15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<br />

Period IV: <strong>The</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores (<str<strong>on</strong>g>the</str<strong>on</strong>g> swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer) c<strong>on</strong>tinues until <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong><br />

(IV) where <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside polymer is not sufficient to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticized state. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first moments, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity comes more<br />

significant and finally c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> growing pores can<br />

coalesce and reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> global pore density (Part IV <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 2.20).<br />

Figure 2.20: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> occurring phenomena during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming with time.<br />

(C<strong>on</strong>tinuous and dotted lines corresp<strong>on</strong>d to P and T variati<strong>on</strong>s respectively).<br />

4 <strong>The</strong>oretical Background <str<strong>on</strong>g>of</str<strong>on</strong>g> Gas Foaming<br />

<strong>The</strong> modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers by pressure quench method requires <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sorpti<strong>on</strong> data and its modelling are required for such<br />

study.<br />

4.1 Diffusi<strong>on</strong><br />

<strong>The</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> studying <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> phenomen<strong>on</strong> is to calculate diffusi<strong>on</strong> coefficients for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sorpti<strong>on</strong>-diffusi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . <strong>The</strong>se coefficients provide informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into or from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with different c<strong>on</strong>diti<strong>on</strong>s. <strong>The</strong> diffusi<strong>on</strong> is vital to understand<br />

CO 2 -polymer interacti<strong>on</strong>s. <strong>The</strong> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into polymers results in several changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer such<br />

as lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> point, manipulating <str<strong>on</strong>g>the</str<strong>on</strong>g> chain mobility, swelling etc. Rubbery polymers<br />

(above T g ) obey simply <str<strong>on</strong>g>the</str<strong>on</strong>g> Fickian diffusi<strong>on</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>y have a homogenous liquid-like behaviour. N<strong>on</strong>-<br />

Fickian diffusi<strong>on</strong> occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> glassy polymer and will be modelled by <str<strong>on</strong>g>the</str<strong>on</strong>g> rules <str<strong>on</strong>g>of</str<strong>on</strong>g> Fickian diffusi<strong>on</strong>. For<br />

Fickian diffusi<strong>on</strong>, unsteady state <strong>on</strong>e dimensi<strong>on</strong>al equati<strong>on</strong> is given by:<br />

C<br />

t<br />

<br />

<br />

<br />

C<br />

D<br />

x x<br />

<br />

<br />

<br />

Where C is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas, x is <str<strong>on</strong>g>the</str<strong>on</strong>g> distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> gas diffuses, D is <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

c<strong>on</strong>stant and t is <str<strong>on</strong>g>the</str<strong>on</strong>g> time. This equati<strong>on</strong> has been solved by Crank [1975] for c<strong>on</strong>stant diffusi<strong>on</strong> coefficient<br />

inside a plane sheet:<br />

(2.1)<br />

- 48 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!