15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ diffracti<strong>on</strong> assumes that <str<strong>on</strong>g>the</str<strong>on</strong>g> measured particles are opaque and scatter light at narrow<br />

angles. <strong>The</strong>refore it is applied <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g> large particles and gives incorrect results with <str<strong>on</strong>g>the</str<strong>on</strong>g> fine particles<br />

[Kippax, 2005].<br />

4 Sorpti<strong>on</strong> Analysis<br />

Sorpti<strong>on</strong> analyses have been carried out in order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymers at different pressures. <strong>The</strong> method used, which is proposed by Berens and Huvard [1989a]<br />

involves <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer pellets, followed by very rapid venting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber and<br />

transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets to a precisi<strong>on</strong> balance for recording <str<strong>on</strong>g>the</str<strong>on</strong>g> weight variati<strong>on</strong> during desorpti<strong>on</strong>. Recording<br />

with a video camera gives kinetic data <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong>, and since <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong> are linear (cf.<br />

Figure 3.11 for example for P = 125 bars), it allows to extrapolate to t = 0 sec (which is <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> period). This extrapolati<strong>on</strong> gives <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer in <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> period. Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g>n calculated by:<br />

w w0<br />

s (3.9)<br />

w<br />

where s is <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> (g CO 2 /g polymer), w is <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolated weight <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and w 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer weight before <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment.<br />

Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50<br />

Wt.(gm)<br />

0.178<br />

0.176<br />

0.174<br />

0.172<br />

0.170<br />

0.168<br />

0.166<br />

y = -0.002x + 0.1935<br />

Polymer Weight<br />

Extrapolated Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer with Time<br />

0 5 10 15 20 25 30<br />

(t) 1/2 (sec) 1/2<br />

Figure 3.11: Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 with time.<br />

By changing <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time, kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer samples can be<br />

calculated.<br />

5 Microscopic Methods to Analyze Porous Structures<br />

5.1 Methods to Determine Porosity<br />

5.1.1 Geometric Porosity<br />

<strong>The</strong> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> a porous medium describes <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> void space in <str<strong>on</strong>g>the</str<strong>on</strong>g> material, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

void may c<strong>on</strong>tain, for example, air or water. It is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship:<br />

V<br />

<br />

V<br />

v<br />

(3.10)<br />

T<br />

where V v is <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> void-space (such as fluids) and V T is <str<strong>on</strong>g>the</str<strong>on</strong>g> total or bulk volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material, including <str<strong>on</strong>g>the</str<strong>on</strong>g> solid and void comp<strong>on</strong>ents.<br />

- 70 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!