15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size distributi<strong>on</strong>. Three <str<strong>on</strong>g>the</str<strong>on</strong>g>ories may be used for that: Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Lorenz-<br />

Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory;<br />

3.2.1 Rayleigh’ <strong>The</strong>ory<br />

Figure 3.7: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> laser diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spherical particle.<br />

Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory demands that <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> incident<br />

light. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole particle behaves similarly in a homogeneous electric field. <strong>The</strong> incident light<br />

penetrates <str<strong>on</strong>g>the</str<strong>on</strong>g> particle due to <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle. <strong>The</strong> penetrati<strong>on</strong> time is short compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> incident light. Induced dipole moment is formed when electric charges <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> polar particle are<br />

forced apart by subjecting <str<strong>on</strong>g>the</str<strong>on</strong>g> particle to electromagnetic wave. Like so, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarized particle is created.<br />

<strong>The</strong> electric field and <str<strong>on</strong>g>the</str<strong>on</strong>g> dipole moment oscillate synchr<strong>on</strong>ously and <str<strong>on</strong>g>the</str<strong>on</strong>g> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dipole moment is<br />

downright to <str<strong>on</strong>g>the</str<strong>on</strong>g> incident light as in Figure 3.8, which also describes <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering to different<br />

directi<strong>on</strong>s [Xu, 2000].<br />

According to this <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam is assumed to not <strong>on</strong>ly be diffracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> particles, but<br />

is also reflected and diffused. <strong>The</strong> light will spread until <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> refracti<strong>on</strong> index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

propagati<strong>on</strong> envir<strong>on</strong>ment. This index variati<strong>on</strong> will create a refracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ochromatic beam; <str<strong>on</strong>g>the</str<strong>on</strong>g> laser<br />

will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> detector having been subjected to several variati<strong>on</strong>s in its propagati<strong>on</strong> directi<strong>on</strong>.<br />

Figure 3.8: Three dimensi<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering from a dipole.<br />

[Xu, 2000]<br />

3.2.2 Lorenz-Mie’ <strong>The</strong>ory<br />

Lorenz-Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory (or Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory) is more detailed and wider <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> light scattering than<br />

Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. It can be used for spherical particles which can be small, large, transparent or opaque.<br />

According to Lorenz-Mie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle (primary<br />

scattering) can be predicted with <str<strong>on</strong>g>the</str<strong>on</strong>g> refractive indexes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle and <str<strong>on</strong>g>the</str<strong>on</strong>g> medium. Lorenz-Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

- 68 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!