15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<strong>The</strong> processing parameters are: saturati<strong>on</strong> pressure P sat = 150 bars, saturati<strong>on</strong> time t sat = 20<br />

minutes, saturati<strong>on</strong> temperature T sat = 36.5 o C and rapid depressurizati<strong>on</strong> rate dP/dt (dP/dt time less than 3<br />

sec). <strong>The</strong> saturati<strong>on</strong> time for PLGA 85:15 has been reduced from 60 minutes to 20 minutes because we have<br />

increased <str<strong>on</strong>g>the</str<strong>on</strong>g> LA/GA ratio. Pini et al. [2008] have proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside PLGA 85:15 is<br />

greater than inside PLGA 50:50 during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process.<br />

3.1.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 85:15<br />

Foaming experiments <strong>on</strong> blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 85:15 revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter is first<br />

increased and <str<strong>on</strong>g>the</str<strong>on</strong>g>n decreased with increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 in <str<strong>on</strong>g>the</str<strong>on</strong>g> blend. As shown in Figure 5.12,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is <strong>on</strong>e compositi<strong>on</strong> (50% P L,DL LA + 50% PLGA 85:15 ), at which <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore size is maximum.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore size is lower than with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous blends with <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 .<br />

Average Pore Diameter (m)<br />

16 Psat = 150 P bars L,DL<br />

LA and PLGA 85:15 Blend<br />

14 T sat = 36.5 °C<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

t sat = 20 min<br />

dP/dt = Rapid<br />

0<br />

0 20 40 60 80 100<br />

Fracti<strong>on</strong> (%)<br />

Figure 5.12: Average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer blends as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA ratio.<br />

<strong>The</strong>se preliminary experiments <strong>on</strong> (PLGA 50:50 + P L,DL LA) blends and (PLGA 85:15 + P L,DL LA)<br />

blends c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> literature works [Goel and Beckman, 1994b] c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2<br />

parameters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size. Various process parameters (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong>, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong>) have an influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> final pore size. <strong>The</strong> drop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature acts differently <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers foaming behaviours. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se reas<strong>on</strong>s, we have carried <strong>on</strong><br />

different experimental designs.<br />

Our experimental study showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer increases while <str<strong>on</strong>g>the</str<strong>on</strong>g> LA<br />

c<strong>on</strong>tent increases in a PLGA co-polymer. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into P D,L LA is higher than in PLGA,<br />

whatever its compositi<strong>on</strong>. This behaviour has been explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an extra apolar CH 3 methyl<br />

group in LA than GA [Liu and Tomasko, 2007b], which, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> authors, can drive to two opposites<br />

phenomena: firstly, it decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 ’s interacti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>yl group <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

and sec<strong>on</strong>dly, it creates more available free volume for CO 2 to solubilise. Besides, Kazarian et al. [1996b]<br />

have found that <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 with polymers can also be explained by chemical interacti<strong>on</strong>s and<br />

CO 2 can behave like a Lewis acid.<br />

3.2 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 Process<br />

3.2.1 Model with a 2 4 Complete Design<br />

We have started with <str<strong>on</strong>g>the</str<strong>on</strong>g> most basic experimental design, a complete plan with 4 parameters and 2<br />

levels. As listed in Table 5.12, PLGA 100/0 or 0/100 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> pure PLGA 50:50 or PLGA 85:15<br />

respectively and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.13. 25/75, 50/50 and 75/25 denominati<strong>on</strong>s are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> blends.<br />

- 126 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!