15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<strong>The</strong>re is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a compromise between porosity and scaffold mechanical characteristics. <strong>The</strong>refore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> biomechanical challenge in designing a scaffold is to achieve sufficient stiffness and strength in a highly<br />

porous structure to provide mechanical integrity [Zhang and Ma, 1999a]. <strong>The</strong> biostability <str<strong>on</strong>g>of</str<strong>on</strong>g> many implants<br />

depends <strong>on</strong> factors such as strength, stiffness, absorpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> material interface and chemical degradati<strong>on</strong><br />

[Hutmacher et al., 2008]. <strong>The</strong> review by Gibs<strong>on</strong> and Ashby [1999], c<strong>on</strong>cluded <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a porous solid depended mainly <strong>on</strong> its relative density, <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material that made up <str<strong>on</strong>g>the</str<strong>on</strong>g> pore<br />

edges or walls and anisotropic nature cause <str<strong>on</strong>g>of</str<strong>on</strong>g> processing technique.<br />

<strong>The</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> and failure <str<strong>on</strong>g>of</str<strong>on</strong>g> foam depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and physical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> used materials and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> macrostructure behaviour under compressi<strong>on</strong>. <strong>The</strong> macrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> glassy<br />

foam c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> closed cells. <strong>The</strong> main part <str<strong>on</strong>g>of</str<strong>on</strong>g> its mass is c<strong>on</strong>centrated at <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes and juncti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cells. <strong>The</strong> deformati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material under compressi<strong>on</strong> occur according to <str<strong>on</strong>g>the</str<strong>on</strong>g> stress-strain<br />

diagram. Three mechanical states are marked by points A, B, C <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph representing <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foam sample (cf. Figure 3.19). A corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> end point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic regi<strong>on</strong>; B marked <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plastic regi<strong>on</strong> and C <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam. <strong>The</strong> compressive elastic (plastic) modulus can be deduced from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding curve.<br />

Figure 3.19: Compressi<strong>on</strong> testing result output for foams<br />

[Gnip et al., 2004]<br />

Compressi<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main stressed states <str<strong>on</strong>g>of</str<strong>on</strong>g> foam used in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> medical applicati<strong>on</strong>s.<br />

<strong>The</strong> yielding point A describes compressive strength. For <str<strong>on</strong>g>the</str<strong>on</strong>g> foams with a stress peak, A is<br />

defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> peak value. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> no stress peak, at highly porous foams, A can be obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intersecti<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> two tangent lines besides <str<strong>on</strong>g>the</str<strong>on</strong>g> flexure regi<strong>on</strong>. Two alternative parameters were also used<br />

to characterize compressive strength. For instance, S is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stress–strain curve<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus slope at an <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% strain adopting <str<strong>on</strong>g>the</str<strong>on</strong>g> guidelines for compressi<strong>on</strong> testing <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e<br />

cement set in ASTM F451-99a, and 10 is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> stress at 10 % strain according to ISO 844-2004 for<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid cellular foams. <strong>The</strong> compressi<strong>on</strong> stress B corresp<strong>on</strong>ds to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flexural deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cell walls when <str<strong>on</strong>g>the</str<strong>on</strong>g>ir stability is lost [Gnip et al., 2004]. It can<br />

also be denoted as stress corresp<strong>on</strong>ding to maximum possible compacti<strong>on</strong> σ comp. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> damaged elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foam macrostructure.<br />

6.2 Surface Energy Experiments<br />

Surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid is <str<strong>on</strong>g>the</str<strong>on</strong>g> force required per unit length to stretch a pre-existing surface<br />

(N/m) while <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid is <str<strong>on</strong>g>the</str<strong>on</strong>g> work required per unit area to create a new surface (J/m 2 ).<br />

<strong>The</strong> surface tensi<strong>on</strong> is an intensely sensitive indicator that provides a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

characteristics (e.g. wetting, foaming, emulsificati<strong>on</strong>…) <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid. It is obvious that a high liquid surface<br />

- 77 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!