15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 1.<br />

Polylactide Based Bio-Materials<br />

<strong>The</strong> cell volume changes with compositi<strong>on</strong> in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>:<br />

V=3507 + 4.9xÅ 3 = 13 Å 3<br />

So, in our case <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit cell is: V = 3556 Å 3<br />

3.2.2.4 Physicochemical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP Phases<br />

<strong>The</strong> solubility in water <str<strong>on</strong>g>of</str<strong>on</strong>g> α and βTCP has been fully investigated and reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature<br />

[Fowler and Kuroda, 1986; Gregory et al., 1974]. As a general trend, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se phases was<br />

found to decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> order α TCP > βTCP > Ca-deficient apatites > HAp [Ducheyne et al., 1993]. It may<br />

exhibit metastable solubility equilibrium, as recorded by Baig et al. [1999] in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e mineral and<br />

n<strong>on</strong>-stoichiometric apatites. Table 1.5 ga<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different comp<strong>on</strong>ents.<br />

Table 1.5: Solubility products <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases in water at 25°C.<br />

Phase Chemical Formula PK sp (25 °C) References<br />

αTCP α-Ca 3 (PO 4 ) 2 25.5 [Fowler and Kuroda, 1986]<br />

β-Ca 3 (PO 4 ) 2<br />

[Gregory et al., 1974]<br />

28.9−85.1<br />

Ca 10−x (PO4) 6−x (HPO4) x (OH) 2−x<br />

[Ratner, 2004]<br />

ATCP Ca 3 (PO 4 ) 2·n(H 2 O) 24.2 [Somrani et al., 2005]<br />

HAp Ca 10 (PO 4 ) 6 (OH) 2 117.2 [Ratner, 2004]<br />

βTCP<br />

Ca-deficient apatite<br />

3.2.2.5 <strong>The</strong>rmal Treatment in Air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TCP Phases<br />

No variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ca/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases can occur <strong>on</strong> heating in air. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tricalcium<br />

phosphate phases, α TCP is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature stable form. Its stability regi<strong>on</strong> ranges from<br />

1125 to 1430°C [Welch and Gutt, 1961]. Under 1125°C, βTCP is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable tricalcium phosphate phase.<br />

Rapid quenching from temperatures higher than 1125°C, however, permits <str<strong>on</strong>g>the</str<strong>on</strong>g> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> α-TCP<br />

phase at room temperature. <strong>The</strong> transiti<strong>on</strong> temperature between <str<strong>on</strong>g>the</str<strong>on</strong>g> β and α TCP phases may vary depending<br />

<strong>on</strong> i<strong>on</strong> impurities such as Mg, Zn and Fe which stabilise βTCP. Apatitic TCP can be c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> lowtemperature<br />

crystalline form <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP (e.g. up<strong>on</strong> drying at 80°C). On heating at temperatures higher than<br />

800°C, this phase transforms into βTCP [Destainville et al., 2003]. Pure ATCP remains amorphous when<br />

heated up to 630°C [Eanes, 1970]. Above this temperature, it crystallises first into <str<strong>on</strong>g>the</str<strong>on</strong>g> metastable α TCP<br />

generally associated with small fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP and, around 850°C, into pure βTCP. However, ATCP<br />

c<strong>on</strong>taining Mg i<strong>on</strong>s (or c<strong>on</strong>taining o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements stabilising <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP phase such as Fe and Zn) transforms<br />

directly into <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP phase without <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediary formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> α TCP. It has been suggested, based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic and nuclear magnetic res<strong>on</strong>ance studies, that α TCP formed by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ATCP could be more stable and c<strong>on</strong>tains fewer defects than <str<strong>on</strong>g>the</str<strong>on</strong>g> α TCP phase obtained by quenching from<br />

temperatures above <str<strong>on</strong>g>the</str<strong>on</strong>g> β to α TCP transiti<strong>on</strong> [Somrani et al., 2003; Belgrand, 1993].<br />

<strong>The</strong>rmal treatment in air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> low-temperature phases, ATCP and Ap TCP, at 900°C, for several<br />

hours does indeed lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP, and this is a way to prepare this phase with high purity.<br />

When TCP’s Ca/P atomic ratio is not exactly 1.5, impurities appear. <strong>The</strong> main impurities, hydroxyapatite<br />

(corresp<strong>on</strong>ding to a Ca/P atomic ratio above 1.5) and β calcium pyrophosphate (corresp<strong>on</strong>ding to a Ca/P<br />

atomic ratio under 1.5), can be detected, respectively, by XRD and FTIR spectroscopy. α TCP is generally<br />

obtained by heating βTCP above 1125°C (<str<strong>on</strong>g>the</str<strong>on</strong>g> allotropic transiti<strong>on</strong> temperature for β → α), followed by rapid<br />

quenching. It is interesting to note that α TCP can also be obtained transitorily by heating ATCP at<br />

temperatures lower than 1125°C (between 630 and 850°C), but this method generally leads to a product<br />

c<strong>on</strong>taining traces <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP [Somrani et al., 2003; Eanes, 1970].<br />

Both α and βTCP can also be prepared from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r starting powders and, more c<strong>on</strong>veniently, from<br />

mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca-P phases with <str<strong>on</strong>g>the</str<strong>on</strong>g> adequate global Ca/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be obtained by<br />

- 23 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!