15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<strong>The</strong> primary approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this model is that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> two sides <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bubble interface is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure initial and final pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber before and after<br />

depressurizati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier to create nuclei decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing pressure<br />

difference and it is represented in Figure 5.19-B. <strong>The</strong> exp<strong>on</strong>entially decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure means that more nuclei can be generated at high pressures. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> is an<br />

affecting parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ΔG, it has a great influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nuclei density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. <strong>The</strong> plateau after<br />

150 bars can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller pore size (great number <str<strong>on</strong>g>of</str<strong>on</strong>g> pore) at higher pressure.<br />

As shown in Figure 5.19, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data for <str<strong>on</strong>g>the</str<strong>on</strong>g> pressures<br />

greater than 100 bars and diverges significantly for 80 bars where <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei is smaller than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> greater pressures. One must remember that this model is c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> homogenous nucleati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Thus, this divergence for low pressures can be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneous nucleati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing pores at lower pressures. Indeed, at low pressures, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PLGA 50:50 is also lower and CO 2 is not completely distributed across <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet by <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>-diffusi<strong>on</strong>.<br />

(A)<br />

(B)<br />

Figure 5.19: (A) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 scaffolds as <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat ;<br />

(B) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier for PLGA 50:50 -CO 2 system.<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix formula: X s = - 0.5 A -1 a k where a k is <str<strong>on</strong>g>the</str<strong>on</strong>g> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first order coefficients and<br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d order coefficients, reported <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.23, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following values: As<br />

both coefficients a 11 and a 22 are positive, <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>ary point is a minimum. <strong>The</strong> pressure P sat = 100 bars and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate dP/dt = 0.625 bar/s have been chosen as <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters which give <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum.<br />

<strong>The</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores, at this point, is equal to 250 m.<br />

Table 5.23: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert design: research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore dimensi<strong>on</strong>.<br />

Reduced<br />

natural<br />

a k = - 74.4 A = 87.0 10.25 X 1 - 1 0.625 dP/dt<br />

- 44.3 10.25 32.3 X 2 - 0.87 100 P sat<br />

Results obtained from our experimentati<strong>on</strong>s has shown that when pore size is large higher porosity<br />

is observed while pores with small pore diameter reflects small porosity. Beckman, 2004 have also shown<br />

similar behaviours in his experimentati<strong>on</strong>s . As per our understanding , it is impossible to create pores <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large diameter with small polymer volume or small pores with important polymer swelling.<br />

- 134 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!