15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 1.<br />

Polylactide Based Bio-Materials<br />

latter case P D LA is used as a nucleating agent, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallizati<strong>on</strong> rate. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> higher<br />

crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> this stereo-complex, <str<strong>on</strong>g>the</str<strong>on</strong>g> biodegradability will become slower. <strong>The</strong> interesting feature is that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer blend remains transparent.<br />

Even when burned, PLA produces no nitrogen oxide gases and <strong>on</strong>ly <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong><br />

heat generated by polyolefins; it does not damage <str<strong>on</strong>g>the</str<strong>on</strong>g> incinerator and provides significant energy savings.<br />

<strong>The</strong> increasing appreciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA, coupled with knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how such<br />

properties can be improved to achieve compatibility with <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastics processing, manufacturing, and<br />

end-use requirements, has fuelled technological and commercial interest in PLA. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last few years, a<br />

wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>s have been undertaken to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties and <str<strong>on</strong>g>the</str<strong>on</strong>g> impact<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA. It can <str<strong>on</strong>g>the</str<strong>on</strong>g>refore compete with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r low-cost biodegradable/biocompatible or commodity<br />

polymers.<br />

<strong>The</strong>se efforts have made use <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable and n<strong>on</strong>-biodegradable fillers and plasticizers or<br />

blending <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r polymers [Martin and Avérous, 2001]. In recent years <str<strong>on</strong>g>the</str<strong>on</strong>g> nano-scale has<br />

afforded unique opportunities to create revoluti<strong>on</strong>ary material combinati<strong>on</strong>s. Nano-structured materials or<br />

nano-composites based <strong>on</strong> polymers have been an area <str<strong>on</strong>g>of</str<strong>on</strong>g> intense industrial and academic research over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

past <strong>on</strong>e and a half decades [Sinha Ray and Okamoto, 2003; Biswas and Ray, 2001; Alexandre and Dubois,<br />

2000; Zanetti et al., 2000; LeBar<strong>on</strong> et al., 1999]. In principle, nano-composites are an extreme case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

composite materials in which interfacial interacti<strong>on</strong>s between two phases are maximized. In <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> term nano-composite is generally used for polymers with submicrometer dispersi<strong>on</strong>s. In polymer-based<br />

nano-composites, nanometer-sized particles <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic or organic-materials are homogeneously dispersed<br />

as separate particles in a polymer matrix. This is <strong>on</strong>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizing this type <str<strong>on</strong>g>of</str<strong>on</strong>g> material. <strong>The</strong>re is, in<br />

fact, a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-particles and <str<strong>on</strong>g>of</str<strong>on</strong>g> ways to differentiate <str<strong>on</strong>g>the</str<strong>on</strong>g>m and to classify <str<strong>on</strong>g>the</str<strong>on</strong>g>m by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>y possess. <strong>The</strong>ir shape varies and includes:<br />

i. needlelike or tubelike structures regarded as <strong>on</strong>e-dimensi<strong>on</strong>al particles (for example,<br />

inorganic nano-tubes, carb<strong>on</strong> nano-tubes, or sepiolites);<br />

ii.<br />

iii.<br />

two-dimensi<strong>on</strong>al platelet structures (for example, layered silicates); and<br />

spheroidal three-dimensi<strong>on</strong>al structures (for example, silica or zinc oxide).<br />

To date, various types <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-reinforcements such as nano-clay, cellulose nano-whiskers,<br />

ultrafine layered titanate, nano-alumina, and carb<strong>on</strong> nano-tubes have been used for <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocomposites<br />

with PLA [Yu, 2009; Mark, 2006; Kim et al., 2006; Nishida et al., 2005; Nazhat et al., 2001;<br />

Dumitriu, 1994].<br />

2.2 Poly(lactide-co-glycolide acid) (PLGA)<br />

2.2.1 General Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA Copolymers<br />

Glycolic acid is present in small amounts in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits and vegetables. It accumulates<br />

during photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in a side path <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Krebs cycle. So far, ec<strong>on</strong>omically viable methods to produce<br />

glycolic acid in photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic biological systems do not exist. At an industrial scale, carb<strong>on</strong> m<strong>on</strong>oxide,<br />

formaldehyde and water are reacted at elevated temperature and pressure to produce glycolic acid. PLGA is<br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized by means <str<strong>on</strong>g>of</str<strong>on</strong>g> random ring-opening co-polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two different m<strong>on</strong>omers, <str<strong>on</strong>g>the</str<strong>on</strong>g> LA and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GA (cf. Figure 1.5).<br />

Comm<strong>on</strong> catalysts used in <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this polymer include Tin (II) 2-Ethylhexanoate, Tin<br />

(II) Alkoxides or aluminum isopropoxide. During polymerizati<strong>on</strong>, successive m<strong>on</strong>omeric units (<str<strong>on</strong>g>of</str<strong>on</strong>g> glycolic<br />

- 16 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!