15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

5.21, we have observed an opposite behaviour for a high saturati<strong>on</strong> pressure value <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 bars. This can be<br />

attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> high CO 2 sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 at high pressure, which leads to high glass transiti<strong>on</strong><br />

depressi<strong>on</strong>.<br />

(A)- PLGA 50:50 (B)- PLGA 85:15<br />

Figure 5.21: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds processed at P sat = 200 bars;<br />

T sat = 36.5°C, t sat = 20 min. and dP/dt = 20 bar /s.<br />

4.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Pressure (P sat )<br />

We have observed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> is an important parameter to understand <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

foaming phenomena. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> pressure determines <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

matrix. At low pressure range, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is inferior to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high<br />

pressure ranges. It must have been noticed that <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticizati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 for <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer (and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> point) increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. As explained previously,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> point is found to be earlier with a P sat <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 bars than 100 bar (cf. Figure 5.9). Since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vitrificati<strong>on</strong> point determines <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth, a polymer saturated at 100 bars has greater time for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth during depressurizati<strong>on</strong> and desorpti<strong>on</strong>. This behaviour can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 which increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 (<str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>) in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

matrix. So, <strong>on</strong>e can say that since <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient and <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticizati<strong>on</strong> is greater at higher<br />

pressures, during depressurizati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> following desorpti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 will desorb faster than for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lower saturati<strong>on</strong> pressures. At lower saturati<strong>on</strong> pressures, <str<strong>on</strong>g>the</str<strong>on</strong>g> time for CO 2 to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> induced growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores is greater and yields to greater pores. <strong>The</strong> results<br />

presented in Table 5.8 and Figure 5.9, are c<strong>on</strong>firming our hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that we have used to model <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> pressure, must not have been forgotten. Nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory includes <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier for a<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new nuclei. This energy barrier is given by Eq. 2.23 in Chapter 2 and according to that when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pressure increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores that can be generated by unit<br />

volume, increases. We can look to <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomena from <str<strong>on</strong>g>the</str<strong>on</strong>g> window <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs free energy. According to<br />

which ΔG = ΔH - TΔS, ΔG decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> change in entropy ΔS, which is true for all<br />

systems available in <str<strong>on</strong>g>the</str<strong>on</strong>g> universe. In our case, when we increase <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, we increase <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system (we increase greater than that we could increase with lower pressures), and<br />

c<strong>on</strong>sequently decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> ΔG greater than that we could decrease with lower pressures. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy barrier that determines <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity to generate new nuclei decreases, which means that we can create<br />

more pores per unit volume at elevated pressures.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference found between <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> times were not significantly<br />

different (2.64 and 2.72 s. for 100 and 200 bars, respectively). Thus, we can c<strong>on</strong>clude that generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nuclei is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant factor which affects <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing saturati<strong>on</strong><br />

pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> coalescence phenomen<strong>on</strong> may be effective at lower saturati<strong>on</strong> pressures. We finally have to<br />

- 137 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!