15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Crystallizati<strong>on</strong>, crystallinity degree, and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

molecular weight, polymerizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal history, purity, and so <strong>on</strong>. As reported by Ikada et al.<br />

[1987], blending <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA and P D LA results in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a stereo-complex with a crystalline structure<br />

different from that <str<strong>on</strong>g>of</str<strong>on</strong>g> each homopolymer and melting temperatures that reach 230 o C. C<strong>on</strong>tradictory data are<br />

reported about P L LA melting enthalpy, ranging in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature from 40 to 203 J/g. To calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity, we have used <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> value adopted for <str<strong>on</strong>g>the</str<strong>on</strong>g> melting enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> totally<br />

crystallised P L LA, [Auras et al., 2010].<br />

c % = 100 (ΔH m - ΔH c )/93.6<br />

Poly(lactic acid) (PLA) is a glassy, high modulus <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastic polymer with properties<br />

comparable to polystyrene (PS). <strong>The</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactides depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacturing method, <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalinity factor, <str<strong>on</strong>g>the</str<strong>on</strong>g> T g and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide, D-lactide or racemic D,L-lactide<br />

c<strong>on</strong>tents. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(lactic -co-glycolic) acid <str<strong>on</strong>g>the</str<strong>on</strong>g> properties are intermediate between those <str<strong>on</strong>g>of</str<strong>on</strong>g> poly lactic<br />

acid and polyglycolic acid. <strong>The</strong>re is increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties but a decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> T g due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA structure.<br />

2 Kinematics and <strong>The</strong>rmodynamics Experiments<br />

<strong>The</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>-desorpti<strong>on</strong> studies was to be able to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming phenomen<strong>on</strong><br />

more precisely. Thus, in this part, we have realized experiments to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> kinetics by using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> data. As we have menti<strong>on</strong>ed earlier, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer determines<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei generated and it deserves a proper investigati<strong>on</strong>. We have also investigated <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> phenomen<strong>on</strong> which has influence both <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth and <str<strong>on</strong>g>the</str<strong>on</strong>g> final structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer.<br />

2.1 Sorpti<strong>on</strong>-Diffusi<strong>on</strong> Kinetics<br />

<strong>The</strong> aim to plot kinetic curves was to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer by CO 2 . To<br />

obtain kinetic curves, experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 20, 60, 120 and 240 minutes have been performed. As shown in<br />

Figure 5.6-(A), <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> curve is reaching to a plateau after 60 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> processing which means that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer can be c<strong>on</strong>sidered to be quiet saturated by CO 2 after 60 minutes at 125 bars and 36.5°C. In<br />

Figure 5.6-(B), M t denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer at time t, and M ∞ is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum sorbed<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . Here, all M t values are <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolated data (to t = 0) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial linear parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> curves as presented in Chapter 3, secti<strong>on</strong> 4. Each M t value is analyzed after different experiments.<br />

M ∞ has been taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 240 minutes, where <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium is supposed to be completely reached.<br />

<strong>The</strong> sorpti<strong>on</strong> behaviour is modelled using <strong>on</strong>e dimensi<strong>on</strong>al diffusi<strong>on</strong> equati<strong>on</strong> from a plane sheet<br />

(Eq.2,2), chapter 2. <strong>The</strong> Minerr functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathcad has been used to optimize <str<strong>on</strong>g>the</str<strong>on</strong>g> modelling and to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> average sorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> diffusi<strong>on</strong> coefficient was found as<br />

3.64 × 10 -10 m 2 s -1 for P sat = 125 bars, T sat = 36.5°C and t sat = 120 min. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 , thus <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient must increase with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 solubilized in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer, but to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, we have c<strong>on</strong>sidered an average sorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient all<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> time interval. Mathcad programs for diffusi<strong>on</strong> are presented in Annex A-2. <strong>The</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is in<br />

very good agreement with experimental data as show in Figure 5.6-(A).<br />

- 120 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!