al, PLoS Biol 2009)<br />

– TAM1 (D’erfurth et al, PLoS Genet, 2010)


To Mix:<br />

The control of Crossover formation


Modified from<br />

Youds & Boulton 2011<br />

ZMMs<br />

SPO11s, PRDs<br />

DMC1, RAD51,<br />

MND1/HOP2, MRE11,<br />

RAD50, COM1,<br />

ASY1, SDS<br />

+<br />

~250<br />

+<br />

FANCM<br />

ROCO2<br />

ROCO4<br />

ZMMs<br />

MLH1/3 RMI/TOP3/BLM<br />

MUS81 ?<br />

~9<br />

~1.5


How can we identify anti-Crossover activities?<br />

= how can we find mutants with more<br />

crossovers?


Wild-type (fertile)<br />

Meiotic mutant (sterile)<br />

zmm-/- (T-DNA)


Wild-type (fertile)<br />

Meiotic mutant (sterile)<br />

zmm-/- (T-DNA)<br />

zmm-/- (T-DNA)<br />

gene?-/- (EMS)


It works!


oco for RestOration of CrossOvers<br />

roco1-/-zip4-/-<br />

zip4-/-<br />

At least 5 times more CO<br />

in roco1/zip4 than in zip4


Patronus


Mutants<br />

patronus<br />

wt


télophase I


Cohesine<br />

patronus<br />

separase


Expression profile<br />

<strong>OSD1</strong><br />

243 aa<br />

Conserved only in plants<br />

Unknown function


osd1 mutant<br />

male meiosis:<br />

100% dyads<br />

Wild type<br />

osd1


osd1 mutant<br />

selfing<br />

osd1<br />

(2N)<br />

85% 4n<br />

15% 3n


osd1 produces male and female diploid gametes<br />

X<br />

Wild type ♀<br />

(2n)<br />

osd1 ♂<br />

(2n)<br />

100% 3n (2n+n)<br />

X<br />

osd1 ♀<br />

Wild type ♂<br />

85% 3n (n+2n)<br />

15% 2n (n+n)


Meiosis in osd1<br />

Normal meiosis I<br />

No meiosis II


osd1 skip meiosis II?<br />

Meiosis I<br />

Meiosis II


Mother<br />

plant<br />

Meiosis I<br />

Gametes


Genotype of osd1 gametes<br />

(molecular markers on triploid offspring)<br />

Male<br />

♂ 0 79 45 58 43<br />

0 78 46 41 46<br />

0 79 45 58 43<br />

♀<br />

female 0 78 46 41 46<br />

% d’heterozygote 0-20 20-40 40-60 60-80 80-100


Wild type<br />

tetrads of pollen grains<br />

Berchowitz LE, Copenhaver GP.<br />

Nat Protoc. 2008;


osd1<br />

dyads of pollen grains


Genotype of osd1 gametes<br />

(molecular markers on triploid offspring + fluorescent markers on pollen)<br />

male 0 79<br />

45<br />

58<br />

43<br />

9 43 78<br />

femelle 0 78<br />

46<br />

41<br />

46<br />

% d’heterozygote 0-20 20-40 40-60 60-80 80-100


<strong>OSD1</strong> is required for the meiosis I-meiosis II transition


Cyclin/CDK activity<br />

Control of meiosis progression<br />

(similar to Mes1 in pombe?)<br />

<strong>OSD1</strong><br />

?<br />

APC<br />

APC<br />

wt<br />

CDK<br />

Cyclin<br />

Entry threshold<br />

Exit threshold<br />

S<br />

Prophase<br />

(G2)<br />

Meiosis I<br />

Meiosis II<br />

Modified from Marston and Amon. 2004


Apomixis<br />

(clonal reproduction through seeds)<br />

- Relatively common in the plant kingdom<br />

Erigeon Taraxacum Heracium Tripsacum Boechera Ranunculus<br />

- Absent in crops<br />

- Its introduction in crops has potential revolutionary<br />

application


T. Dresselhaus


Sexual reproduction<br />

Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(recombined, haploid)<br />

Fertilization


Sexual reproduction<br />

Clonal reproduction<br />

Mitosis<br />

Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(clonal, diploid)<br />

Fertilization<br />

Parthenogenesis


1)<br />

Can we replace meiosis by a mitosis?<br />

Three features distinguish meiosis from mitosis<br />

-Two rounds of chromosome segregation<br />

-Co-segregation of sister chromatids at division I<br />

-Recombination


spo11-1 : no recombination<br />

spo11-1<br />

Grelon et al, 2001


1)<br />

Can we replace meiosis by a mitosis?<br />

Three features distinguish meiosis from mitosis<br />

-Two rounds of chromosome segregation<br />

-Co-segregation of sister chromatids at division I<br />

-Recombination


osd1<br />

Wild type<br />

D’erfurth et al, PLoS Biol 2009<br />

D’erfurth, Cromer et al, PLoS Genet, 2010


osd1<br />

dyads of pollen grains<br />

D’erfurth et al, PLoS Biol 2009<br />

D’erfurth, Cromer et al, PLoS Genet, 2010


1)<br />

Can we replace meiosis by a mitosis?<br />

Three features distinguish meiosis from mitosis<br />

-Two rounds of chromosome segregation<br />

-Co-segregation of sister chromatids at division I<br />

-Recombination


spo11/rec8: no recombination and separation of sisters<br />

(but second division still occurs)<br />

spo11/rec8<br />

(Chelysheva et al, JCS 2005)


The combination of the three mutations should<br />

turn meiosis into mitosis (and produce clonal 2n gametes)<br />

-Two rounds of chromosome segregation<br />

-Co-segregation of sister chromatids at division I<br />

-Recombination


d’Erfurth et al, Plos Biol 2009.<br />

d’erfurth, Cromer et al, Plos genet 2010<br />

MiMe<br />

(osd1/spo11/rec8)<br />

male<br />

Female<br />

100% triploid when crossed by wt


98% (n=248)<br />

K5<br />

osd1<br />

Pollen grains<br />

MiMe pollen grains


Mitosis<br />

Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(clonal, diploid)<br />

Fertilization


Doubling of ploidy at each generation in the MiMe line<br />

2n<br />

(10 chr)<br />

meiosis<br />

4n<br />

(20 chr)<br />

8n<br />

(40 chr)


Mitosis<br />

Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(clonal, diploid)<br />

Fertilization


diploid mother cell<br />

recombined diploid<br />

gamete<br />

haploid GEM<br />

gamete<br />

Fertilization<br />

Simon Chan<br />

Ravi et al, Nature, 2010<br />

Haploid<br />

embryo


Clonal reproduction<br />

Mitosis<br />

Diploid<br />

Cells<br />

(2n)<br />

Meiosis<br />

Gametes<br />

(clonal, diploid)<br />

Fertilisation<br />

with the genome<br />

elimination line (GEM)


cross (♀ x ♂)<br />

Seeds per<br />

siliqua<br />

Germination<br />

rate (%)<br />

Total plants<br />

analysed<br />

Hybrid<br />

diploid* (%)<br />

Triploid (%)<br />

Aneuploid<br />

(%)<br />

Clones* (%)<br />

MiMe x GEM 15 92 156 0.6 13 53 34<br />

GEM x MiMe 23 0.5 12 0 25 33 42<br />

cloned MiMe x GEM 14 91 79 1.3 20 54 24<br />

Marimuthu, Jolivet et al. Science 2011


cross (♀ x ♂)<br />

Seeds per<br />

siliqua<br />

Germination<br />

rate (%)<br />

Total plants<br />

analysed<br />

Hybrid<br />

diploid* (%)<br />

Triploid (%)<br />

Aneuploid<br />

(%)<br />

Clones* (%)<br />

MiMe x GEM 15 92 156 0.6 13 53 34<br />

GEM x MiMe 23 0.5 12 0 25 33 42<br />

cloned MiMe x GEM 14 91 79 1.3 20 54 24<br />

Marimuthu, Jolivet et al. Science 2011


cross (♀ x ♂)<br />

Seeds per<br />

siliqua<br />

Germination<br />

rate (%)<br />

Total plants<br />

analysed<br />

Hybrid<br />

diploid* (%)<br />

Triploid (%)<br />

Aneuploid<br />

(%)<br />

Clones* (%)<br />

MiMe x GEM 15 92 156 0.6 13 53 34<br />

GEM x MiMe 23 0.5 12 0 25 33 42<br />

cloned MiMe x GEM 14 91 79 1.3 20 54 24


Mitosis instead of Meiosis (Apomeiosis)<br />

+ Cross with the genome elimination line<br />

= Clonal seeds !<br />

Marimuthu, Jolivet et al. Science 2011


Mitosis instead of Meiosis (Apomeiosis)<br />

+ Cross with the genome elimination line<br />

= Clonal seeds !<br />

Current limitations:<br />

- dependency on the cross<br />

- Efficiency (35%)<br />

- Not a crop!<br />

Marimuthu, Jolivet et al. Science 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!