15.05.2015 Views

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

Influence of the Processes Parameters on the Properties of The ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Institut Nati<strong>on</strong>al Polytechnique de Toulouse (INP Toulouse)<br />

<br />

<br />

Arfan Ul Haq SUBHANI<br />

<br />

Science et Génie des Matériaux<br />

vendredi 22 juillet 2011<br />

<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Processes</str<strong>on</strong>g> <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>The</strong> Polylactides Based Bio and Eco-Materials<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> des paramètres de procédés sur les<br />

propriétés et éco-composites à base de polylactides<br />

<br />

Sciences de la Matière (SDM)<br />

<br />

Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux<br />

<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>esseur A. LAMURE<br />

<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>esseur E. BADENS, Pr. Université Aix-Marseille<br />

B. CHARRIER, MC. Université Pau<br />

M :<br />

E. BADENS, Pr. Université Aix-Marseille, Rapporteur<br />

B. CHARRIER, MC Université Pau, Rapporteur<br />

M. VERT, Dr. Université M<strong>on</strong>tpellier I, Examinateur<br />

N. LE BOLAY, Pr. INP Toulouse, Examinateur<br />

V. SANTRAN, D.G. ICELLTIS, Examinateur<br />

A. LAMURE, Pr. INP Toulouse, Directeur de thèse


“It is not difficult really-<br />

<strong>The</strong> secret is in knowing how”<br />

(Edward Leedskalnin)<br />

i


iii<br />

Dedicated to<br />

My Fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r and Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

&<br />

My Wife and S<strong>on</strong>s


Acknowledgements<br />

<strong>The</strong>re are many who have c<strong>on</strong>tributed in small and large ways to <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

dissertati<strong>on</strong> and to whom I give special thanks for what <str<strong>on</strong>g>the</str<strong>on</strong>g>y have given and what I have learned from <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

I thank my Lord and Savior for his grace and mercy that has blessed me since before I was born.<br />

<strong>The</strong> research subject <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis was performed in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory Institute Carnot - Centre<br />

Interuniversitaire de Recherche Ingénierie Materiaux, <str<strong>on</strong>g>the</str<strong>on</strong>g> team " SURF / Surfaces : Réactivité-Protecti<strong>on</strong>. I<br />

am first <str<strong>on</strong>g>of</str<strong>on</strong>g> all very grateful to Francis MAURY, Director and CIRIMAT Raja Chatila, LAAS director, for<br />

having me in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective laboratory.<br />

I wish to thank Francis and Alain for welcoming me in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir team and for <str<strong>on</strong>g>of</str<strong>on</strong>g>fering me this PhD<br />

exciting subject. I am deeply indebted to my supervisor Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Alain Lamure, who provided me an<br />

opportunity to perform this work and for his c<strong>on</strong>stant support, guidance and fellowship to carry out this Ph.D<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in his supervisi<strong>on</strong>, and also for helping me to have better perspective in my scientific thinking. Alain,<br />

thanks for giving me your trust. Thank you for <str<strong>on</strong>g>the</str<strong>on</strong>g> freedom that you left me appropriating for this research<br />

topic and for your support in all circumstances. Thank you also and especially for your friendliness and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

way you always focus <strong>on</strong> human relati<strong>on</strong>ships. I would like to express my deep appreciati<strong>on</strong> for his<br />

availability even passing through a critical health c<strong>on</strong>diti<strong>on</strong>, many valuable suggesti<strong>on</strong>s and discussi<strong>on</strong>s that<br />

led to <str<strong>on</strong>g>the</str<strong>on</strong>g> progress and my pers<strong>on</strong>al growth. Francis, I want to thank you for <str<strong>on</strong>g>the</str<strong>on</strong>g> advice you've provided<br />

throughout three and half years.<br />

I would also like to express my gratitude to my two informal co-supervisors present in <str<strong>on</strong>g>the</str<strong>on</strong>g> jury:<br />

first, Ver<strong>on</strong>ique SANTARN, DG ICELLTIS, allowed me to work with her and expand my knowledge in<br />

tissue engineering biotechnology. A lot <str<strong>on</strong>g>of</str<strong>on</strong>g> thanks, not <strong>on</strong>ly to participate in my <str<strong>on</strong>g>the</str<strong>on</strong>g>sis committee but also for<br />

her widespread availability throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis tenure. Thank you for your help, your invaluable advice,<br />

your encouragement, time and resources you have spent. I take al<strong>on</strong>g a part <str<strong>on</strong>g>of</str<strong>on</strong>g> your optimism. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hand, Nadine LE BOLAY, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor at LGC, who introduced me into <str<strong>on</strong>g>the</str<strong>on</strong>g> world <str<strong>on</strong>g>of</str<strong>on</strong>g> powder technology and<br />

size reducti<strong>on</strong> processes in a very active way, c<strong>on</strong>sulting has always been welcome.<br />

N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this research would have been possible without <str<strong>on</strong>g>the</str<strong>on</strong>g> financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> Higher Educati<strong>on</strong><br />

Commissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan and CNRS Toulouse.<br />

I would also like to thank those who agreed to judge my work:<br />

Ms.Nadine LE BOLAY, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor at Université Paul Sabatier, Laboratoire de Genie Chimique for her<br />

interest in this work and to h<strong>on</strong>or us by accepting it to chair <str<strong>on</strong>g>the</str<strong>on</strong>g> commissi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis,<br />

Ms Elisabeth BADENS, Génie Chimique Génie des procédés and Resp<strong>on</strong>sable Equipe Procédés &<br />

Fluides SupercritiquesUniversité Paul Cézanne (Aix-Marseille III) for <str<strong>on</strong>g>the</str<strong>on</strong>g> interest in this work by agreeing<br />

to be reporters,<br />

Mr.Bertrand Charrier, Maitre de c<strong>on</strong>férence, at Universite de Pau et des Pays de l'Adour, for agreeing to<br />

review <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript.<br />

I express my gratitude to both <str<strong>on</strong>g>the</str<strong>on</strong>g> reporters, for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interest in this work whose memory critically<br />

and benevolent permit to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent.<br />

A lot <str<strong>on</strong>g>of</str<strong>on</strong>g> thanks to all individuals, with those I had worked in CIRIMAT, LGC and LAAS for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

instant help and kindness. This work was mainly carried out within <str<strong>on</strong>g>the</str<strong>on</strong>g> SURF team. I want to express how<br />

i


pleased I was to work with all members <str<strong>on</strong>g>of</str<strong>on</strong>g> SURF team, I am very grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> permanent (C<strong>on</strong>stantin<br />

VAHLAS, François SENOCQ, Alain GLEIZES, Nadine PEBER, Corinne Lacaze-DUFAURE, Claire<br />

TENDERO, Maelen AUFRAY, Diane SAMELOR, Daniel SADOWSKI) and all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-permanent<br />

doctoral students.<br />

<strong>The</strong> geographical positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> my <str<strong>on</strong>g>of</str<strong>on</strong>g>fice also allowed me to mix several PPB and MEMO team<br />

members and enjoy <str<strong>on</strong>g>the</str<strong>on</strong>g>ir support as a scientific point <str<strong>on</strong>g>of</str<strong>on</strong>g> view that morale. In this team I really enjoyed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

discussi<strong>on</strong>s with Christian REY, Christèle COMBES, Christophe DROUET, David GROSSIN, Olivier<br />

MARSAN, Gerard DECHAMBRE, Cedric CHARVILLAT, Françoise BOSC, Dominique BONSIRVEN. I<br />

thank <str<strong>on</strong>g>the</str<strong>on</strong>g>m for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir availability in <str<strong>on</strong>g>the</str<strong>on</strong>g> daily routine. In this team, I also express my sympathy to Solène<br />

TADIER, Ahmed AL KATTAN, Imane DEMNATI and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r members for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir friendly guidance.<br />

Within CIRIMAT, I also had <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to be in c<strong>on</strong>tact with members <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r teams at<br />

different floors. I want to thank <str<strong>on</strong>g>the</str<strong>on</strong>g>m for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cordial welcome and assistance Bernard VIGUIER, Jacques<br />

LACAZE, Christine BLANCK, Jeanne Marie ALCARAZ, Aline PERIES, Christine Marie LAFONT,<br />

Dominique POQUILLON, Julitte HUEZ, Djar OQUAB, Eric ANDRIEU, Jean-Claude SALABURA, R<strong>on</strong>an<br />

MAINGUY, Yannick THEBAULT, Alexander FREUND and many researchers and students. Thank you to<br />

for your availability and efficiency whenever I need you in difficulty. I will never forget <str<strong>on</strong>g>the</str<strong>on</strong>g> beautiful<br />

moments<br />

I shared with my friends at CIRIMAT during <str<strong>on</strong>g>the</str<strong>on</strong>g>se 3 years especially useful discussi<strong>on</strong>s with<br />

Ahmed, Lyasin, solene, and many o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. I thank you for useful discussi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> we shared <strong>on</strong><br />

a daily basis. My abilities as a researcher and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al have grown from working with all <str<strong>on</strong>g>of</str<strong>on</strong>g> you. I have<br />

made many valuable friendships during my stay in <str<strong>on</strong>g>the</str<strong>on</strong>g> SURF group. I would first like to say a great thank<br />

you to Jaime Puig-Pey GONZÁLEZ and Christel AUGUSTIN, Lyacine ALOUI, Guilhaume BOISSELIER,<br />

Sabrina MARCELIN and Aneesha VARGHESE. I was also well received and much learned in <str<strong>on</strong>g>the</str<strong>on</strong>g> lab than<br />

at home. I really appreciate your friendship and I keep firmly in mind that "we can get in <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

happiness." It will not be fair to menti<strong>on</strong> here Revathi BACSA who had always provided a moral support in<br />

difficult situati<strong>on</strong>s during my stay in laboratory.<br />

During my experimentati<strong>on</strong>s in LAAS, my work would not have been possible without <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unc<strong>on</strong>diti<strong>on</strong>al support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clean room team, and more particularly Laurent RABBIA and Vincent<br />

PERRUT, <strong>The</strong>ir cooperati<strong>on</strong> helped me working with supercritical equipment. In LGC, I would be thankful<br />

to Séverine CAMY and Jean-Stéphane CONDORET for facilitating and helping in c<strong>on</strong>ducting <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming<br />

process <strong>on</strong> supercritical CO 2 pilot plant. <strong>The</strong>ir technical knowledge and skill enhance my abilities while<br />

working <strong>on</strong> this system.<br />

I was also very pleased to have participated in <str<strong>on</strong>g>the</str<strong>on</strong>g> supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several projects <str<strong>on</strong>g>of</str<strong>on</strong>g> engineering<br />

students in ENSIACET: Selmi Erim BOZBAG, Sandrine AUSSET, Tristan DESPLECHIN, Arnaud<br />

VIEYRES, Rodrigues TIAGO, Capdevielle MARION, Hochman LÉA, Pasco OLIVIER, Alexandre<br />

FRANCOIS, Cyril BESNARD, Sophie RISSE, Erika Martínez PÉREZ and Nora GALLEGO LEIS through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir internship <strong>on</strong> various projects related to polymers and foaming. Moreover, I want to thank all <str<strong>on</strong>g>of</str<strong>on</strong>g> INP,<br />

ENSIACET, LGC, LAAS and more especially Claude, Max, Sylvia, Ahmid, <str<strong>on</strong>g>the</str<strong>on</strong>g> guys in <str<strong>on</strong>g>the</str<strong>on</strong>g> shop, cleaning<br />

women for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir hospitality, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir friendliness and good humor.<br />

Special thanks to Usman ASHRAF, Rameez KHALID, Umer HAYAT, Nadeem MIRZA and<br />

Muhammad ILYAS for your hospitality in Toulouse and moments <str<strong>on</strong>g>of</str<strong>on</strong>g> relaxati<strong>on</strong> and discussi<strong>on</strong> I had <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pleasure to share with you. Rameez and Usman <str<strong>on</strong>g>of</str<strong>on</strong>g>fered me a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> "Sooth" when I came here and I look<br />

forward to see you again and to collect more in <str<strong>on</strong>g>the</str<strong>on</strong>g> coming years ...Ali, Saad and Umar Farooq, I<br />

ii


appreciated your availability and <str<strong>on</strong>g>the</str<strong>on</strong>g> time we spent talking, to think or laugh. Passing time with you has<br />

been a pleasure and I learned a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> your experience. A very special recogniti<strong>on</strong> to Adeel AHMED for his<br />

solving <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware problem during my <str<strong>on</strong>g>the</str<strong>on</strong>g>sis report writing. I would also like to thank <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> my very<br />

good friend Chaudhry Tanveer AHMED who had always helped me in awkward times. I take this<br />

opportunity to express my pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound gratitude to all my teachers from school to university because <str<strong>on</strong>g>of</str<strong>on</strong>g> whose<br />

blessings I have come so far.<br />

Finally I would like to thank all my paternal and maternal family members and especially grateful<br />

to my parents, my sister and my bro<str<strong>on</strong>g>the</str<strong>on</strong>g>rs who always supported me and comforted in my choices. A lot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thanks to my cousins and family members back in my country. My fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r and mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r have been counting<br />

days for many years for my return to home. My fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r will be very happy for realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> his dream for his<br />

s<strong>on</strong>. Thank you for <str<strong>on</strong>g>the</str<strong>on</strong>g> example you have shown. You provided me with inspirati<strong>on</strong> and instructi<strong>on</strong> for how<br />

I live my life. My Mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r’s c<strong>on</strong>tinuous prayers had always given me hidden support and c<strong>on</strong>fidence. I am<br />

thankful for special attachment <str<strong>on</strong>g>of</str<strong>on</strong>g> my bro<str<strong>on</strong>g>the</str<strong>on</strong>g>rs and specially <str<strong>on</strong>g>the</str<strong>on</strong>g> sacrifice <str<strong>on</strong>g>of</str<strong>on</strong>g> Farman ul Haq Subhani, who<br />

had always been special in all respect. I thank all those without whose encouragement and support, my PhD<br />

would have been an unfilled dream.<br />

I would not like to forget <str<strong>on</strong>g>the</str<strong>on</strong>g> sacrifices <str<strong>on</strong>g>of</str<strong>on</strong>g> my grandfa<str<strong>on</strong>g>the</str<strong>on</strong>g>r (RIP), if was alive, would have been<br />

very happy to see his grands<strong>on</strong> at his peak. If my uncle Saeed Subhani had not sacrificed for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

family when he was young, I am sure I would have not achieved this positi<strong>on</strong>. Special thanks to my Cousin<br />

Ikram ul Haq Subhani for his assistance, cooperati<strong>on</strong> and guidance in my university educati<strong>on</strong> in Lahore.<br />

Last but not <str<strong>on</strong>g>the</str<strong>on</strong>g> least, special thanks to my dear wife, who shared in my <str<strong>on</strong>g>the</str<strong>on</strong>g>sis and my life,<br />

thoughts and my heart ... that made me laugh, smile, work, think ... and most importantly, motivated me. She<br />

had supported me in all respect during all <str<strong>on</strong>g>the</str<strong>on</strong>g> difficult times. My s<strong>on</strong>s Shehryar and Shahmeer have been<br />

making my days happier and cheerful during my studies. It will not be appropriate if I forget to say special<br />

thanks to Kiran Sabih, <str<strong>on</strong>g>the</str<strong>on</strong>g> unwavering support that I have received from her and always been greatly<br />

appreciated. My success is a tribute to love and encouragement. In <str<strong>on</strong>g>the</str<strong>on</strong>g> end thanks to all my in-laws family<br />

and friends, near and far, who gave me friendship, prayers and moral support. I love you and I thank you for<br />

being in my life.<br />

iii


Publicati<strong>on</strong>s and C<strong>on</strong>ferences<br />

<strong>The</strong> work presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis was d<strong>on</strong>e in collaborati<strong>on</strong> with ICELLTIS a company<br />

dealing with biomaterial scaffolds for tissue and b<strong>on</strong>e regenerati<strong>on</strong> engineering.<strong>The</strong> physical and<br />

chemical testing <str<strong>on</strong>g>of</str<strong>on</strong>g> biomaterials and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> end product was d<strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory Institute<br />

Carnot - Centre Interuniversitaire de Recherche Ingénierie Materiaux (CIRIMAT).<br />

Manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> biomaterials pellets was c<strong>on</strong>ducted in Université Paul Sabatier CIRIMAT-<br />

Physique des Polymeres . Processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold was d<strong>on</strong>e at two different ScCO 2 equipments at<br />

Laboratoire de Genie Chimique and Laboratoire d'Analyse et d'Architecture des Systèmes.<br />

Patent<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis following patent,publicati<strong>on</strong>s and communicati<strong>on</strong>s were d<strong>on</strong>e.<br />

• Title: “Procédé de fabricati<strong>on</strong> d’un matériau poroux-[Fr]”, “Process for manufacturing a porous<br />

material-[Eng]”Courrier : 035/10TB/EF/MG Date Deposited :5 th January,2010<br />

Nr. <str<strong>on</strong>g>of</str<strong>on</strong>g> Deposit: 1050037<br />

• Inventors: Alain LAMURE, Arfan ul Haq SUBHANI, Jean Stéphane CONDORET, Nadine LE<br />

BOLAY, Selmi BOZBAG, Séverine CAMY and Vér<strong>on</strong>ique SANTRAN.<br />

Publicati<strong>on</strong>s<br />

Posters<br />

Owners: ICELLTIS, Cap Delta- Parc technologique Delta Sud,09340 Verniolle,FRANCE.<br />

Tel :+33.5.34.32.34.24<br />

INPT, Institut Nati<strong>on</strong>al Polytechnique de Toulouse - 6 allée Emile M<strong>on</strong>so - ZAC du Palays -<br />

BP 34038 - 31029 Toulouse cedex 4,Tel : (+33) 5 34 32 30 00 / E-mail : inp@inp-toulouse.fr<br />

Publicati<strong>on</strong>,13 eme Journées de Formulati<strong>on</strong> de la Société Française de Chimie,Procédés et formulati<strong>on</strong>s<br />

au service de la santé, Nancy, France, 4 th ~5 th Dec., 2008,“Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Bio-composite Foam in<br />

Supercritical Envir<strong>on</strong>ment: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biomaterial.”, Arfan SUBHANI, Selmi Erim BOZBAG, Ver<strong>on</strong>ique SANTRAN, Jean-Stéphane<br />

CONDORET, Severine CAMY and Alain LAMURE.<br />

Publicati<strong>on</strong> (Accepted in Chemical Engineering and Processing: Process Intensificati<strong>on</strong>) Mar., 2011.<br />

“How To Combine A Hydrophobic Matrix and a Hydrophilic Filler Without Adding a<br />

Compatibilizer. Co-Grinding Enhances Use <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable PLA-Starch Composites”.<br />

Nadine LE BOLAY, Alain LAMURE, Nora GALLEGO LEIS, Arfan ul Haq SUBAHNI.<br />

• Elaborati<strong>on</strong> de Mousses Nano-Bio-composites en Milieu Supercritique : <str<strong>on</strong>g>Influence</str<strong>on</strong>g> des Paramètres du<br />

Procédé sur la Distributi<strong>on</strong> des Pores du Biomatériau PLGA 85:15 , 3e Workshop <str<strong>on</strong>g>of</str<strong>on</strong>g> ITAV (Institute des<br />

Technologies Avancées en sciences du Vivant) axed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> "Nanobiotechnologies",25 th Sep, 2008,<br />

Toulouse, France.<br />

• Elaborati<strong>on</strong> de Mousses Nano-Bio-composites en Milieu Supercritique : <str<strong>on</strong>g>Influence</str<strong>on</strong>g> des Paramètres du<br />

Procédé sur la Distributi<strong>on</strong> des Pores du Biomatériau PLGA 50:50 , 13 eme Journées de Formulati<strong>on</strong> de la<br />

Société Française de Chimie, 4 th ~5 th Dec, 2008, Nancy, France.<br />

• Improvement in Renewable Polymer PLA and Amylopectin Blends Characteristics by <str<strong>on</strong>g>the</str<strong>on</strong>g> Co-grinding<br />

Process, 5 th annual European symposium <strong>on</strong> biopolymers, 18 th ~20 th Nov, 2009, Madeira, Portugal.<br />

v


C<strong>on</strong>ference Papers/Oral Presentati<strong>on</strong><br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores in PLGA 85:15 and PLGA 50:50 Foams Manufactured by <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 Process,<br />

Arfan Ul Haq SUBHANI, Selmi Erim BOZBAG, Nadine Le Bolay, Jean-Stéphane CONDORET,<br />

Severine CAMY Ver<strong>on</strong>ique SANTRAN, and Alain LAMURE, 9th Internati<strong>on</strong>al Symposium <strong>on</strong><br />

Supercritical Fluids, New Trends in Supercritical fluids: Energy, Materials, Processing, 18 th ~20 th<br />

May, 2009, Arcach<strong>on</strong>, France.<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> and Polymer Structure On <str<strong>on</strong>g>the</str<strong>on</strong>g> Pore Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Scaffolds and <str<strong>on</strong>g>the</str<strong>on</strong>g> Cells Adhesi<strong>on</strong>, A.H Subhani, A Lamure, J.S C<strong>on</strong>doret, S Camy, J Bordere and V<br />

Santran, Sec<strong>on</strong>d Chinese European Symposium <strong>on</strong> Biomaterials in Regenerative Medicine,17 th ~20 th<br />

Nov, 2009, Barcel<strong>on</strong>a, Spain.<br />

Elaborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polyester Foams by <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 Process, Arfan Ul Haq SUBHANI, Selmi Erim<br />

BOZBAG, Ver<strong>on</strong>ique SANTRAN, Jean-Stéphane CONDORET, Severine CAMY, and Alain<br />

LAMURE, Workshop <strong>on</strong> Supercritical Fluid Processing <str<strong>on</strong>g>of</str<strong>on</strong>g> Biopolymers and Biomedical Materials,<br />

16 th ~17 th Nov, 2009, Madeira, Portugal.<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> and Polymer Structure On <str<strong>on</strong>g>the</str<strong>on</strong>g> Cells Adhesi<strong>on</strong>, Arfan Ul Haq<br />

SUBHANI, Ver<strong>on</strong>ique SANTRAN, Alain LAMURE 5 th annual European symposium <strong>on</strong> biopolymers,<br />

18 th ~20 th Nov, 2009, Madeira, Portugal.<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biopolymers Foams by Supercritical CO 2 Process, Arfan Ul Haq SUBHANI, Selmi<br />

Erim BOZBAG, Ver<strong>on</strong>ique SANTRAN, Jean-Stéphane CONDORET, Severine CAMY, and Alain<br />

LAMURE , Journées Groupe Français d'Études et d'Applicati<strong>on</strong>s des Polymères, GFP Sud-Ouest,<br />

25 th ~26 th Mar 2010, Samatan, France.<br />

Improvement by Co-grinding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Use <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable Polylactic Acid – Starch<br />

Composites, Nadine Le BOLAY, Alain LAMURE, Nora Gallego LEIS, Arfan ul Haq SUBHANI, 2 nd<br />

internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Natural Polymers,24 th ~26 th Sep,2010, Kottayam, Kerala, India.<br />

vi


Nomenclature and Abbreviati<strong>on</strong>s<br />

Abbreviati<strong>on</strong><br />

INPT<br />

Institut Nati<strong>on</strong>al Polytechnique de Toulouse<br />

CIRIMAT Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux<br />

LAAS Laboratoire d'Architecture et d'Analyse des Systèmes<br />

LGC<br />

Laboratoire de Génie Chimique<br />

2 D Two Dimensi<strong>on</strong>s<br />

3 D Three Dimensi<strong>on</strong>s<br />

ASTM American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Testing and Materials<br />

SS<br />

Stainless Steel<br />

CO 2<br />

Carb<strong>on</strong> dioxide<br />

scCO 2<br />

Supercritical carb<strong>on</strong> dioxide<br />

TIPS<br />

<strong>The</strong>rmally Induced Phase Separati<strong>on</strong><br />

FTIR<br />

Fourier transform infrared<br />

UV<br />

Ultraviolet radiati<strong>on</strong><br />

SEM<br />

Scanning electr<strong>on</strong> microscopy<br />

TEM<br />

Transmissi<strong>on</strong> electr<strong>on</strong> microscopy<br />

-CT<br />

Micro-computer tomography<br />

DSC<br />

Differential Scanning Calorimetry<br />

SL-EOS Sanchez and Lacombe’ Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State<br />

MHR<br />

Mark Houwink’ Relati<strong>on</strong>ship<br />

BME<br />

Basement membrane extract<br />

ECM<br />

Extracellular matrix<br />

PLA<br />

Poly(lactic acid)<br />

P L,D LA Poly D-Lactic acid<br />

P L,DL LA Poly D,L-Lactic acid<br />

PLGA Poly(lactic-co-glycolic acid)<br />

PCL<br />

Poly(-caprolact<strong>on</strong>e)<br />

PGA<br />

Poly(glycolic acid)<br />

PI<br />

polyimide<br />

PC<br />

polycarb<strong>on</strong>ate<br />

AMPEG α-amino-ω-methoxy-polyethylene glycol<br />

HA<br />

Hyalur<strong>on</strong>ic acid<br />

GlcA<br />

Glucur<strong>on</strong>ic acid<br />

Am-CP Amorphous calcium phosphate<br />

Ap-TCP Apatitic tricalcium phosphate<br />

TCP Amorphous tricalcium phosphate<br />

BCP<br />

Biphasic calcium phosphate<br />

αTCP<br />

α-Tricalcium phosphate<br />

TCP<br />

-Tricalcium phosphate<br />

CaP<br />

calcium phosphate<br />

DCPA Dibasic calcium phosphate anhydrate<br />

DCPD Dibasic calcium phosphate dihydrate<br />

HAp<br />

Hydoxyapatite<br />

OCP<br />

Octocalcium phosphate<br />

TCP<br />

Tricalcium phosphate<br />

TEA<br />

Triethylamine<br />

THF<br />

Tetrahydr<str<strong>on</strong>g>of</str<strong>on</strong>g>urane<br />

vii


Abbreviati<strong>on</strong>s<br />

Classical Unit<br />

P c Critical Pressure bar<br />

P sat Saturati<strong>on</strong> Pressure bar<br />

T c<br />

Critical Temperature<br />

o C<br />

T sat<br />

Saturati<strong>on</strong> Temperature<br />

o C<br />

T g Glass transiti<strong>on</strong> temperature °C<br />

T m Melting temperature C<br />

t co Co-grinding time minute<br />

t sat Saturati<strong>on</strong> time minute<br />

dP/dt Depressurizati<strong>on</strong> rate bar/s<br />

m Melting enthalpy J.g -1<br />

<br />

m Melting enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> totally cystallised polymer J.g -1<br />

c Crystallizati<strong>on</strong> enthalpy J.g -1<br />

<br />

Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity<br />

C p Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat capacity J.g -1 .mol -1<br />

D Diffusivity m 2 s -1<br />

D dg Desorpti<strong>on</strong> diffusi<strong>on</strong> coefficient at plasticized state m 2 s -1<br />

D dp Desorpti<strong>on</strong> diffusi<strong>on</strong> coefficient at glassy state m 2 s -1<br />

Z<br />

Zeldovich factor<br />

Intrinsic Viscosity dL.g -1<br />

inh Inherent Viscosity dL.g -1<br />

rel<br />

Relative Viscosity<br />

M n Number average mass molecular Dalt<strong>on</strong><br />

M w Weight average mass molecular Dalt<strong>on</strong><br />

M vis Viscosity average mass molecular Dalt<strong>on</strong><br />

K Mark Houwink’ c<strong>on</strong>stant dL.g -1<br />

a<br />

Mark Houwink’ c<strong>on</strong>stant<br />

Liquid-Solid C<strong>on</strong>tact Angle °<br />

γ L Surface Tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Liquid mJ/m 2<br />

γ S Surface Tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid mJ/m 2<br />

γ SL Solid-liquid interfacial tensi<strong>on</strong> mJ/m 2<br />

γ SV Solid-vapour interfacial tensi<strong>on</strong> mJ/m 2<br />

p<br />

γ S Polar comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy mJ/m 2<br />

d<br />

γ S Dispersive comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy mJ/m 2<br />

LW<br />

S Lifshitz–van der Waals comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy mJ/m 2<br />

AB<br />

S Acid–Base comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy mJ/m 2<br />

−<br />

γ S Basic Composnent <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface mJ/m 2<br />

+<br />

γ S Acid Composnent <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface mJ/m 2<br />

δ t Hildebrand’ solubility parameter (M Pa) 1/2<br />

δ d Dispersive Hansen’ solubility parameter (M Pa) 1/2<br />

δ H Hydrogen Hansen’ solubility parameter (M Pa) 1/2<br />

δp Polar Hansen’ solubility parameter (M Pa) 1/2<br />

Ø f Foam thickness mm<br />

Ø p Pellet thickness mm<br />

d f Foam diameter mm<br />

d p Pellet diameter mm<br />

m f Foam mass mg<br />

m p Pellet mass mg<br />

f<br />

Foam density<br />

viii


ρ p<br />

Pellet density<br />

Splitting (Brazilian) tensile stress MPa<br />

S Limit stress between elastic and plastic domains MPa<br />

ε<br />

Strain (El<strong>on</strong>gati<strong>on</strong>)<br />

ε B<br />

El<strong>on</strong>gati<strong>on</strong> at break<br />

E Young’ Modulus MPa<br />

E T Tensile Modulus MPa<br />

Subscripts<br />

dg<br />

Desorpti<strong>on</strong> at glassy state<br />

dp<br />

Desorpti<strong>on</strong> at plasticized state<br />

i<br />

Comp<strong>on</strong>ent i<br />

j<br />

Comp<strong>on</strong>ent j<br />

mix<br />

Mixture<br />

R<br />

Reduced<br />

Superscripts<br />

* Characteristic<br />

G<br />

fluid phase<br />

P<br />

polymer phase<br />

ix


Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures ................................................................................................................................................. xxi<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables ................................................................................................................................................ xxix<br />

Introducti<strong>on</strong> ....................................................................................................................................................... 1<br />

Chapter 1 .......................................................................................................................................................... 5<br />

1 Introducti<strong>on</strong> to Bio Composites ..................................................................................................................... 5<br />

1.1 Bio-composites for 3D Model <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>nective Tissues ............................................................................................. 6<br />

1.1.1 Tissue Engineering and C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffold ................................................................................................ 6<br />

1.1.2 Different Types <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds ......................................................................................................................... 6<br />

1.1.2.1 Cells Grown in Pellets or in Spheroids ............................................................................................... 6<br />

1.1.2.2 Cells Embedded into Hydrogels Derived from Natural or Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Polymers ................................. 6<br />

1.1.2.3 Cells Grown in a Biomaterial <str<strong>on</strong>g>of</str<strong>on</strong>g> Large–size <strong>on</strong> Different Polymers (PLGA, Agarose) ..................... 6<br />

1.1.2.4 Cells Grown in a Biomaterial at a Micrometer-Scale (Thickness ~200 µm) ..................................... 7<br />

1.2 Bio-Composites for Calcified Tissue Engineering .................................................................................................. 7<br />

1.2.1 Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds .............................................................................................................................. 7<br />

1.2.2 Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D Porous Scaffolds ............................................................................................. 8<br />

1.3 Biodegradable Polymers .......................................................................................................................................... 9<br />

1.3.1 What is Biodegradable? .............................................................................................................................. 10<br />

1.3.1.1 Aerobic Biodegradati<strong>on</strong> ................................................................................................................... 10<br />

1.3.1.2 Anaerobic Biodegradati<strong>on</strong> ................................................................................................................ 10<br />

1.3.2 Biodegradable Polymer Materials ............................................................................................................... 11<br />

1.3.2.1 Biodegradable Polyesters ................................................................................................................. 11<br />

1.3.2.2 Synergistic or Hybrid Polymers ....................................................................................................... 12<br />

2 Polyesters Based Bio-materials .................................................................................................................... 13<br />

2.1 Polylactides (PLA) ................................................................................................................................................. 13<br />

2.1.1 Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid ........................................................................................................................ 13<br />

2.1.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid ....................................................................................................................... 13<br />

2.1.3 <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid ...................................................................................................................... 15<br />

2.2 Poly(lactide-co-glycolide acid) (PLGA) ................................................................................................................ 16<br />

2.2.1 General Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA Copolymers ................................................................................................... 16<br />

2.2.2 <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA Copolymers ................................................................................................................ 17<br />

3 Adjuvant and Fillers ..................................................................................................................................... 18<br />

3.1 Adjuvant ................................................................................................................................................................ 18<br />

3.1.1 Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyalur<strong>on</strong>ic Acid (HA) ............................................................................................................. 18<br />

3.1.2 Physicochemical and Biological <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HA ..................................................................................... 19<br />

3.2 Calcium Phosphates and Tricalcium Phosphates ................................................................................................... 20<br />

3.2.1 Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> Calcium Phosphate ................................................................................................................ 20<br />

3.2.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Different Calcium Phosphate Phases ...................................................................................... 20<br />

3.2.2.1 Amorphous TriCalcium Phosphate (ATCP) ..................................................................................... 20<br />

3.2.2.2 Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Str<strong>on</strong>tium ...................................................................................................................... 21<br />

3.2.2.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Isomorphous Substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Str<strong>on</strong>tium in <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP ........................................................ 22<br />

3.2.2.4 Physicochemical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP Phases ..................................................................................... 23<br />

3.2.2.5 <strong>The</strong>rmal Treatment in Air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TCP Phases .................................................................................. 23<br />

3.2.2.6 Aqueous Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP Phases ................................................................................................... 24<br />

3.2.2.7 Surface <strong>Properties</strong> ............................................................................................................................ 25<br />

3.2.3 Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> and -tricalcium Phosphates in Biomaterials .................................................................. 25<br />

4 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................... 25<br />

- xi -


Chapter 2 ........................................................................................................................................................ 27<br />

1 Generalities <strong>on</strong> Polymer Foams .................................................................................................................... 27<br />

2 Manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> Porous Materials by Wet Methods .................................................................................. 28<br />

2.1 Solvent Casting/Particulate Leaching .................................................................................................................... 28<br />

2.2 Ice Particle-Leaching ............................................................................................................................................. 29<br />

2.3 Gas-Foaming/Salt-Leaching Technique ................................................................................................................ 30<br />

2.4 Gel-Pressing Technique ......................................................................................................................................... 31<br />

2.5 PLGA Microspheres for Tissue-Engineered Scaffold ........................................................................................... 32<br />

2.6 Particle-Aggregated Scaffolds Technique ............................................................................................................. 33<br />

2.7 Freeze-Drying Method .......................................................................................................................................... 33<br />

2.8 <strong>The</strong>rmally Induced Phase Separati<strong>on</strong> (TIPS) Technique ....................................................................................... 34<br />

2.9 Centrifugati<strong>on</strong> Method .......................................................................................................................................... 35<br />

2.10 Injectable <strong>The</strong>rmosensitive Gel Technique ........................................................................................................... 36<br />

2.11 Liquid-Liquid Phase Separati<strong>on</strong> Technique .......................................................................................................... 37<br />

2.12 Solid-Liquid Phase Separati<strong>on</strong> Technique ............................................................................................................. 38<br />

2.13 Fibre Mesh/Fibre B<strong>on</strong>d<strong>on</strong>g Technique .................................................................................................................. 38<br />

2.14 Hydrocarb<strong>on</strong> Templating Technique ..................................................................................................................... 38<br />

2.15 Microspheres B<strong>on</strong>ding Technique ......................................................................................................................... 39<br />

2.16 Rapid Prototyping Techniques .............................................................................................................................. 39<br />

2.16.1 Three Dimensi<strong>on</strong>al Printing (3 DP) ............................................................................................................ 40<br />

2.16.2 Stereolithography (SLA)............................................................................................................................. 40<br />

2.17 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Derivated Techniques .................................................................................................................................. 41<br />

2.17.1 Combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Leaching <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fugitive Phase and Polymer Precipitati<strong>on</strong> ................................................. 41<br />

2.17.2 Phase-Change Jet Printing .......................................................................................................................... 42<br />

3 Polymer Processing by Supercritical Fluids ................................................................................................. 42<br />

3.1 Bases <strong>on</strong> Supercritical Fluids ................................................................................................................................ 42<br />

3.2 Basic Techniques in Supercritical Fluids Technology .......................................................................................... 44<br />

3.3 Scaffolds Prepared by Phase Inversi<strong>on</strong> using scCO 2 as Anti-solvent .................................................................... 45<br />

3.4 Scaffolds Prepared by scCO2 Foaming ................................................................................................................. 46<br />

4 <strong>The</strong>oretical Background <str<strong>on</strong>g>of</str<strong>on</strong>g> Gas Foaming ..................................................................................................... 48<br />

4.1 Diffusi<strong>on</strong> ................................................................................................................................................................ 48<br />

4.2 Plasticizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers by CO 2 ........................................................................................................................ 51<br />

4.3 Nucleati<strong>on</strong> ............................................................................................................................................................. 53<br />

- xii -


4.4 Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores .............................................................................................................................................. 54<br />

5 Manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Composite Biomaterials ............................................................................................ 56<br />

5.1 Fundements <str<strong>on</strong>g>of</str<strong>on</strong>g> Co-grinding Process ...................................................................................................................... 56<br />

5.1.1 Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Size Reducti<strong>on</strong> .................................................................................................................... 56<br />

5.1.2 Fragmentati<strong>on</strong> Mechanisms ........................................................................................................................ 57<br />

5.1.3 Agglomerati<strong>on</strong> Phenomena ......................................................................................................................... 57<br />

5.2 Obtenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Composites by <str<strong>on</strong>g>the</str<strong>on</strong>g> Co-grinding Process ........................................................................................... 58<br />

6 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................... 60<br />

Chapter 3 ........................................................................................................................................................ 61<br />

1 Differential Scanning Calorimetry (DSC) .................................................................................................... 61<br />

1.1 Generalities <strong>on</strong> <strong>The</strong>rmal Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers ................................................................................................. 61<br />

1.2 First Order Transiti<strong>on</strong>s ........................................................................................................................................... 62<br />

1.3 Sec<strong>on</strong>d Order Transiti<strong>on</strong> ........................................................................................................................................ 63<br />

2 Intrinsic Viscosity ........................................................................................................................................ 64<br />

2.1 Molecular Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer and Viscosity ............................................................................................................ 64<br />

2.2 General Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Viscosity Measurement ........................................................................................................ 64<br />

2.3 <strong>The</strong> Mark-Houwink Relati<strong>on</strong>ship (MHR).............................................................................................................. 66<br />

2.4 <strong>The</strong> Mark-Houwink C<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactides and Hyalur<strong>on</strong>ic Acid .................................................................... 66<br />

3 Laser Granulometry Method ........................................................................................................................ 67<br />

3.1 Granulometry ......................................................................................................................................................... 67<br />

3.2 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Analysis .................................................................................................................................... 67<br />

3.2.1 Rayleigh’ <strong>The</strong>ory ........................................................................................................................................ 68<br />

3.2.2 Lorenz-Mie’ <strong>The</strong>ory .................................................................................................................................... 68<br />

3.2.3 Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ <strong>The</strong>ory ..................................................................................................................................... 69<br />

4 Sorpti<strong>on</strong> Analysis ......................................................................................................................................... 70<br />

5 Microscopic Methods to Analyze Porous Structures ................................................................................... 70<br />

5.1 Methods to Determine Porosity ............................................................................................................................. 70<br />

5.1.1 Geometric Porosity ..................................................................................................................................... 70<br />

5.1.2 Mercury Porosimetry .................................................................................................................................. 71<br />

5.1.3 X-ray Microtomography ............................................................................................................................. 72<br />

5.2 Scanning Electr<strong>on</strong> Microscopy Observati<strong>on</strong>s ........................................................................................................ 72<br />

5.2.1 Bases <str<strong>on</strong>g>of</str<strong>on</strong>g> Image Analysis ............................................................................................................................. 73<br />

5.2.2 Morphological Filtering .............................................................................................................................. 74<br />

6 Macroscopic Methods .................................................................................................................................. 75<br />

6.1 Mechanical Brazilian Tests .................................................................................................................................... 75<br />

6.1.1 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Test .................................................................................................................................... 75<br />

6.1.2 Compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Porous Materials ............................................................................................................... 76<br />

6.2 Surface Energy Experiments ................................................................................................................................. 77<br />

- xiii -


6.2.1 Surface Tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Liquids ....................................................................................................................... 78<br />

6.2.1.1 Du Noüy Ring Method ..................................................................................................................... 79<br />

6.2.1.2 Wilhelmy Plate Method ................................................................................................................... 79<br />

6.2.1.3 Lucas-Washburn’ Method ................................................................................................................ 80<br />

6.2.1.4 Surface Tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Classical Liquids ............................................................................................. 80<br />

6.2.2 Surface Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids ............................................................................................................................ 80<br />

6.2.2.1 Young-Dupré’ Equati<strong>on</strong> ................................................................................................................... 80<br />

6.2.2.2 Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Owens-Wendt : Two Comp<strong>on</strong>ents <strong>The</strong>ory ....................................................................... 81<br />

6.2.2.3 Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Good-Van Oss : Three Comp<strong>on</strong>ents <strong>The</strong>ory .................................................................... 83<br />

7 Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments ................................................................................................................................ 84<br />

7.1 Modelizati<strong>on</strong> Plans: Doehlert’s Design ................................................................................................................. 84<br />

7.2 Screening Plans: Taguchi’ Design ......................................................................................................................... 85<br />

8 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................... 86<br />

Chapter 4 ........................................................................................................................................................ 87<br />

1 Procedure for Size Reducti<strong>on</strong> ....................................................................................................................... 87<br />

1.1 Size Reducti<strong>on</strong> ....................................................................................................................................................... 87<br />

1.1.1 Size Reducti<strong>on</strong> by Knife Mill ..................................................................................................................... 87<br />

1.1.2 Tumbling Ball Mill Grinding ...................................................................................................................... 88<br />

1.2 Sieving <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Material ................................................................................................................................... 89<br />

1.3 Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Powder with Fillers ................................................................................................................ 89<br />

1.3.1 Simple Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Powder with Fillers ......................................................................................... 90<br />

1.3.2 Co-grinding in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tumbling Ball Mill ....................................................................................................... 90<br />

1.4 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets by Dry Method ................................................................................................................... 91<br />

1.4.1 Evacuable Pellet Die ................................................................................................................................... 91<br />

1.4.2 Procedure to Prepare Pellets ....................................................................................................................... 92<br />

1.4.2.1 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Die ...................................................................................................................... 93<br />

1.4.2.2 Loading <str<strong>on</strong>g>the</str<strong>on</strong>g> Die ................................................................................................................................ 93<br />

1.4.2.3 Processing <str<strong>on</strong>g>the</str<strong>on</strong>g> Pellets ....................................................................................................................... 93<br />

1.4.2.4 Removing <str<strong>on</strong>g>the</str<strong>on</strong>g> Pellets ....................................................................................................................... 93<br />

1.5 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets by Wet Method ................................................................................................................... 93<br />

2 ScCO 2 Foaming Process ............................................................................................................................... 94<br />

2.1 SEPAREX TM SF200 scCO 2 Pilot Plant ................................................................................................................. 94<br />

2.1.1 Experimental Device .................................................................................................................................. 94<br />

2.1.2 Setup One: Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> Chamber with Tefl<strong>on</strong> ® ............................................................................................ 96<br />

2.1.3 Setup Two: Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> Chamber with Glass Beads .................................................................................... 96<br />

2.2 SEPAREX SFC6 scCO 2 Laboratory Plant ........................................................................................................ 96<br />

2.2.1 Experimental Device .................................................................................................................................. 96<br />

2.2.2 Experimental Procedure .............................................................................................................................. 96<br />

2.2.2.1 Initial Filling <str<strong>on</strong>g>of</str<strong>on</strong>g> Chamber with CO 2 ................................................................................................. 97<br />

2.2.2.2 Variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Pressure and Temperature Holding For Time t ......................................... 98<br />

2.2.2.3 Depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 .................................................................................................................. 98<br />

3 Protocols for Analysis .................................................................................................................................. 99<br />

3.1 Granulometry ......................................................................................................................................................... 99<br />

3.2 Differential Scanning Calorimetry ...................................................................................................................... 100<br />

- xiv -


3.3 C<strong>on</strong>tact Angle Measurement ............................................................................................................................... 101<br />

4 Protocols for Porosity and Pore Size Measurement ................................................................................... 102<br />

4.1 Average Geometric Porosity ................................................................................................................................ 102<br />

4.2 2D Image Analysis .............................................................................................................................................. 103<br />

4.2.1 Sputter Coater ........................................................................................................................................... 103<br />

4.2.2 SCION Image Analysis .......................................................................................................................... 104<br />

4.3 3D Hg Intrusi<strong>on</strong> Porosity ..................................................................................................................................... 107<br />

4.4 3D Micro Computer Tomography ....................................................................................................................... 108<br />

4.4.1 Acquisiti<strong>on</strong> ................................................................................................................................................ 109<br />

4.4.2 Correcti<strong>on</strong>s ................................................................................................................................................ 109<br />

4.4.3 Rec<strong>on</strong>structi<strong>on</strong> .......................................................................................................................................... 109<br />

4.4.4 Viewing Results ........................................................................................................................................ 109<br />

4.4.5 Wide Variety <str<strong>on</strong>g>of</str<strong>on</strong>g> Post Processing ............................................................................................................... 109<br />

5 Mechanical Tests <strong>on</strong> Foams ....................................................................................................................... 110<br />

5.1 Experimental C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Test ......................................................................................................................... 110<br />

5.2 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Curve Analysis ................................................................................................................................. 110<br />

6 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................. 111<br />

Chapter 5 ...................................................................................................................................................... 112<br />

1 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomaterials ................................................................................................................ 113<br />

1.1 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Powders ............................................................................................................. 113<br />

1.1.1 Experiments <strong>on</strong> Polylactide Powders by Viscosimetry. ............................................................................ 115<br />

1.1.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Molecular Mass ........................................................................................................... 116<br />

1.1.3 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Powders by DSC ..................................................................................... 116<br />

1.1.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Transiti<strong>on</strong>s ................................................................................................................... 118<br />

1.1.4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L and DL Ratio <strong>on</strong> <strong>The</strong>rmal Property <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Acid .............................................. 118<br />

1.1.4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> LA/GA Ratio <strong>on</strong> T g <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactides ................................................................................. 119<br />

1.2 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomaterials Pellets .............................................................................................................. 119<br />

1.2.1 Mechanical Experiments ........................................................................................................................... 119<br />

1.2.2 Discussi<strong>on</strong> <strong>on</strong> Mechanical Modulus ......................................................................................................... 119<br />

2 Kinematics and <strong>The</strong>rmodynamics Experiments ......................................................................................... 120<br />

2.1 Sorpti<strong>on</strong>-Diffusi<strong>on</strong> Kinetics ................................................................................................................................. 120<br />

2.2 Desorpti<strong>on</strong>-Diffusi<strong>on</strong> Kinetics ............................................................................................................................. 121<br />

2.3 <strong>The</strong> Sorpti<strong>on</strong> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rm ......................................................................................................................................... 123<br />

3.1.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 50:50 ................................................................................ 125<br />

3.1.3 P L,DL LA and PLGA 85:15 Blend ................................................................................................................... 125<br />

3.1.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 85:15 ................................................................................ 126<br />

3.2 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 Process ............................................................................................... 126<br />

3.2.1 Model with a 2 4 Complete Design ............................................................................................................. 126<br />

3.2.2 Model with a Taguchi’ Design for PLGA 50:50 Foaming ............................................................................ 128<br />

3.2.3 Model with a Doehlert’ Design for PLGA 50:50 Foaming ........................................................................... 130<br />

3.2.3.1 Experiments with a Doehlert’ Design ............................................................................................ 130<br />

3.2.3.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Various CO 2 Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> .................................................. 132<br />

4 Factors Affecting <strong>on</strong> Pores Size and Porosity ............................................................................................ 135<br />

- xv -


4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Polymer Compositi<strong>on</strong> ..................................................................................................................... 135<br />

4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Depressurizati<strong>on</strong> Rates ......................................................................................................................... 135<br />

4.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Pressure (P sat ) ...................................................................................................................... 137<br />

4.4 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Temperature (T sat ) ............................................................................................................... 138<br />

4.5 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Time (t sat ) ............................................................................................................................. 139<br />

4.6 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dP/dt and dT/dt ............................................................................................................................... 139<br />

4.7 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pressure Chamber ................................................................................................ 140<br />

4.8 Interc<strong>on</strong>nectivity and Coalescence Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Scaffolds........................................................................... 141<br />

4.9 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellet Thickness <strong>on</strong> Foaming .......................................................................................................... 142<br />

4.9.1 Porosity and Cell Density ......................................................................................................................... 142<br />

4.9.2 Pores Size Distributi<strong>on</strong> ............................................................................................................................. 143<br />

4.9.3 Correlati<strong>on</strong> Between Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellet Thickness and Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> ............................................... 143<br />

4.10 Discussi<strong>on</strong> <strong>on</strong> Foam Morphology ........................................................................................................................ 144<br />

5 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................. 146<br />

Chapter 6 ...................................................................................................................................................... 147<br />

1 Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA’s Foams Processed by Wet and Dry Methods ......................................................... 147<br />

1.1 Experimental Procedure ...................................................................................................................................... 147<br />

1.1.1 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets by Wet and Dry Methods ....................................................................................... 147<br />

1.1.2 Taguchi’ Design for Foaming ................................................................................................................... 148<br />

1.2 P L,D LA Foams Processed by Wet and Dry Methods: Initial Taguchi Plan .......................................................... 148<br />

1.2.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) .............................................................. 150<br />

1.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 150<br />

1.3 P L,D LA Foams Processed by Wet and Dry Methods: Complementary Taguchi’ Plan ......................................... 151<br />

1.3.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) .............................................................. 153<br />

1.3.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 153<br />

1.4 P L,DL LA Foams Processed by Wet and Dry Methods: Initial Taguchi Plan ......................................................... 154<br />

1.4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) .............................................................. 155<br />

1.4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 156<br />

1.5 P L,DL LA Foams Processed by Wet and Dry Methods: Complementary Taguchi’ Plan ....................................... 156<br />

1.5.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent pore diameter (d e ) ................................................................ 158<br />

1.5.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 158<br />

1.6 Comparis<strong>on</strong> Between Both PLAs ........................................................................................................................ 159<br />

2 Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA’s Foams by Wet and Dry Method. ........................................................................ 161<br />

2.1 PLGA 50:50 Foams Processed by Wet and Dry Methods ....................................................................................... 161<br />

2.1.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) .............................................................. 162<br />

2.1.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 163<br />

2.2 PLGA 50:50 Foams by Wet and Dry Methods by Complementary Taguchi’ Plan ................................................. 163<br />

2.2.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) .............................................................. 165<br />

2.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ............................................................................... 165<br />

- xvi -


2.3 PLGA 85:15 Foams Processed by Wet and Dry Methods: Initial Taguchi’ Plan .................................................... 166<br />

2.3.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) ............................................................... 167<br />

2.3.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ................................................................................ 168<br />

2.4 PLGA 85:15 Foams by Wet and Dry Methods by Complementary Taguchi Plan .................................................. 169<br />

2.4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Equivalent Pore Diameter (d e ) ............................................................... 170<br />

2.4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> Geometric Porosity ................................................................................ 171<br />

2.5 Comparis<strong>on</strong> Between Both PLGAs ..................................................................................................................... 171<br />

2.6 Pore Morphology and Anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams by Both Methods ........................................................................... 173<br />

2.7 Interc<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores in Foams by Both Methods ........................................................................................ 176<br />

2.8 Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Foams by Wet and Dry Methods .......................................................................... 178<br />

2.9 General Discussi<strong>on</strong> .............................................................................................................................................. 178<br />

3 Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface by Adding Hyalur<strong>on</strong>ic Acid .......................................................................... 179<br />

3.1 Granulometry Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA and HA Before and After Co-grinding ........................................................... 179<br />

3.2 C<strong>on</strong>tact Angle Measurement and Surface Energy <strong>on</strong> Pellets ............................................................................... 181<br />

3.2.1 Results ....................................................................................................................................................... 181<br />

3.2.1.1 C<strong>on</strong>tact Angles with Water and Pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA, HA and PLGA/HA Blends .............................. 181<br />

3.2.1.2 Surface Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA, HA and PLGA/HA blends ................................................................... 182<br />

3.2.2 Origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Surface Energy .................................................................................................. 183<br />

4 Foams <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 /HA Blends ................................................................................................................. 185<br />

4.1 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets ........................................................................................................................................... 185<br />

4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Microstucture <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams ............................................................................... 185<br />

4.2.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Depressurizati<strong>on</strong> Rate <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Microstucture <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams .............................................................. 185<br />

4.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Temperature <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Microstucture <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams ............................................................ 187<br />

5 General Discussi<strong>on</strong> ..................................................................................................................................... 188<br />

6 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................. 189<br />

Chapter 7 ...................................................................................................................................................... 190<br />

1 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Composites ................................................................................................................. 190<br />

1.1 Fillers and Adjuvant ............................................................................................................................................ 190<br />

1.1.1 Sr Calcium Phosphate ............................................................................................................................... 191<br />

1.1.1.1 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Calcium Phophates .................................................................. 191<br />

1.1.1.2 Calcium Phosphate Characterizati<strong>on</strong> .............................................................................................. 191<br />

1.1.1.3 Calcium Phosphate Granulometry .................................................................................................. 193<br />

1.2 Adjuvant: Porogen Agent .................................................................................................................................... 194<br />

1.2.1 Industrial Waxes ....................................................................................................................................... 194<br />

1.2.2 <strong>The</strong>rmal Degradati<strong>on</strong> ................................................................................................................................ 195<br />

2 Experiments <strong>on</strong> Polylactides/Tri-calcium Phosphate Scaffolds ................................................................. 195<br />

2.2 Experiments <strong>on</strong> Polylactides/Tri-calcium Phosphate ........................................................................................... 195<br />

2.3 Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments <strong>on</strong> Polylactides/Tri-calcium Phosphate ....................................................................... 197<br />

3 Foams <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactides/Calcium Phosphates Blends and Composites ........................................................ 198<br />

- xvii -


3.2 Experiments <strong>on</strong> PLA/Waxes Scaffolds ............................................................................................................... 198<br />

3.2.1 Preliminary Experimentati<strong>on</strong> with Wax as Porogen Agent ...................................................................... 198<br />

3.2.2 SEM Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams ........................................................................................................................... 199<br />

3.2.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Wax <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Equivalent Pore Size and Geometric Porosity ........................................................ 201<br />

3.3 Experiments <strong>on</strong> Polylactides/Tri-Calcium Phosphate/Wax Scaffolds ................................................................. 203<br />

3.3.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Wax <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geometric Porosity and Equivalent Pore Size .................................... 203<br />

3.3.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Co-grinding Filler and PLGA <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pore Morphology ............................................................ 205<br />

3.4 Complementary Experiments <strong>on</strong> PLGA 85:15 /Tri-calcium Phosphate/Wax Scaffolds .......................................... 206<br />

4 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................. 209<br />

Chapter 8 ...................................................................................................................................................... 210<br />

1 Semi-industrial Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>e Scaffolds ........................................................................................... 210<br />

1.1 Matrix: Polylactides............................................................................................................................................. 211<br />

1.1.1 Experiments with Different Polylactides .................................................................................................. 211<br />

1.1.2 Polylactide with Higher D,L C<strong>on</strong>tents ...................................................................................................... 212<br />

1.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Particle Size <strong>on</strong> Foaming ....................................................................................................... 213<br />

1.2.1 Foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 with Different Particle Size .................................................................................. 214<br />

2 Filler: Tri-calcium phosphate Doped by Sr ................................................................................................ 215<br />

2.1 Experimentati<strong>on</strong> <strong>on</strong> Blends and Composite Foams ............................................................................................. 215<br />

2.1.1 Experimentati<strong>on</strong> <strong>on</strong> Composite Foaming with Different Co-grinding Times .......................................... 216<br />

2.1.2 Foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> Fine Powder and Filler Blend by Simple Mixing .................................................................. 217<br />

2.1.3 Mixing Experimentati<strong>on</strong> <strong>on</strong> Composite Foaming with Different Polymer Particle Size .......................... 218<br />

3 Process C<strong>on</strong>trol for Composite Foaming .................................................................................................... 220<br />

3.1 Semi-Industrial Foaming ..................................................................................................................................... 220<br />

3.1.1 Pellet Positi<strong>on</strong>s in scCO 2 Chamber ........................................................................................................... 220<br />

3.2 Final Experiments ................................................................................................................................................ 222<br />

3.2.1 Multi Pellet Formati<strong>on</strong> in a Batch and Effect <strong>on</strong> Foaming ....................................................................... 222<br />

3.2.2 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Foams ................................................................................................................................ 224<br />

3.2.2.1 Filling, Soaking and Depressurizati<strong>on</strong> Time <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in Chamber .................................................. 224<br />

3.2.2.2 Temperature Variati<strong>on</strong> During Soaking <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 ............................................................................. 224<br />

3.2.2.3 Dual Depressurizati<strong>on</strong> Rate............................................................................................................ 225<br />

3.2.2.4 Temperature Variati<strong>on</strong> During Depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 ............................................................... 225<br />

3.2.2.5 Retenti<strong>on</strong> Time after <str<strong>on</strong>g>the</str<strong>on</strong>g> Depressurizati<strong>on</strong> Step ............................................................................. 225<br />

3.2.3 Final foam experiments ............................................................................................................................ 225<br />

3.2.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rugdness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Process .............................................................................................. 226<br />

4 Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds ............................................................................................................ 229<br />

4.1 Mechanical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 Foam .................................................................................................. 229<br />

4.2 Compressive <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Optimized PLGA 85:15 Composite Foams .................................................................. 231<br />

4.3 Co-grinding time Effect <strong>on</strong> Compressive <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Composite Foams ......................................................... 231<br />

4.4 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Different Fillers and Wax-A Ratio <strong>on</strong> Compressive <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 Composite Foam .......... 232<br />

5 Interc<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores by CT ............................................................................................................ 233<br />

5.1 PLGA 85:15 Scaffold .............................................................................................................................................. 233<br />

5.2 PLGA 85:15 Composite Scaffold ............................................................................................................................ 235<br />

- xviii -


6 General Discussi<strong>on</strong> ..................................................................................................................................... 236<br />

7 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................................................. 237<br />

General C<strong>on</strong>clusi<strong>on</strong> and Perspective ............................................................................................................. 238<br />

BIBLIOGRAPPHY ....................................................................................................................................... 242<br />

ANNEXES .................................................................................................................................................... 264<br />

Annex-A-1 ..................................................................................................................................................... 266<br />

Annex A-2 ..................................................................................................................................................... 270<br />

Annex A-3 ..................................................................................................................................................... 271<br />

- xix -


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

Figure 1.1: Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> selected biodegradable polymers ............................................................................. 12<br />

Figure 1.2: Stereo-forms <str<strong>on</strong>g>of</str<strong>on</strong>g> lactides. ............................................................................................................... 13<br />

Figure 1.3: Ring opening polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactide to polylactide. ................................................................ 14<br />

Figure 1.4: Different ways <str<strong>on</strong>g>of</str<strong>on</strong>g> producing PLA. ................................................................................................ 14<br />

Figure 1.5: Schemaic syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(lactide-co-glycolide). ........................................................................ 17<br />

Figure 1.6: Electr<strong>on</strong> micrograph and chemical HA structure. ......................................................................... 19<br />

Figure 2.1: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> solvent casting/particulate leaching. ........................................................................ 29<br />

Figure 2.2: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> ice particle–leaching. ............................................................................................... 30<br />

Figure 2.3: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> gas foaming/salt-leaching method. .......................................................................... 31<br />

Figure 2.4: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds by gel-pressing method. ........................................................................... 32<br />

Figure 2.5: Schematic procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA microsphere scaffolds. .................................... 33<br />

Figure 2.6: Schematic procedure for manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds with <str<strong>on</strong>g>the</str<strong>on</strong>g> particle-aggregated technique. .... 33<br />

Figure 2.7: Schematic preparati<strong>on</strong> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold by <str<strong>on</strong>g>the</str<strong>on</strong>g> freeze-drying method. ............................... 34<br />

Figure 2.8: Schematic preparati<strong>on</strong> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally induced phase separati<strong>on</strong> method. ..................... 35<br />

Figure 2.9: Schematic procedure showing <str<strong>on</strong>g>the</str<strong>on</strong>g> fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds by centrifugati<strong>on</strong> method and<br />

photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> variously shaped scaffolds. ................................................................................. 36<br />

Figure 2.10: Reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injectable <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosensitive gel.................................................................................. 37<br />

Figure 2.11: Schematic stepwise representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymeric foaming using hydrocarb<strong>on</strong> porogen. ...... 39<br />

Figure 2.12: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fused depositi<strong>on</strong> modelling (FDM) system. ...................................... 40<br />

Figure 2.13: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D Bioplotter TM system. .................................................................... 40<br />

Figure 2.14: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Stereolithography (SLA) system. ...................................................... 41<br />

Figure 2.15: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase change jet printing system, <str<strong>on</strong>g>the</str<strong>on</strong>g> Model-Maker II. .................... 42<br />

Figure 2.16: Phase diagrams P-T and -P for a pure CO 2 ............................................................................... 43<br />

Figure 2.17: ScCO 2 experimental apparatus (A) CO 2 tank, (B) syringe pump and (C) pressure vessel. ........ 45<br />

Figure 2.18: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical fluid foaming process. ......................................... 46<br />

Figure 2.19: Schematic presentati<strong>on</strong> for scaffold generati<strong>on</strong> during scCO 2 foaming. .................................... 47<br />

Figure 2.20: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> occurring phenomena during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming with time. 48<br />

Figure 2.21: Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding. .......................................... 59<br />

Figure 2.22: Different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> agglomerati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding: (a) adhesi<strong>on</strong>, (b) coating and (c)<br />

agglomerati<strong>on</strong>. ............................................................................................................................. 59<br />

Figure 3.1: Differential scanning calorimetry. ................................................................................................ 62<br />

Figure 3.2: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> two P L LAs <str<strong>on</strong>g>of</str<strong>on</strong>g> different Mw. .............................................................................. 63<br />

Figure 3.3: Characteristic variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass transiti<strong>on</strong> in PLGA. ................................................................... 63<br />

Figure 3.4: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ubbelohde viscosimeter. ............................................................ 65<br />

Figure 3.5: Variati<strong>on</strong> with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced specific and inherent viscosities <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA (LR 704). .. 66<br />

Figure 3.6: (A) Mastersizer 2000 (Malvern Instruments) (B) Schematic diagram showing <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a laser diffracti<strong>on</strong> particle size analyzer. ............................................................. 67<br />

Figure 3.7: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> laser diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spherical particle. ....................................................................... 68<br />

Figure 3.8: Three dimensi<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering from a dipole. .................................................................. 68<br />

Figure 3.9: Scattering patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> two particles <str<strong>on</strong>g>of</str<strong>on</strong>g> a different size. ................................................................. 69<br />

Figure 3.10: Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Fresnel’ diffracti<strong>on</strong> (A) and Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ diffracti<strong>on</strong> (B and C). ............................ 69<br />

Figure 3.11: Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 with time. ............................................................................ 70<br />

- xxi -


Figure 3.12: (A): Hg porosimeter apparatus and (B): Pore size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA samples. ...................... 71<br />

Figure 3.13: CT principle and images <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA/Silica sample. ..................................................................... 72<br />

Figure 3.14: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s beam <strong>on</strong> specimen surface. ......................................... 73<br />

Figure 3.15: SCION ® Image processing and pore data retrieval. .................................................................... 74<br />

Figure 3.16: (A): A binary image and a structuring element (top left corner).(B): Erosi<strong>on</strong> (C): Dilati<strong>on</strong> (D):<br />

Opening (E): Closing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original image. ................................................................................ 74<br />

Figure 3.17: H25KS Brazilian testing equipment. ........................................................................................... 75<br />

Figure 3.18: (A): Principle, (B): Load geometry, (C): Simulati<strong>on</strong> and (D): Cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> a Brazilian disk test.<br />

...................................................................................................................................................... 76<br />

Figure 3.19: Compressi<strong>on</strong> testing equipment for foams and result. ................................................................ 77<br />

Figure 3.20: Wetting <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophilic and hydrophobic samples. ...................................................................... 78<br />

Figure 3.21: <strong>The</strong> Du Noüy’ ring method. ........................................................................................................ 79<br />

Figure 3.22: <strong>The</strong> Wilhelmy’ plate method with a platinum plate. ................................................................... 79<br />

Figure 3.23: Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> Wasburn’ method. ............................................................................ 80<br />

Figure 3.24: Vectorial equilibrium for a drop <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid resting <strong>on</strong> a solid surface to balance three forces. . 81<br />

Figure 3.25: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a blend PLGA + 5 % HA ............. 83<br />

Figure 3.26: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy comp<strong>on</strong>ents with Good-Van Oss’ method ............ 84<br />

Figure 3.27: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental points for a Doehlert’s design <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-variables. ............................... 85<br />

Figure 4.1: Polylactide granulates size reducti<strong>on</strong> by knife mill. ...................................................................... 88<br />

Figure 4.2: Milling process in tumbling ball mill. ........................................................................................... 88<br />

Figure 4.3: Cataract movement <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding media. ......................................................................................... 89<br />

Figure 4.4: AFNOR and ASTM 3 ½ in diameter sieves. ................................................................................. 90<br />

Figure 4.5: Magnetic stirrer mixing for composite materials. ......................................................................... 90<br />

Figure 4.6: Multistep size reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composite. .......................................................................................... 91<br />

Figure 4.7: Schematic diagram to produce pellets in semi-industrial quantities. ............................................ 92<br />

Figure 4.8: Schematic representati<strong>on</strong> to process pellets by using hydraulic press. ......................................... 92<br />

Figure 4.9: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processing pellets by wet method. ................................................... 94<br />

Figure 4.10: SEPAREX Pilot SF200 Process Flow Diagram. ..................................................................... 95<br />

Figure 4.11: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> equipment (SEPAREX Pilot SF200). ..................................................................... 95<br />

Figure 4.12: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical CO 2 ...................................... 96<br />

Figure 4.13: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> equipment (SEPAREX Pilot SFC-6). ..................................................................... 97<br />

Figure 4.14: SEPAREX Pilot SFC-6 Process Flow Diagram. ..................................................................... 97<br />

Figure 4.15: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chamber temperature during 20 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 process for PLGA 50:50 foam. .... 98<br />

Figure 4.16: Graph presenting <str<strong>on</strong>g>the</str<strong>on</strong>g> drop in pressure during 40 sec <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> step. .......................... 98<br />

Figure 4.17: Size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA particle after 30 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding ............................................... 99<br />

Figure 4.18: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle Diameter with Grinding time for P L,D LA ................................................... 99<br />

Figure 4.19: DSC analysis flow sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer material and foam. .......................................................... 100<br />

Figure 4.20: G<strong>on</strong>iometer GBX used for c<strong>on</strong>tact angle measurement. ........................................................... 101<br />

Figure 4.21: (A): Schematic diagram and (B): Two methods for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle. ................. 101<br />

Figure 4.22: Sputter coating and SEM processing flow diagram. ................................................................. 103<br />

Figure 4.23: SEM Images <str<strong>on</strong>g>of</str<strong>on</strong>g> cross secti<strong>on</strong>al foam. ....................................................................................... 104<br />

Figure 4.24: Various steps <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM image by Sci<strong>on</strong> ® . ...................................................... 105<br />

Figure 4.25: Graphs obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial data <str<strong>on</strong>g>of</str<strong>on</strong>g> SCION ® image analysis. ........................................... 106<br />

Figure 4.26: Pore distributi<strong>on</strong> comparis<strong>on</strong> in a foam with different aspects. ................................................ 107<br />

Figure 4.27: Autopore analyzer for porosity.................................................................................................. 108<br />

- xxii -


Figure 4.28: Incremental Intrusi<strong>on</strong> vs Pore size. ........................................................................................... 108<br />

Figure 4.29: Set up <str<strong>on</strong>g>of</str<strong>on</strong>g> CT and Flow chart <str<strong>on</strong>g>of</str<strong>on</strong>g> CT measurement process. .................................................. 109<br />

Figure 4.30: CT slice view from different directi<strong>on</strong> for different b<strong>on</strong>e scaffold presenting <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interc<strong>on</strong>nectivity. ....................................................................................................................... 110<br />

Figure 4.31: Stress strain graph <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA foam obtained showing <str<strong>on</strong>g>the</str<strong>on</strong>g> three regi<strong>on</strong>s. .................................. 111<br />

Figure 5.1: Courbe size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various PLAs after knife mill grinding. ........................................... 115<br />

Figure 5.2: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> various PLAs. .................................................................................................. 116<br />

Figure 5.3: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 . ........................................................................................................ 117<br />

Figure 5.4: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 different PLGA 85:15 . ...................................................................................... 117<br />

Figure 5.5: Stress strain curve obtained from Brazilian Test for P L,D LA (PAB RL 68). ............................... 119<br />

Figure 5.6: (A)-Kinetics and modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in PLGA 50:50 at 125 bar and 36.5°C, (B)<br />

Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in PLGA 50:50 at 125 bars and 36.5°C. .................... 121<br />

Figure 5.7: Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 after 100 and 200 bars, at T sat = 36.5°C and t sat = 120 min. 122<br />

Figure 5.8: Sorpti<strong>on</strong> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rm <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into PLGA 50:50. ................................................................................... 123<br />

Figure 5.9: <strong>The</strong> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 T g as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed CO 2 : (♦) 100 bars;<br />

(●) 200 bars. ............................................................................................................................... 124<br />

Figure 5.10: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P L,DL LA and PLGA 50:50 blend scaffolds. .................................................... 125<br />

Figure 5.11: Average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer blends as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA ratio. ............................... 125<br />

Figure 5.12: Average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer blends as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA ratio. ............................... 126<br />

Figure 5.13: Average pore diameter as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 ratio in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 /PLGA 85:15 blends. .. 128<br />

Figure 5.14: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foam porosity. ....................................................................................................... 130<br />

Figure 5.15: Average pore diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 scaffolds as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process parameters. ........ 130<br />

Figure 5.16: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams processed at P = 125 bars. ............................... 131<br />

Figure 5.17: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> rate. .......................... 132<br />

Figure 5.18: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dP/dt <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams processed at scCO 2 c<strong>on</strong>diti<strong>on</strong> P sat = 100 bars,<br />

T sat = 36.5°C and t sat = 60 min. ................................................................................................... 133<br />

Figure 5.19: (A) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 scaffolds as <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat ; (B) Variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier for PLGA 50:50 -CO 2 system. ....................................................................... 134<br />

Figure 5.20: T g -w diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P L,D LA (---) and PLGA 50 : 50 (—); (●) and (♦), are <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 in P L,D LA and PLGA 50:50 at 100 bars, respectively. <strong>The</strong> value for <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P L,D LA at 100 bars and 35°C is taken from [Pini et al., 2008]. ................................................. 136<br />

Figure 5.21: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds processed at P sat = 200 bars; T sat = 36.5°C, t sat = 20 min. and dP/dt =<br />

20 bar /s. ..................................................................................................................................... 137<br />

Figure 5.22: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat <strong>on</strong> pore size. ............................................................... 138<br />

Figure 5.23: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> T sat <strong>on</strong> pore size. ............................................................... 138<br />

Figure 5.24: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> t sat <strong>on</strong> pore size. ................................................................ 139<br />

Figure 5.25: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dP/dt and dT/dt <strong>on</strong> pore size. ........................................... 140<br />

Figure 5.26: Representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous structure.<br />

................................................................................................................................................... 140<br />

Figure 5.27: Micrographs depicting coalescence and collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> pores. ....................................................... 141<br />

Figure 5.28: Porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams for pellets with different initial thickness. .................................. 142<br />

Figure 5.29: Pore density <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams with different initial pellet thickness. ................................... 142<br />

Figure 5.30: PLGA 50:50 foams obtained with different initial pellet thicknesses. .......................................... 143<br />

Figure 5.31: Different distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores in PLGA 50:50 foams. .................................................................. 143<br />

Figure 5.32: Variati<strong>on</strong> in PLGA 50:50 foams geometric porosity for different process parameters. ................ 144<br />

- xxiii -


Figure 5.33: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores at different process c<strong>on</strong>diti<strong>on</strong>. ................................................................. 145<br />

Figure 5.34: Cell densities <str<strong>on</strong>g>of</str<strong>on</strong>g> pores produced at different process c<strong>on</strong>diti<strong>on</strong>. ............................................... 145<br />

Figure 5.35: Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area for Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores. ................................................................ 145<br />

Figure 5.36: Effective pore diameter for each process parameter. ................................................................ 145<br />

Figure 6.1: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams processed by wet and dry methods. ............................................ 149<br />

Figure 6.2: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams. ...................... 150<br />

Figure 6.3: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams. ............................. 150<br />

Figure 6.4: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams processed by wet and dry methods. ............................................ 152<br />

Figure 6.5: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams. ...................... 153<br />

Figure 6.6: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams. ............ 153<br />

Figure 6.7: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams processed by wet and dry methods. ........................................... 155<br />

Figure 6.8: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams. .................... 155<br />

Figure 6.9: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams. .......... 156<br />

Figure 6.10: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams processed by wet and dry methods. ......................................... 158<br />

Figure 6.11: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams. .................. 158<br />

Figure 6.12: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams. ......................... 159<br />

Figure 6.13: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P L,D LA and P L,DL LA foams by wet and dry methods from initial Taguchi plan. ........................ 159<br />

Figure 6.14: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P L,D LA and P L,DL LA foams by wet and dry methods from complementary Taguchi plan. ........ 160<br />

Figure 6.15: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams processed by wet and dry methods. ..................................... 162<br />

Figure 6.16: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams. ............... 162<br />

Figure 6.17: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams. ..... 163<br />

Figure 6.18: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams processed by wet and dry methods. ..................................... 165<br />

Figure 6.19: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams. ............... 165<br />

Figure 6.20: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams. ...................... 166<br />

Figure 6.21: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams processed by wet and dry methods. ..................................... 167<br />

Figure 6.22: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams. ............... 168<br />

Figure 6.23: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams ....................... 168<br />

Figure 6.24: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams processed by wet and dry methods. ..................................... 170<br />

Figure 6.25: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams. ............... 170<br />

Figure 6.26: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams. ...................... 171<br />

Figure 6.27: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PLGA 50:50 and PLGA 85:15 foams by wet and dry method for initial Taguchi plan. ..................... 172<br />

Figure 6.28: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each parameter <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PLGA 50:50 and PLGA 85:15 foams for complementary Taguchi plan. ........................................... 173<br />

Figure 6.29: PLGA 50:50 scaffold pore morphology with detail inside view obtained by dry method and foams<br />

processed at 50 o C-150 bars-25 min-6 bar/s. ............................................................................... 174<br />

Figure 6.30: Pore Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold processed by wet and dry methods. ............... 175<br />

Figure 6.31: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore morphology for PLAs and PLGAs foams processed at T sat = 50 o C, P sat =<br />

100 bars, t sat = 20 min and dP/dt = 3 bar/s. ................................................................................. 176<br />

Figure 6.32: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA foams structure by CT analysis. ........................................................ 176<br />

Figure 6.33: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams structure by CT analysis. ...................................................... 176<br />

Figure 6.34: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foam structure by CT analysis. ..................................................... 177<br />

Figure 6.35: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foam structure by CT analysis. ..................................................... 177<br />

- xxiv -


Figure 6.36: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> particle before grinding. .................................................................................. 179<br />

Figure 6.37: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size distributi<strong>on</strong> for PLGA+HA co-grinding. .................................... 180<br />

Figure 6.38: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> blend PLGA+ HA after different co-grinding time. ........................................ 181<br />

Figure 6.39: Surface evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blend PLGA 85:15 + 10% HA pellets with co-grinding time. ..................... 182<br />

Figure 6.40: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> HA <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersive comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> blend<br />

surface energy.PLGA/HA. ......................................................................................................... 183<br />

Figure 6.41: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding time and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> HA <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents Acid-Base <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

energy. ........................................................................................................................................ 184<br />

Figure 6.42: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding time and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> HA <strong>on</strong> S nd and S ............................................. 184<br />

Figure 6.43: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams at P sat = 120 bars , t sat = 20 min and T sat = 35 o C, [50×]. ........ 185<br />

Figure 6.44: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> blends PLGA 85:15 /HA 10% foams processed at P sat = 120 bars, t sat = 20 min, T sat<br />

= 35 o C, [100×]. .......................................................................................................................... 186<br />

Figure 6.45: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> blend PLGA/HA 10% foams processed at P sat = 120 bars, t sat = 20 min and<br />

dP/dt = 3 bar/s. ........................................................................................................................... 187<br />

Figure 7.1: IR absorpti<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous tricalcium phosphate (ATCP) doped with 10% Sr. ....... 192<br />

Figure 7.2: IR absorpti<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous calcium phosphate (ACP) doped with 10% Sr after<br />

calcinati<strong>on</strong> 24 h. ......................................................................................................................... 192<br />

Figure 7.3: IR absorpti<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> tricalcium phosphate doped with 10% Sr after 2 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> calcinati<strong>on</strong>.<br />

................................................................................................................................................... 193<br />

Figure 7.4: Particles size <str<strong>on</strong>g>of</str<strong>on</strong>g> two different tricalcium phosphates analyzed by granulometry. ...................... 194<br />

Figure 7.5: Melting and crystallisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wax A (TERHELL-907). ...................................................... 194<br />

Figure 7.6: TGA curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wax-A (907). .................................................................................................. 195<br />

Figure 7.7: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 (8523) + tricalcium phosphate processed at scCO 2 c<strong>on</strong>diti<strong>on</strong>s- T sat<br />

50°C, t sat 20 min, dP/dt 3bar/s and varying P sat. ................................................................. 196<br />

Figure 7.8: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA + tricalcium phosphate processed at scCO 2 c<strong>on</strong>diti<strong>on</strong>s- T sat 50°C, t sat <br />

20 min, dP/dt 3bar/s and varying P sat. .................................................................................... 197<br />

Figure 7.9: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA foams at different process c<strong>on</strong>diti<strong>on</strong>s. ................................................. 199<br />

Figure 7.10: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA +(10%) wax-A foams at different process c<strong>on</strong>diti<strong>on</strong>s. ...................... 199<br />

Figure 7.11: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA +(20%) wax-A foams at different process c<strong>on</strong>diti<strong>on</strong>s. ...................... 200<br />

Figure 7.12: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA +(30%) wax-A foams at different process c<strong>on</strong>diti<strong>on</strong>s. ...................... 200<br />

Figure 7.13: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wax-A <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent pore diameter for polymer wax blends. ............... 202<br />

Figure 7.14: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wax-A <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric porosity for polymer wax blends. ......................... 202<br />

Figure 7.15: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams obtained by simple mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and wax and processed - at [T sat<br />

45°C, P sat 120 bars, t sat 20 min, dP/dt 3bar/s]. ................................................................. 204<br />

Figure 7.16: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams obtained by simple mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and wax and processed at [T sat<br />

45°C, P sat 100 bars t sat 20 min, dP/dt 3bar/s]. .................................................................. 204<br />

Figure 7.17: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams obtained by co-grinding polylactide and fillers processed at T sat 45°C,<br />

P sat 120 bars, t sat 20 min and dP/dt 3 bar/s. ........................................................................ 205<br />

Figure 7.18: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams obtained by co-grinding polylactide and fillers processed at................ 206<br />

Figure 7.19: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams c<strong>on</strong>taining different percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> wax A. .......................................... 208<br />

Figure 7.20: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and different % <str<strong>on</strong>g>of</str<strong>on</strong>g> wax <strong>on</strong> foam pore diameter and porosity.<br />

................................................................................................................................................... 209<br />

Figure 8.1: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> pure polymer and polymer with filler foams processed at scCO 2 c<strong>on</strong>diti<strong>on</strong> T sat =<br />

50 o C, P sat = 100 bars, t sat = 20 min, dP/dt = 3 bar/s. ................................................................... 211<br />

- xxv -


Figure 8.2: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 (RG 858 S) processed at P sat =100 bars, t sat =20 min and dP/dt =3 bar/s.<br />

.................................................................................................................................................... 213<br />

Figure 8.3: Size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground and sieved particles <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 . ............................................ 213<br />

Figure 8.4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams with different polymer particle size range processed at<br />

scCO 2 c<strong>on</strong>diti<strong>on</strong> T sat 48°C, t sat 20 min, dP/dt 3 bar/s, P sat 120 bars or P sat 100 bars. .... 214<br />

Figure 8.5: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size <strong>on</strong> equivalent pore size and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams<br />

processed at T sat 48°C, t sat 20 min and dP/dt 3bar/s ........................................................... 215<br />

Figure 8.6: Size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composite formulati<strong>on</strong> at different co-grinding time. .................................. 216<br />

Figure 8.7: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 composites foams processed at T sat = 50 o C, P sat = 100 bars, t sat = 20<br />

min, and dP/dt = 3 bar/s with different co-grinding times. ........................................................ 216<br />

Figure 8.8: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams with different filler ratio processed at five different scCO 2 c<strong>on</strong>diti<strong>on</strong>s. . 218<br />

Figure 8.9: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer with different particle size range +5% βTCP (sr) + 5% ATCP (sr)<br />

processed at. T sat 45°C, P sat 100 bars, t sat 20 min and, dP/dt 3 bar/s. .............................. 219<br />

Figure 8.10: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size <strong>on</strong> Pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foams c<strong>on</strong>taining 90% PLGA 85:15<br />

+5%βTCP (sr) and 5%ATCP (sr) processed at--[45 o C-100 bar-20 min-3 bar/s] ............................. 220<br />

Figure 8.11: ScCO 2 Foaming installati<strong>on</strong> with 3 perforated stailess steel plates stage. ................................ 220<br />

Figure 8.12: Foams <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer composite blend <strong>on</strong> 3 SS plates stage. ........................................................ 220<br />

Figure 8.13: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> foams obtained from each plate processed at sc CO 2 process c<strong>on</strong>diti<strong>on</strong> T sat<br />

45°C, P sat 100 bars, t sat 20 min and dP/dt 3bar/s. ............................................................ 221<br />

Figure 8.14: Equivalent pore size and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foams at different places in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. ...... 221<br />

Figure 8.15: Foams <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets prepared in <strong>on</strong>e batch. .................................................................................... 222<br />

Figure 8.16: Pore equivalent size and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> composite foam in <str<strong>on</strong>g>the</str<strong>on</strong>g> same batch. ................ 223<br />

Figure 8.17: Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pores in composite foams in <str<strong>on</strong>g>the</str<strong>on</strong>g> same batch. ..................................................... 223<br />

Figure 8.18: Surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> pores in composite foams in <str<strong>on</strong>g>the</str<strong>on</strong>g> same batch. ................................................... 223<br />

Figure 8.19: 90% PLGA 85:15 +5%ATCP (sr) +5%βTCP (sr) foams randomly selected from different batches<br />

processed at - T sat 45°C, P sat 100 bar t sat 20 min and dual dP/dt 1 and 3bar/s. ............... 225<br />

Figure 8.20: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 % PLGA 85:15 + 5 % ATCP (sr) + 5 % βTCP (sr) foams sected from<br />

different batches and processed at: T sat 48°C, P sat 100 bars, t sat 20 min and dual dP/dt 1<br />

and 3bar/s ................................................................................................................................... 226<br />

Figure 8.21: Equivalent pore size and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> 90% PLGA 85:15 + 5% ATCP (sr) + 5% βTCP (sr)<br />

foams from different batches. ..................................................................................................... 227<br />

Figure 8.22: Pore frequency and cummulative total pore area as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average pore diameter for 90%<br />

PLGA 85:15 +5%ATCP (sr) +5%βTCP (sr) foams selected randomly from different runs. ................ 227<br />

Figure 8.23: Equivalent pore diameter vs pore numbers for selected ............................................................ 228<br />

Figure 8.24: Pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> composite foams from different batches ................................... 228<br />

Figure 8.25: Pore morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> selected polymer composite foams. ......................................................... 229<br />

Figure 8.26: Internal morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> 90% PLGA 85:15 +5%ATCP (sr) +5%βTCP (sr) foams ............................... 229<br />

Figure 8.27: Some typical stress–strain curves <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 porous scaffolds with internal macropores at<br />

different porosities produced at different process c<strong>on</strong>diti<strong>on</strong>s..................................................... 230<br />

Figure 8.28: Compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> pure PLGA 85:15 foams with different porosities. ............................ 231<br />

Figure 8.29: Compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> foams c<strong>on</strong>taining 90 % PLGA 85:15 + 5 % TCP (sr) + 5 % ATCP (sr)<br />

processed at T sat 48°C, P sat 100 bars, t sat 20 min, dual and dP/dt 1 bar/s and 3 bar/s. ..... 231<br />

Figure 8.30: Compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> foams c<strong>on</strong>taining 90 % PLGA 85:15 + 5 % TCP (sr) + 5 % ATCP (sr)<br />

obtained after co-grinding. ......................................................................................................... 232<br />

Figure 8.31: Compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> 90%PLGA 85:15 + 5%TCP (sr) +5%ATCP (sr) foams with different fillers<br />

ratios ........................................................................................................................................... 233<br />

- xxvi -


Figure 8.32: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> pure PLGA 85:15 foams by CT analysis processed at T sat 48°C, P sat 100 bars,<br />

t sat 20 min and dP/dt 3bar/s .................................................................................................. 233<br />

Figure 8.33: CT Slice images at intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 500m <str<strong>on</strong>g>of</str<strong>on</strong>g> pure PLGA 85:15 foams structure showing<br />

interc<strong>on</strong>nectivity processed at T sat 48°C, P sat 100 bars, t sat 20 min and dP/dt 3bar/s ...... 234<br />

Figure 8.34: Slice images <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 % PLGA 85:15 + 5 % ATCP (sr) + 5 % TCP (sr) foams structure by CT analysis<br />

processed at T sat 48°C, P sat 100 bars, t sat 20 min and dP/dt 3bar/s. ................................. 235<br />

Figure 8.35: CT Slice images at intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 500m <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 % PLGA 85:15 + 5 % ATCP (sr) + 5 % TCP (sr)<br />

foams processed at T sat 48°C, P sat 100 bars, t sat 20 min, and dP/dt 3bar/s ...................... 236<br />

Figure A-7.1: Mergers and crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wax - B (C80) during <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 st and 2 nd scans ............................. 271<br />

Figure A-7.2:Fusi<strong>on</strong> and crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wax-C (H1) during <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 st and 2 nd scans .................................... 271<br />

Figure A-7.3:Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA +(20%) Wax-C foams at different process c<strong>on</strong>diti<strong>on</strong>s ..................... 272<br />

Figure A-7.4:Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA +(30%) Wax-B foams at different process c<strong>on</strong>diti<strong>on</strong>s ..................... 272<br />

Figure A-7.5: Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> waxB and Wax-C <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter variati<strong>on</strong>s for polymer wax blends<br />

................................................................................................................................................... 273<br />

Figure A-7.6:Average effect <str<strong>on</strong>g>of</str<strong>on</strong>g> wax-B and Wax-C <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative porosity variati<strong>on</strong>s for polymer wax<br />

blends ......................................................................................................................................... 273<br />

- xxvii -


xxviii


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

Table 1.1: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporotic (OP) b<strong>on</strong>e and normal b<strong>on</strong>e. ........................... 9<br />

Table 1.2: Main physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different PLAs. .................................................................................. 15<br />

Table 1.3: Main physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA and several PLGAs. .................................................................. 17<br />

Table 1.4: Degradati<strong>on</strong> times <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> polylactides. .................................................................................. 18<br />

Table 1.5: Solubility products <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases in water at 25°C. ..................................................................... 23<br />

Table 2.1: Typical values <str<strong>on</strong>g>of</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> gas, supercritical fluid and liquid. .................................. 43<br />

Table 2.2: Critical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several substances. ....................................................................................... 44<br />

Table 2.3: SL-EOS characteristic parameters for CO 2 and PLGA 50:50 . ........................................................... 51<br />

Table 2.4: <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T g according to Chow’s model. ............................ 52<br />

Table 4.1: Sieving mesh for different powder particles................................................................................... 89<br />

Table 4.2: Dimensi<strong>on</strong>al data <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 pellets and foams for geometric porosity. .................................. 102<br />

Table 4.3: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> data obtained from SCION® image analysis. ........................................................... 105<br />

Table 4.4: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> pore distributi<strong>on</strong> data, pore morphology and final SCION ® image. ......................... 106<br />

Table 5.1: Polylactide origin and physical state. ........................................................................................... 114<br />

Table 5.2: Mean diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers after knife mill grinding by granulometry. .............................. 115<br />

Table 5.3: Viscosity values <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50. ...................................................................................................... 115<br />

Table 5.4: Comparis<strong>on</strong> between molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> various polylactides. ................................................. 116<br />

Table 5.5: Glass transiti<strong>on</strong>s parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various polylactides. ............................................................. 118<br />

Table 5.6: Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer used. ................................................................................ 119<br />

Table 5.7: Desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients and sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 after different saturati<strong>on</strong> times at saturati<strong>on</strong><br />

pressure 125 bars and saturati<strong>on</strong> temperature 36.5°C. ............................................................... 122<br />

Table 5.8: Desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 for plasticized and glassy states, after<br />

different saturati<strong>on</strong> pressures at 36.5°C for 120 min. <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> time. .................................. 122<br />

Table 5.9: Sorpti<strong>on</strong> data for PLGA 50:50 at 36.5°C. ......................................................................................... 123<br />

Table 5.10: Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 and P L,DL LA. .............................................................................................. 124<br />

Table 5.11: Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 and P L,DL LA. .............................................................................................. 125<br />

Table 5.12: Variati<strong>on</strong> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various factors. .................................................................................... 127<br />

Table 5.13: 2 4 design <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments: levels <str<strong>on</strong>g>of</str<strong>on</strong>g> factors and average size <str<strong>on</strong>g>of</str<strong>on</strong>g> pores. ....................................... 127<br />

Table 5.14: Coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 4 model for <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 85:15 and <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50. ............................................ 128<br />

Table 5.15: Domain <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi’ design. ........................................................................... 128<br />

Table 5.16: Experiments with <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi design and <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores for PLGA 50:50 . .......... 129<br />

Table 5.17: Average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores for all factors and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir effects. ....................................................... 129<br />

Table 5.18: Doehlert’ design and <str<strong>on</strong>g>the</str<strong>on</strong>g> results for <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores. .......................................... 130<br />

Table 5.19: Repetiti<strong>on</strong>s experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Doehlert’ design (P sat = 100 bars and dP/dt = 5 bar/s). ................... 131<br />

Table 5.20: Variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> average size <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with different dP/dt values at P sat = 100 bars. ................ 132<br />

Table 5.21: Complementary Doehlert’ design experiments. ......................................................................... 133<br />

Table 5.22: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert design: coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model. ....................................................... 133<br />

Table 5.23: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert design: research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore dimensi<strong>on</strong>. .................... 134<br />

Table 5.24: Hidebrand’ and Hansen’ parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLA and <str<strong>on</strong>g>the</str<strong>on</strong>g> PGA in (MPa) 1/2 . .............................. 135<br />

Table 5.25: Pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> variable thickness and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir foam data. ...................................................................... 142<br />

Table 5.26: ScCO 2 process c<strong>on</strong>diti<strong>on</strong>s for foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50. ................................................................. 144<br />

- xxix -


Table 6.1: Initial Taguchi plans for scCO 2 foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets prepared by wet and dry method. ................. 148<br />

Table 6.2: P L,D LA foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by initial Taguchi’ plan. .................................... 148<br />

Table 6.3: Complementary Taguchi plans for scCO 2 foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets prepared by wet and dry method. . 151<br />

Table 6.4: P L,D LA foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by complementary Taguchi plan. ..................... 151<br />

Table 6.5: P L,DL LA foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by initial Taguchi’ plan. .................................. 155<br />

Table 6.6: P L,DL LA foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by complementary Taguchi plan. .................... 156<br />

Table 6.7: P L,D LA equivalent pore diameter and geometric porosity results for both methods and plans. .... 159<br />

Table 6.8: P L,DL LA equivalent pore diameter and geometric porosity results for both methods and plans. .. 159<br />

Table 6.9: PLGA 50:50 foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by initial Taguchi plan. ................................ 162<br />

Table 6.10: PLGA 50:50 foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by complementary Taguchi plan. ............... 163<br />

Table 6.11: PLGA 85:15 foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by initial Taguchi plan. .............................. 167<br />

Table 6.12: PLGA 85:15 foams pore data <str<strong>on</strong>g>of</str<strong>on</strong>g> wet and dry method by complementary Taguchi plan. ............... 169<br />

Table 6.13: PLGA 50:50 equivalent pore diameter and porosity results for both methods and plans. .............. 171<br />

Table 6.14: PLGA 85:15 equivalent pore diameter and porosity results for both methods and plans ............... 172<br />

Table 6.15: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foam porosities obtained by two different methods. .......................................... 177<br />

Table 6.16: Compressive modulus and compressive strength <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer foams by both methods. ............. 178<br />

Table 6.17: C<strong>on</strong>tact Angle between water and pellets c<strong>on</strong>stituted by HA, PLGA or HA-PLGA blends. ..... 181<br />

Table 6.18: Angle measured by different liquids <strong>on</strong> PLGA pellet ................................................................ 182<br />

Table 6.19: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energies by two different methods for PLGA and PLGA/HA blends ............... 183<br />

Table 6.20: scCO 2 process c<strong>on</strong>diti<strong>on</strong>s for PLGA/HA foams. ........................................................................ 185<br />

Table 6.21: Pore analysis for PLGA 85:15 foams processed at P sat = 120 bars, t sat = 20 min and T sat = 35 o C. .. 186<br />

Table 6.22: Pore analysis data for blends PLGA 85:15 /HA 10% foams. .......................................................... 186<br />

Table 6.23: Blend PLGA 85:15 /HA 10% foams processed at P sat =120 bars, t sat =20 min. and dP/dt = 3 bar/s .. 188<br />

Table 6.24: PLGA 85:15 /10%HA composite foams pore data process at P sat =120 bars and t sat =20 min. ......... 188<br />

Table 7.1: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resulting bands in <str<strong>on</strong>g>the</str<strong>on</strong>g> FTIR analysis. ......................................................................... 191<br />

Table 7.2: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bands in FTIR for amorphous calcium phosphate (ACP). ......................................... 192<br />

Table 7.3: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bands in FTIR for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r groups. ................................................................................. 193<br />

Table 7.4: Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bands in FTIR for pyrophosphate. .............................................................................. 193<br />

Table 7.5: <strong>The</strong>rmodynamics transiti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> waxes. .............................................. 195<br />

Table 7.6: Levels selected for each parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold and foaming process with supercritical CO 2 at<br />

(T sat = 50°C, dP/dt = 3 bar/min and t sat = 20 min). ..................................................................... 196<br />

Table 7.7: PLGA 85:15 and P L,D LA Foams pore data with different % <str<strong>on</strong>g>of</str<strong>on</strong>g> tricalcium phosphate. ..................... 197<br />

Table 7.8: Mass ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and different waxes and Taguchi’ plan (L 9 ) for polymer-wax blend foams.<br />

.................................................................................................................................................... 198<br />

Table 7.9: Equivalent pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pure P L,DL LA and polymer-wax blend foams. ................................. 201<br />

Table 7.10: Geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> pure P L,DL LA and polymer-wax blend foams. ........................................ 201<br />

Table 7.11: Pure P L,DL LA and polymer-wax blend equivalent pore diameter and porosity results. .............. 202<br />

Table 7.12: Equivalent pore diameter and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foams <str<strong>on</strong>g>of</str<strong>on</strong>g> composite plus wax by simple<br />

mixing processed at T sat 45°C, t sat 20 min, and dP/dt 3bar/s............................................... 204<br />

Table 7.13: Equivalent pore diameter and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foams <str<strong>on</strong>g>of</str<strong>on</strong>g> composite plus wax by co-grinding<br />

processed at two saturati<strong>on</strong> presures. ......................................................................................... 206<br />

Table 7.14: Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> different polymer particle size and with variable % <str<strong>on</strong>g>of</str<strong>on</strong>g> wax. ............ 207<br />

Table 7.15: Pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> foams with different particle size and with variable % <str<strong>on</strong>g>of</str<strong>on</strong>g> wax. ...................... 207<br />

- xxx -


Table 8.1: Polymers with different T g ’s and LA/GA ratios. .......................................................................... 211<br />

Table 8.2: Pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers and polymer plus filler. ............................................................................. 212<br />

Table 8.3: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and process temperature <strong>on</strong> equivalent pore diameter and geometric porosity.<br />

................................................................................................................................................... 212<br />

Table 8.4: Mean particles sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA samples. ....................................................................................... 214<br />

Table 8.5: Pore size and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA foams with different particle size range for two scCO 2 -c<strong>on</strong>diti<strong>on</strong>s<br />

with different P sat 120 bars, or P sat 100 bars. ........................................................................ 215<br />

Table 8.6: Mean particle size <str<strong>on</strong>g>of</str<strong>on</strong>g> composite matrix after different co-grinding time. .................................... 216<br />

Table 8.7: Equivalent pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foams processed at different co-grinding time at T sat =<br />

50 o C, P sat = 100 bars, t sat = 20 min, and dP/dt = 3 bar/s. ............................................................. 217<br />

Table 8.8: Pores diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> selected [PLGA 85:15 +ATCP (sr) + TCP (sr) ] foams. ....................... 217<br />

Table 8.9: Equivalent pore diameter and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA + 5% βTCP (sr) + 5% ATCP (sr) foams<br />

with different particle size range processed at T sat 45°C, P sat 100 bars, t sat 20 min and dP/dt<br />

3bar/s. ...................................................................................................................................... 219<br />

Table 8.10: Dimmensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> foams placed <strong>on</strong>to 3 SS plates stage ............................................................... 221<br />

Table 8.11: Weight and percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer grinding and sieving for different particle size ranges. .... 223<br />

Table 8.12: Pore diameter and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 foams. ........................................................................ 230<br />

Table 8.13: PLGA 85:15 foam compressive test data obtained from stress strain curves. ................................ 230<br />

Table 8.14: Polymer matrix with variati<strong>on</strong> in fillers and wax A ratio ........................................................... 232<br />

- xxxi -


Introducti<strong>on</strong><br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> past decade, <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric materials for <str<strong>on</strong>g>the</str<strong>on</strong>g> administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pharmaceuticals and<br />

as biomedical devices has increased exp<strong>on</strong>entially. <strong>The</strong> most important biomedical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biodegradable polymers are in <str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolled drug delivery systems and in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> implants and<br />

devices for fracture repairs, cartilage replacement, ligament rec<strong>on</strong>structi<strong>on</strong>, tissue regenerati<strong>on</strong> surgical<br />

dressings, dental repairs, artificial heart valves, c<strong>on</strong>tact lenses, cardiac pacemakers, vascular grafts, tracheal<br />

replacements, and organ regenerati<strong>on</strong> [Dumitriu, 1994].<br />

Indeed tissue engineering is an extremely important area. It generally involves <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> materials<br />

and cells with <str<strong>on</strong>g>the</str<strong>on</strong>g> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> trying to understand tissue functi<strong>on</strong> and some day enabling virtually any tissue or<br />

organ <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> body to be made de novo. To achieve this very important l<strong>on</strong>g-range objective requires research<br />

in many areas. For <str<strong>on</strong>g>the</str<strong>on</strong>g> last few years, tissue engineering is proving to be a great hope for regenerating or<br />

repairing damaged tissues. Recent technological advancement in 21 st century has opened a new era for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial organs by means <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering and regenerative medicine to repair or replace<br />

damaged/diseased tissues and organs. An increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> average age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> human beings as well as in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> age-related “wear-and-tear” c<strong>on</strong>diti<strong>on</strong>s and traumatic injuries/diseases, <str<strong>on</strong>g>the</str<strong>on</strong>g> shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy<br />

d<strong>on</strong>or organs has led to <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering and regenerative medicine. To coop with this<br />

sensitive engineering materials are required that are biodegradable and compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> in vivo<br />

c<strong>on</strong>diti<strong>on</strong>s [Khang et al., 2007].<br />

To rec<strong>on</strong>struct a new tissue by tissue engineering, triad, (a) cells which are harvested and<br />

dissociated from <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or tissue; (b) biomaterials as scaffold substrates in which cells are attached and<br />

cultured, resulting in implantati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> desired site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>ing tissue; and (c) growth factors which<br />

promote and/or prevent cell adhesi<strong>on</strong>, proliferati<strong>on</strong>, migrati<strong>on</strong>, and differentiati<strong>on</strong>, are needed:<br />

(1) As cells adhere to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular matrix material in <str<strong>on</strong>g>the</str<strong>on</strong>g> body, this matrix has an enormous<br />

effect <strong>on</strong> how <str<strong>on</strong>g>the</str<strong>on</strong>g> cells behave,<br />

(2) Scaffolds play a critical role in <str<strong>on</strong>g>the</str<strong>on</strong>g> reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neo-tissues and neo-organs. However, to<br />

try to recreate extracellular matrix is a difficult task and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore various biodegradable polymers have been<br />

explored to provide substrates for cell growth which can be tried in vivo. Scaffold matrices can be used to<br />

achieve cell delivery with high loading and efficiency to specific sites.<br />

<strong>The</strong>re are numerous types <str<strong>on</strong>g>of</str<strong>on</strong>g> manufacturing protocols for tissue-engineered scaffolds that are<br />

adapted for various applicati<strong>on</strong>s. Each manufacturing methods have its limitati<strong>on</strong> [Khang et al., 2007].<br />

Scaffold design and fabricati<strong>on</strong> are discussed so that <str<strong>on</strong>g>the</str<strong>on</strong>g> reader may have a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how to<br />

develop and manufacture <str<strong>on</strong>g>the</str<strong>on</strong>g>se systems [Blitterswijk and Thomsen, 2008]. Porous biodegradable scaffolds,<br />

filled with appropriate type <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, proteins or drugs, are used as grafts <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering. <strong>The</strong>se<br />

scaffolds can be implanted to <str<strong>on</strong>g>the</str<strong>on</strong>g> desired tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> body (b<strong>on</strong>e, cartilage, muscles, nerves, etc.) to provide a<br />

template for tissue regenerati<strong>on</strong> by c<strong>on</strong>trolled releasing its c<strong>on</strong>tent and by slowly resorbing or degrading, and<br />

finally leaving no foreign comp<strong>on</strong>ents in <str<strong>on</strong>g>the</str<strong>on</strong>g> body, hence decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> inflammati<strong>on</strong> [Mathieu,,<br />

2004; Hile et al., 2000; Mo<strong>on</strong>ey et al., 1996].<br />

<strong>The</strong> scaffold for supporting 3D cell culture must meet various criteria to functi<strong>on</strong> appropriately<br />

and to promote cell growth. <strong>The</strong>se criteria include both mechanical parameters as well as parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1


iological performance. Biocompatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold is critical and must not damage cells and alter <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

functi<strong>on</strong>s or lead to significant scarring.<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable scaffolds are described in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se scaffolds come<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> polyesters. Poly(α-hydroxy acids) like poly(lactic acid) (PLA), poly(glycolic acid)<br />

(PGA), and <str<strong>on</strong>g>the</str<strong>on</strong>g> co-polymer, known as poly(lactic-co-glycolic acid) (PLGA) are a part <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering<br />

studies. <strong>The</strong> comm<strong>on</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se polymers is basically related to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degradati<strong>on</strong> behaviour. Polymer<br />

degradati<strong>on</strong> takes place mostly through scissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main chains or side-chains <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer molecules,<br />

induced by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal activati<strong>on</strong>, oxidati<strong>on</strong>, photolysis, radiolysis, or hydrolysis. Some polymers undergo<br />

degradati<strong>on</strong> in biological envir<strong>on</strong>ments when living cells or microorganisms are present around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymers. PLA degrades into lactic acid, and PLGA degrades into lactic and glycolic acid. Also, for PLGA,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradability rate can be c<strong>on</strong>trolled by changing <str<strong>on</strong>g>the</str<strong>on</strong>g> co-m<strong>on</strong>omer compositi<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, PLA and<br />

PLGA are approved by United States Food and Drug Administrati<strong>on</strong> for biomedical uses [Ikada and Tsuji,<br />

1999; Steinbüchel, 2003].<br />

Supercritical CO 2 (scCO 2 ) foaming was first proposed by Mo<strong>on</strong>ey et al. [1996] to create porous<br />

PLGA and PLA scaffolds by <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure quench method, which was first proposed by Goel and Beckman<br />

[1994] to manufacture microcellular PMMA foams. <strong>The</strong>re have been a number <str<strong>on</strong>g>of</str<strong>on</strong>g> followers, which worked<br />

<strong>on</strong> foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable polymers to create porous scaffolds by this method [Reverch<strong>on</strong> and Cardea,<br />

2007a; Tsivintzelis et al., 2007a; Quirk et al., 2004a; Goel and Beckman, 1994a, 1995; Khang et al., 2007].<br />

Supercritical CO 2 is a green solvent and this method c<strong>on</strong>sists in using CO 2 as a blowing agent for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer to create porous material. CO 2 is used because it is relatively n<strong>on</strong>-toxic, relatively inert, and n<strong>on</strong><br />

combustible. Also, it has relatively reachable critical points (T c = 31°C and P c = 73.8 bars). Thus it can be<br />

used to prepare microcellular foams using supercritical fluids as foaming agents. It has many advantageous<br />

properties, which enable <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use as foaming agents; <str<strong>on</strong>g>the</str<strong>on</strong>g>se include a tuneable solvent power, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plasticizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glassy polymers (as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature depressi<strong>on</strong>) and enhanced<br />

diffusi<strong>on</strong> rates. <strong>The</strong> low critical temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 allows an easy and complete separati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer, without a vapour-liquid transiti<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong>. General principle <str<strong>on</strong>g>of</str<strong>on</strong>g> foaming method is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following: saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets with CO 2 at desired temperature and high pressure, followed by a rapid<br />

depressurizati<strong>on</strong> which causes <str<strong>on</strong>g>the</str<strong>on</strong>g> super saturati<strong>on</strong>. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> super saturati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nuclei occurs and <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> induced desorpti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix and <str<strong>on</strong>g>the</str<strong>on</strong>g> phase change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 provides <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth.<br />

<strong>The</strong> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 increases with pressure, which leads to work at supercritical pressures.<br />

Moreover, since <str<strong>on</strong>g>the</str<strong>on</strong>g> critical temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is 31°C, it can be used to process <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally sensitive<br />

materials. Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers depresses <str<strong>on</strong>g>the</str<strong>on</strong>g>ir glass transiti<strong>on</strong> temperature which results in a<br />

polymer/gas soluti<strong>on</strong>.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, in <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue engineering field, as CO 2 replaces <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical solvents, it<br />

provides <str<strong>on</strong>g>the</str<strong>on</strong>g> complete disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> residual amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> undesired substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomedical use. <strong>The</strong> manufacturing methods are very important for <str<strong>on</strong>g>the</str<strong>on</strong>g> specific organs because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

physicochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold matrices — such as porosity, equivalent pore diameter, and specific<br />

area — are determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing methods.<br />

- 2 -


This research study has been carried out at <str<strong>on</strong>g>the</str<strong>on</strong>g> "Centre Interuniversitaire de Recherche et<br />

d’Ingénierie des Matériaux" (CIRIMAT) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> "Institut Nati<strong>on</strong>al Polytechnique de Toulouse" in<br />

collaborati<strong>on</strong> with two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r laboratories <str<strong>on</strong>g>of</str<strong>on</strong>g> Toulouse: <str<strong>on</strong>g>the</str<strong>on</strong>g> "Laboratoire de Génie Chimique de Toulouse"<br />

(LGC) and <str<strong>on</strong>g>the</str<strong>on</strong>g> "Laboratoire d'Analyse et d'Architecture des Systèmes" (LAAS). In <str<strong>on</strong>g>the</str<strong>on</strong>g> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

study, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porous biodegradable polymer scaffolds for c<strong>on</strong>nective and calcified tissues by<br />

supercritical CO 2 foaming technique is investigated. Physical and mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer used,<br />

glass transiti<strong>on</strong> temperature and crystallinity are important factors to define <str<strong>on</strong>g>the</str<strong>on</strong>g> final properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scaffolds. <strong>The</strong>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> primary factor is to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent pore size and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, different types <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactides and poly (D, L-lactide-co-glycolide) with different<br />

Lactide/Glycolide ratio were used. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (co)polymers are amorphous while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are semicrystalline.<br />

Polylactides have been blended with different adjuvants (wax, hyalur<strong>on</strong>ic acid) and/or fillers<br />

(calcium phosphate doped str<strong>on</strong>tium). Comparis<strong>on</strong> between blends and composites obtained after cogrinding<br />

biomaterials has been studied in detail. Inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>ic acid has been performed with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aim <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> surface adhesi<strong>on</strong> property, tricalcium phosphate (amorphous and ) to improve <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mechanical properties and wax as porogen agent. Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> different comp<strong>on</strong>ents and time <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding<br />

have been analyzed in functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final porous structure (equivalent pore diameter and porosity) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scaffold. Finally, a comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> foams processed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by <str<strong>on</strong>g>the</str<strong>on</strong>g> dry or wet pellet preparati<strong>on</strong> method,<br />

was realized.<br />

<strong>The</strong> main objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present study are:<br />

<br />

<br />

<br />

Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate polymer for c<strong>on</strong>nective tissue and b<strong>on</strong>e regenerati<strong>on</strong>.<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding process c<strong>on</strong>diti<strong>on</strong>s (time, ratio) for fillers, hyalur<strong>on</strong>ic acid and wax with<br />

polylactides.<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 foaming parameters (saturati<strong>on</strong> pressure, saturati<strong>on</strong> temperature, saturati<strong>on</strong><br />

time and depressurizati<strong>on</strong> rate).<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> attaining <str<strong>on</strong>g>the</str<strong>on</strong>g>se objectives, <str<strong>on</strong>g>the</str<strong>on</strong>g> following studies have been realized:<br />

<br />

<br />

<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore morphology (equivalent pore size, pore size distributi<strong>on</strong> and interc<strong>on</strong>nectivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> micro, meso and macro pores, anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> pores).<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foamed structure.<br />

Thus, in this work, <str<strong>on</strong>g>the</str<strong>on</strong>g> first three chapters corresp<strong>on</strong>d to a bibliographic syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <strong>on</strong> studied<br />

biomaterials, used processes and analytical methods. <strong>The</strong> five following chapters corresp<strong>on</strong>d to experimental<br />

results and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processed scaffolds for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>nective tissue or calcified tissue substituti<strong>on</strong>. In<br />

both cases, optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> properties has been achieved. <strong>The</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis is defined as follows:<br />

- 3 -


<strong>The</strong>sis<br />

Introducti<strong>on</strong><br />

Chapter 1<br />

Chapter 2<br />

Chapter 3<br />

Bibliographic Snyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

Polylactides Based Bio Materials<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Porous Bio-Composites and<br />

to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Experimentati<strong>on</strong><br />

Chapter 4<br />

Chapter 5<br />

Chapter 6<br />

Chapter 7<br />

Chapter 8<br />

Experimental Procedures and Protocols for Analysis<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds <strong>Properties</strong> for C<strong>on</strong>nective Tissue Engineering<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for Calcified Tissue Engineering<br />

Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds <strong>Properties</strong> for Calcified Tissue Engineering<br />

C<strong>on</strong>clusi<strong>on</strong><br />

.<br />

- 4 -


Chapter 1<br />

Chapter<br />

1<br />

Polylactides Based<br />

Bio-Materials<br />

In this chapter, we present a bibliographic syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis divided in three parts. <strong>The</strong> first <strong>on</strong>e deals<br />

with generalities <strong>on</strong> bio-composites, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir uses in tissue engineering and b<strong>on</strong>e regenerati<strong>on</strong> applicati<strong>on</strong>s.<br />

<strong>The</strong> sec<strong>on</strong>d <strong>on</strong>e c<strong>on</strong>cerns polyester based biomaterials, and in particular those used in this study<br />

polylactides such as polylactic acid and poly (lactide-co-glycolide acid). Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> third part deals with<br />

adjuvant and fillers. We focus <strong>on</strong> hyalur<strong>on</strong>ic acid, amorphous calcium phosphate and - calcium phosphate<br />

which are <str<strong>on</strong>g>the</str<strong>on</strong>g> fillers retained for <str<strong>on</strong>g>the</str<strong>on</strong>g> study.<br />

1 Introducti<strong>on</strong> to Bio Composites<br />

A bio-composite is a material formed by a matrix (resin) and a reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> natural fibres or<br />

particles (usually derived from plants or cellulose). <strong>The</strong>ir applicati<strong>on</strong> has wide-range uses from<br />

envir<strong>on</strong>ment-friendly biodegradable composites to biomedical composites for drug/gene delivery, tissue<br />

engineering applicati<strong>on</strong>s and cosmetic orthod<strong>on</strong>tics. <strong>The</strong>y <str<strong>on</strong>g>of</str<strong>on</strong>g>ten mimic <str<strong>on</strong>g>the</str<strong>on</strong>g> structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> living materials<br />

involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> process in additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix that was used but still<br />

providing biocompatibility, e.g. in creating scaffolds in b<strong>on</strong>e and cartilage tissue engineering. Such markets<br />

are significantly rising, mainly because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in oil price, and recycling and envir<strong>on</strong>ment<br />

necessities. Bio-composites are characterised by <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that:<br />

<br />

<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> petrochemical resin is replaced by a vegetable or animal resin, and/or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bolsters (fibreglass, carb<strong>on</strong> fibre or talc) are replaced by natural fibres (wood fibres, hemp, flax,<br />

sisal, jute etc.).<br />

In biomaterials, it is important that each c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> composite must be biocompatible and<br />

biodegradable. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between c<strong>on</strong>stituents should not be degraded by <str<strong>on</strong>g>the</str<strong>on</strong>g> body<br />

envir<strong>on</strong>ment. Normally, bio-composite materials can be classified into three groups:<br />

<br />

<br />

Particulate composites,<br />

Fibrous composites,<br />

5


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

<br />

Porous materials.<br />

1.1 Bio-composites for 3D Model <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>nective Tissues<br />

1.1.1 Tissue Engineering and C<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffold<br />

<strong>The</strong> scaffold for supporting 3D cell culture must meet a number <str<strong>on</strong>g>of</str<strong>on</strong>g> criteria to functi<strong>on</strong><br />

appropriately and to promote tumour growth. <strong>The</strong>se criteria include both mechanical parameters as well as<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> biological performance. Biocompatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold is critical and must not damage cells<br />

and alter <str<strong>on</strong>g>the</str<strong>on</strong>g>ir functi<strong>on</strong>s or lead to significant scarring. To minimize undesirable effects, it is better to use<br />

inert scaffolds such as silk or chitin for example. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore cells or matrices from different species can be<br />

used. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a murine matrix toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with human cells will allow studying <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix proteins produced by tumour cells. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, differences in tensi<strong>on</strong>al forces<br />

may impact <str<strong>on</strong>g>the</str<strong>on</strong>g> phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells. Thus, it is critical to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g>se differences in specific<br />

experimental c<strong>on</strong>diti<strong>on</strong>s.<br />

1.1.2 Different Types <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds<br />

Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> three dimensi<strong>on</strong>al in vitro cancer models exist.<br />

1.1.2.1 Cells Grown in Pellets or in Spheroids<br />

Cells cultured as spheroids are formed by self-assembly. <strong>The</strong>y mimic vascular tumours and micrometastases.<br />

Tedious procedures required for formati<strong>on</strong>, maintenance, and culture c<strong>on</strong>diti<strong>on</strong>s are still holding<br />

back <str<strong>on</strong>g>the</str<strong>on</strong>g> industry from using a validated spheroid model more widely. Spheroid preparati<strong>on</strong>s <strong>on</strong> a chip using<br />

micro-fluid devices have been reported [Hsiao et al., 2009]. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods suffer from problems<br />

with regard to spheroid formati<strong>on</strong>, l<strong>on</strong>g-term culture, c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroid size and uniform distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

small numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> co-culture cell types across all spheroids.<br />

1.1.2.2 Cells Embedded into Hydrogels Derived from Natural or Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Polymers<br />

Naturally derived polymers (alginates, agarose or collagen) frequently dem<strong>on</strong>strate adequate<br />

biocompatibility, while syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymers may be problematic. During gelling, i<strong>on</strong>ic interference could<br />

occur with multivalent counter i<strong>on</strong>s that exchange with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r i<strong>on</strong>ic molecules resulting in an unc<strong>on</strong>trolled<br />

deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogel. Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-linking molecules must also be c<strong>on</strong>sidered [Mo<strong>on</strong>ey and<br />

Silva, 2007]. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r approach to form hydrogel is <str<strong>on</strong>g>the</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phase transiti<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> certain<br />

polymers, which may help to overcome <str<strong>on</strong>g>the</str<strong>on</strong>g>se problems [Castelló-Cros and Cukierman, 2009]. <strong>The</strong><br />

interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells with hydrogels significantly affects <str<strong>on</strong>g>the</str<strong>on</strong>g>ir adhesi<strong>on</strong> as well as migrati<strong>on</strong> and<br />

differentiati<strong>on</strong>. <strong>The</strong> adhesi<strong>on</strong> is dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific cell surface receptors with ligands<br />

that may be integrated into <str<strong>on</strong>g>the</str<strong>on</strong>g> material. Inappropriate interacti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogel may cause n<strong>on</strong>-adequate<br />

growth behaviour. Collagen that may be integrated in <str<strong>on</strong>g>the</str<strong>on</strong>g> gel has many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

natural envir<strong>on</strong>ment. However, variati<strong>on</strong>s between collagen batches may be found. Its derivative, gelatine,<br />

easily forms gels by changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. <strong>The</strong> chemical modificati<strong>on</strong> methods to<br />

improve <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> gelatine gels may also interfere with cell behaviour.<br />

1.1.2.3 Cells Grown in a Biomaterial <str<strong>on</strong>g>of</str<strong>on</strong>g> Large–size <strong>on</strong> Different Polymers (PLGA,<br />

Agarose)<br />

Tumour cells cultured in porous PLGA (poly(lactide-co-glycolide)) scaffolds proliferate and form<br />

cohesive tumour cell aggregates in vitro. <strong>The</strong> final scaffold is about <strong>on</strong>e cm in diameter and <strong>on</strong>e mm in<br />

thickness. Cells in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold must be cultured <strong>on</strong> an orbital shaker for up to 15 days. Comparis<strong>on</strong> with<br />

standard 3D-Matrigel ® culture show that tumour cells proliferate much more rapidly inside <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold and<br />

- 6 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

that secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some specific growth factors is up-regulated. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r requirements are a good porosity and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> need <str<strong>on</strong>g>of</str<strong>on</strong>g> bioreactors and gas exchanges during culture. Tumour cells may also be implanted in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scaffold subcutaneously in <str<strong>on</strong>g>the</str<strong>on</strong>g> back <str<strong>on</strong>g>of</str<strong>on</strong>g> mice. This method is limited because no up-scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> this procedure<br />

is possible and no observati<strong>on</strong> is possible during culture. <strong>The</strong>se models seem to be restricted to research<br />

laboratories.<br />

1.1.2.4 Cells Grown in a Biomaterial at a Micrometer-Scale (Thickness ~200 µm)<br />

This material has its limitati<strong>on</strong> because cells may behave differently depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> batch <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rec<strong>on</strong>stituted basement membrane extract (BME) called Matrigel ® , <str<strong>on</strong>g>the</str<strong>on</strong>g>y are grown <strong>on</strong>. Because BME is a<br />

natural product made from extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse sarcomas, it is difficult to get uniform, c<strong>on</strong>sistent preparati<strong>on</strong>s,<br />

even from <str<strong>on</strong>g>the</str<strong>on</strong>g> same manufacturer. <strong>The</strong> soluti<strong>on</strong> is to test and to stock validated batches <str<strong>on</strong>g>of</str<strong>on</strong>g> BME. <strong>The</strong>re are<br />

several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r methods such as matrix producti<strong>on</strong> by fibroblasts or mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour cells and matrix. For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> former, alkaline treatment removes cells that leave behind complex substrates <str<strong>on</strong>g>of</str<strong>on</strong>g> fibr<strong>on</strong>ectin, collagen,<br />

and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r proteins. Progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tumours deriving from <str<strong>on</strong>g>the</str<strong>on</strong>g>se matrices laid down normal fibroblasts<br />

[Fischbach et al., 2007]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, a gel mixture is prepared by mixing an extracellular matrix (ECM)<br />

with tumour cells and Matrigel ® (volume to volume 1:1) that allows <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to polymerize. <strong>The</strong><br />

resulting 3D scaffold <strong>on</strong> which tumour cells are cultured is not <str<strong>on</strong>g>the</str<strong>on</strong>g> pure ECM, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would encounter in vivo.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r alternative is to use commercial 3D matrices. <strong>The</strong>se are, for example, rec<strong>on</strong>stituted<br />

basement membrane extract such as Matrigel ® (Sigma). Matrigel ® is used to support growth and<br />

differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and tissues. It recapitulates <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology and visco-elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular<br />

matrix and can be remodelled by cells. <strong>The</strong> drawbacks are that it is expensive and <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> is<br />

variable. Alternatively, interstitial matrix comp<strong>on</strong>ents such as collagen, fibrin, etc may be used. <strong>The</strong>y are<br />

frequently employed to study migrati<strong>on</strong> and invasi<strong>on</strong>. <strong>The</strong>se matrix proteins can be remodelled by cells, and<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used in combinati<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use may be problematic because glycosylati<strong>on</strong> and solubility<br />

may vary by source and <str<strong>on</strong>g>the</str<strong>on</strong>g> properties between native and denatured proteins may differ. <strong>The</strong>re are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

commercially available matrices such as (semi)-syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic hydrogels proposed by BD (PuraMatrix peptide<br />

hydrogel). It <str<strong>on</strong>g>of</str<strong>on</strong>g>ten polymerizes in combinati<strong>on</strong> with bioactive peptides. <strong>The</strong> drawbacks are that it shows<br />

some bioactivity with certain cells and it cannot be remodelled or degraded by cells. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r ready-to-use<br />

systems are <str<strong>on</strong>g>the</str<strong>on</strong>g> algiMatrix3D ® culture system (invitrogen) that comes as sp<strong>on</strong>ges in 96-well plates or<br />

InsertTM-PCL (3D Biotek ® ), a biodegradable polycaprolact<strong>on</strong>e scaffold. <strong>The</strong>se systems are quite<br />

expensive. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors Castelló-Cros and Cukierman [2009] have used 3D agarose col<strong>on</strong>y formati<strong>on</strong> and<br />

GelCount technology with GelCount scan and image acquisiti<strong>on</strong> for high-resoluti<strong>on</strong> scanner allowing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> half maximal inhibitory c<strong>on</strong>centrati<strong>on</strong> (IC50). This system provides quantitative data (log<br />

dose and time-dependent effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs). However, no descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gel (thickness) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ies formed is reported for this model (size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>y, interacti<strong>on</strong>s between cells, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells across <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>y).<br />

1.2 Bio-Composites for Calcified Tissue Engineering<br />

1.2.1 Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds<br />

<strong>The</strong> principal calcified tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> vertebrates is b<strong>on</strong>e. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r calcified tissues in vertebrates include<br />

calcified cartilage, which is present to some extent in most b<strong>on</strong>es and <str<strong>on</strong>g>the</str<strong>on</strong>g> dental tissues - enamel, cementum,<br />

and dentin. B<strong>on</strong>e develops by <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> ossificati<strong>on</strong>, osteogenesis, as a specialized c<strong>on</strong>nective tissue.<br />

During ossificati<strong>on</strong>, osteoblasts secrete an amorphous material, gradually becoming densely fibrous -<br />

osteoid. Calcium phosphate crystals are deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> osteoid (i.e. mineralizati<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g>reby becoming b<strong>on</strong>e<br />

matrix. Osteoblasts become surrounded during <str<strong>on</strong>g>the</str<strong>on</strong>g> mineralizati<strong>on</strong> process, and <str<strong>on</strong>g>the</str<strong>on</strong>g> cells become osteocytes.<br />

- 7 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

Osteoblast secreti<strong>on</strong> does not become entirely fibrous. <strong>The</strong> secreti<strong>on</strong> also forms an amorphous adhesi<strong>on</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> fibres [Lee and Chu<strong>on</strong>g, 2009].<br />

Many studies can be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature pursuing <str<strong>on</strong>g>the</str<strong>on</strong>g> aim to produce biomimetic artificial<br />

b<strong>on</strong>e-like tissue involving hydoxyapatite (HAp) and collagen as fibre, gel or gelatine [Kim et al., 2005;<br />

Kikuchi et al., 2004; Tampieri et al., 2003a; Itoh et al., 2001]. Testing two methods <str<strong>on</strong>g>of</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

apatite/collagen composite materials (dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HAp in collagen gel or direct nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HAp into<br />

collagen fibres), Tampieri et al .[2003b] have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> bio-inspired method based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> direct<br />

nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apatite leads to composites analogous to calcified tissue and exhibiting str<strong>on</strong>g interacti<strong>on</strong>s<br />

between HAp and collagen.<br />

<strong>The</strong> replacement and healing <str<strong>on</strong>g>of</str<strong>on</strong>g> damaged hard tissues have always been a c<strong>on</strong>cern for human<br />

beings as shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mummies. It is however known that calcium phosphates have been<br />

used for b<strong>on</strong>e substituti<strong>on</strong> and repair [Jarcho et al., 1979]. <strong>The</strong> first to be used were stoichiometric<br />

hydroxyapatite and tricalcium phosphate (TCP) which are stable calcium phosphates at high temperature<br />

and can be easily sintered into ceramics. <strong>The</strong>y are still <str<strong>on</strong>g>the</str<strong>on</strong>g> major industrial calcium phosphates biomaterials.<br />

TCP was shown to be bio-absorbable and replaced by b<strong>on</strong>e whereas HAp c<strong>on</strong>stituted n<strong>on</strong>-degradable<br />

materials. TCP is mainly used as a bio-ceramic whereas HAp is also being processed for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r biomaterials<br />

uses such as <str<strong>on</strong>g>the</str<strong>on</strong>g> coating <str<strong>on</strong>g>of</str<strong>on</strong>g> metallic pros<str<strong>on</strong>g>the</str<strong>on</strong>g>ses where it was found to c<strong>on</strong>siderably improve b<strong>on</strong>e repair as an<br />

"osteo-c<strong>on</strong>ductive" material or composite ceramic/polymer materials showing str<strong>on</strong>g mechanical analogies<br />

with b<strong>on</strong>e tissues and excellent b<strong>on</strong>e b<strong>on</strong>ding abilities [De Groot et al., 1987]. Biphasic calcium phosphates,<br />

associating <str<strong>on</strong>g>the</str<strong>on</strong>g>se two high-temperature calcium phosphates allow a c<strong>on</strong>trolled resorpti<strong>on</strong> rate and have been<br />

reported to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer superior biological properties [Daculsi et al., 2003; LeGeros, 2002]. <strong>The</strong>y are progressively<br />

replacing TCP ceramics in Europe. A new technological step was made with <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium<br />

phosphates cements [Brown and Chow, 1987]. <strong>The</strong>se materials are able to set and harden in a living body<br />

and most can be injected. Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>ir poor mechanical properties <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a number <str<strong>on</strong>g>of</str<strong>on</strong>g> advantages and<br />

are increasingly used for several applicati<strong>on</strong>s. More recently biomimetic coatings involving low temperature<br />

nano-crystalline calcium phosphates have been proposed, some have been claimed to exhibit osteo-inductive<br />

properties [Habibovic et al., 2006].<br />

1.2.2 Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D Porous Scaffolds<br />

<strong>The</strong> scaffold for tissue engineering should have a 3D porous structure with a porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> no less<br />

than 70% and a pore size ranging from 50 to 900 μm [Salgado et al., n.d.]. High scaffold porosity facilitates<br />

oxygen, nutrient and metabolic product exchange. <strong>The</strong> literature results showed that with <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong><br />

design, <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds was 82.0 ± 3.8%. It was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> designed interc<strong>on</strong>nectivity<br />

macro-pores and micro-pores. <strong>The</strong> interc<strong>on</strong>nectivity macro-pores in 3D scaffold would help develop <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

skeletal network and facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> internal mineralized b<strong>on</strong>e formati<strong>on</strong> [Cerr<strong>on</strong>i et al., 2002]. <strong>The</strong> micropores<br />

less than 50 μm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> walls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> macro-pores would help in factors like fluid diffusi<strong>on</strong> and cell<br />

attachment. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold for b<strong>on</strong>e tissue engineering should also have high mechanical strength<br />

as close as possible to <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> natural b<strong>on</strong>e [Hutmacher, 2000]. In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive<br />

strength and elastic modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calcium phosphate/PLGA scaffolds were significantly higher than those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pure PLGAs scaffolds. This result was c<strong>on</strong>sistent with some studies that improved <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable polymers by adding inorganic materials [Zhang and Zhang, 2001; Thoms<strong>on</strong> et<br />

al., 1998]. However, co-grinding with calcium phosphate increased <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties and structural<br />

quality but <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity and pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds was decreased.<br />

Compressive modulus values <str<strong>on</strong>g>of</str<strong>on</strong>g> human trabecular b<strong>on</strong>e range from 1 to 5000 MPa, with strength<br />

values ranging from 0.10 to 27.3 MPa reported by Langer and Tirrell [2004]; Porter et al. [2000]; Lang et<br />

- 8 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

al. [1988] with mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 194 and 3.55 MPa as reported by Goulet et al. [1994].<br />

Various parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> human body have different mechnical properties. Compact b<strong>on</strong>e is known<br />

to have a compressive strength <str<strong>on</strong>g>of</str<strong>on</strong>g> 150–250 MPa due to variability in b<strong>on</strong>e density [Natali and Meroi, 1989;<br />

Carter, 1976]. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal mechanical strength <str<strong>on</strong>g>of</str<strong>on</strong>g> biomaterial scaffolds has not yet been determined,<br />

previously researched scaffold compressive strengths have fallen within a 2–45 MPa range [Ghosh et al.,<br />

2008; Gomes et al., 2008; Xi<strong>on</strong>g, 2002]. <strong>The</strong> compressive modulus for b<strong>on</strong>e has been measured to be 5–20<br />

GPa while biomaterial scaffolds vary from 60 MPa to 15 GPa [Xi<strong>on</strong>g, 2002]. Although polymeric scaffolds<br />

have lower compressive strength and modulus than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r biobased scaffolds and natural compact b<strong>on</strong>es, it is<br />

not fully understood to what extent scaffolds must mimic natural b<strong>on</strong>e mechanical properties. <strong>The</strong>y have,<br />

however, dem<strong>on</strong>strated to be a promising substrate for cell growth and b<strong>on</strong>e regenerati<strong>on</strong> as shown by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cellular studies and sp<strong>on</strong>ge-like characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds. <strong>The</strong> results from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir experiments gave<br />

modulus at a low level (cf. Table 1.1).<br />

Table 1.1: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporotic (OP) b<strong>on</strong>e and normal b<strong>on</strong>e.<br />

Material Property OP B<strong>on</strong>e Normal B<strong>on</strong>e<br />

E (MPa)<br />

247<br />

310<br />

50 – 410 40 – 460<br />

Yield strength (MPa)<br />

2.5<br />

3.3<br />

0.6 – 5. 8 0.4 – 9.0<br />

Energy absorbed to yield (kJ.m -3 16.3<br />

21.8<br />

)<br />

2 – 52<br />

2 – 90<br />

[Li and Aspden, 1997]<br />

Median values and approximate ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 5% – 95% c<strong>on</strong>fidence limits as given by Li and<br />

Aspden [1997] <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> human cancellous b<strong>on</strong>e specimen (diameter: 9 mm, mean<br />

cylinder length: 7.7 mm) from OP femoral heads.<br />

1.3 Biodegradable Polymers<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> last years, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> articles and publicati<strong>on</strong>s have been published which cover<br />

biodegradable polymers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different material groups (e.g., polysaccharides, polypeptides, polyesters, and<br />

polyisoprenoides), as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir copolymers and blends. PLA (polylactic acid) and PLGA poly (lactideco-glycolide)<br />

are mainly used in medical engineering as biodegradable polymers, because <str<strong>on</strong>g>the</str<strong>on</strong>g>se are naturally<br />

occurring polymers. Degradable/resorbable polymers have been well established in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> medicine, for<br />

example, as surgical sutures, implants, and b<strong>on</strong>e plates, since 1960s and 1970s [Schmack, 2009]. It is not<br />

easy to classify biodegradable polymers. <strong>The</strong>y can be sorted according to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical compositi<strong>on</strong>,<br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis method, processing method, ec<strong>on</strong>omic importance, applicati<strong>on</strong>, etc. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se classificati<strong>on</strong>s<br />

provides different and useful informati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present overview, we have chosen to classify biodegradable<br />

polymers (hereafter called biopolymers) according to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir origin: natural polymers, polymers coming from<br />

natural resources and syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymers, polymers syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised from crude oil. Biopolymers from natural<br />

origins include, from a chemical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, six sub-groups:[Clarinval and Halleux, 2005]<br />

1. polysaccharides (e.g., starch, cellulose, lignin, chitin).<br />

2. proteins (e.g., gelatine, casein, wheat gluten, silk and wool).<br />

3. lipids (e.g., plant oils including castor oil and animal fats).<br />

4. polyesters produced by micro-organism or by plants (e.g., polyhydroxy-alcanoates, poly-3-<br />

hydroxybutyrate).<br />

5. polyesters syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sised from bio-derived m<strong>on</strong>omers (polylactic acid).<br />

- 9 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

6. a final group <str<strong>on</strong>g>of</str<strong>on</strong>g> miscellaneous polymers (natural rubbers, composites).<br />

1.3.1 What is Biodegradable?<br />

Biodegradati<strong>on</strong> is degradati<strong>on</strong> caused by biological activity, particularly by enzyme acti<strong>on</strong> leading<br />

to significant changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> material's chemical structure, or by UV radiati<strong>on</strong>s which are natural and<br />

participate also to biodegradati<strong>on</strong>. In essence, biodegradable plastics should breakdown cleanly, in a defined<br />

time period, to simple molecules found in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment such as carb<strong>on</strong> dioxide and water. <strong>The</strong> American<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Testing and Materials (ASTM) defines 'biodegradability' as: "capable <str<strong>on</strong>g>of</str<strong>on</strong>g> undergoing<br />

decompositi<strong>on</strong> into carb<strong>on</strong> dioxide, methane, water, inorganic compounds, or biomass in which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

predominant mechanism is <str<strong>on</strong>g>the</str<strong>on</strong>g> enzymatic acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms, that can be measured by standardized<br />

tests in a specified period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, reflecting available disposal c<strong>on</strong>diti<strong>on</strong>s."<br />

During this process <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> large molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance are transformed into<br />

smaller compounds by enzymes and acids that are naturally produced by microorganisms. Once <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

molecules are reduced to a suitable size, <str<strong>on</strong>g>the</str<strong>on</strong>g> substances can be absorbed through <str<strong>on</strong>g>the</str<strong>on</strong>g> organism cell walls<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g>y are metabolized for energy. Most naturally occurring materials such as yard waste, food scraps,<br />

etc., c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g>se large molecules and biodegrade in this way.<br />

1.3.1.1 Aerobic Biodegradati<strong>on</strong><br />

Aerobic biodegradati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> an organic substance by microorganisms in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen. Almost all organic materials can be metabolized in an oxidative envir<strong>on</strong>ment by aerobic<br />

organisms. <strong>The</strong> organism has secreted enzymes that breakdown substances into smaller organic molecules<br />

which are <str<strong>on</strong>g>the</str<strong>on</strong>g>n absorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microbes and used for cellular respirati<strong>on</strong>. During <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

respirati<strong>on</strong> process, <str<strong>on</strong>g>the</str<strong>on</strong>g> organic molecules absorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> cells are broken down in steps, where a<br />

molecule known as adenosine-5-triphosphate (ATP) is used to store and transport energy for cells, for life<br />

processes such as motility and cell divisi<strong>on</strong>. In biochemistry, this chemical reacti<strong>on</strong> sequence is known as<br />

Electr<strong>on</strong> Chain Transfer. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic metabolism, oxygen is used at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chain as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

final electr<strong>on</strong> acceptor, producing <str<strong>on</strong>g>the</str<strong>on</strong>g> main by products <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide and water. <strong>The</strong> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

key degradati<strong>on</strong> process is represented by Equati<strong>on</strong> 1.1, where C Polymer represents ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a polymer or a<br />

fragment from any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> processes defined earlier [Bastioli, 2005]:<br />

C Polymer + O 2 CO 2 + H 2 O + C Residue + C Biomass (1.1)<br />

Composting is a well known and comm<strong>on</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic biodegradati<strong>on</strong>, during which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material is typically reduced by about 50%, where <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining, slow-decaying humus<br />

material left over can be used as a rich planting medium. <strong>The</strong> ASTM defines a compostable plastic material<br />

as being: “capable <str<strong>on</strong>g>of</str<strong>on</strong>g> biological decompositi<strong>on</strong> in a compost site as part <str<strong>on</strong>g>of</str<strong>on</strong>g> an available program, such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plastic is not visually distinguishable and breaks down to carb<strong>on</strong> dioxide, water inorganic compounds<br />

and biomass (humus) at a rate c<strong>on</strong>sistent with known compostable materials”. <strong>The</strong> bioactivity in active<br />

compost will generate heat that fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r enhances <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial growth and metabolism. However, for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> available program is an industrial compost facility where heat and<br />

moisture are artificially added to <str<strong>on</strong>g>the</str<strong>on</strong>g> mass to maximize <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> rate. As we will see, this artificial<br />

envir<strong>on</strong>ment becomes critical for degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some biodegradable plastic materials.<br />

1.3.1.2 Anaerobic Biodegradati<strong>on</strong><br />

Anaerobic biodegradati<strong>on</strong> occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen where anaerobic microbes are<br />

dominant. In <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, <str<strong>on</strong>g>the</str<strong>on</strong>g> organism must use some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r atoms as <str<strong>on</strong>g>the</str<strong>on</strong>g> final electr<strong>on</strong> acceptor.<br />

Hydrogen, methane, nitrogen and sulphur are comm<strong>on</strong> al<strong>on</strong>g with oxidizing minerals. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> effluent<br />

- 10 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

from anaerobic digesti<strong>on</strong> is biogas, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> mostly methane and carb<strong>on</strong> dioxide, with trace gasses such<br />

as amm<strong>on</strong>ia and hydrogen sulphide. Often, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete digesti<strong>on</strong> will require several different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacteria where <strong>on</strong>e type partially processes <str<strong>on</strong>g>the</str<strong>on</strong>g> waste to a point where ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r bacterium strain takes over.<br />

Most biodegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid waste in landfill occurs under anaerobic c<strong>on</strong>diti<strong>on</strong>s by design because it is<br />

typically much slower than aerobic degradati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> is<br />

given by equati<strong>on</strong> 1.2:<br />

C Polymer → CO 2 + CH 4 + H 2 O + + C Residue + C Biomass (1.2)<br />

Complete biodegradati<strong>on</strong> occurs when no residue remains, and complete mineralisati<strong>on</strong> is<br />

established when <str<strong>on</strong>g>the</str<strong>on</strong>g> original substrate (C Polymer in this example) is completely c<strong>on</strong>verted into gaseous<br />

products and salts. However, mineralisati<strong>on</strong> is a very slow process under natural c<strong>on</strong>diti<strong>on</strong>s because some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer undergoing biodegradati<strong>on</strong> will initially be turned into biomass [Bastioli, 2005]. Most<br />

biodegradable substances come from plant and animal matter, or from artificial materials that are very<br />

similar in molecular structure to <str<strong>on</strong>g>the</str<strong>on</strong>g>se naturally occurring substances. As <str<strong>on</strong>g>the</str<strong>on</strong>g> naturally occurring substances<br />

evolved, micro-organisms also evolved to use <str<strong>on</strong>g>the</str<strong>on</strong>g> substances as a food source, carb<strong>on</strong> in particular, used as a<br />

building block for life-sustaining compounds. Simple sugars are readily absorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> cell to be<br />

metabolized. However, larger and more complex molecules such as starches, proteins and cellulose, require<br />

enzymes and acids to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size enough to be absorbed. Living organisms have developed <str<strong>on</strong>g>the</str<strong>on</strong>g> ability<br />

to secrete specific digestive compounds so as to best utilize <str<strong>on</strong>g>the</str<strong>on</strong>g> available food supply. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enzyme amylase, found in human saliva, is used to breakdown l<strong>on</strong>g-chain starch molecules into smaller<br />

simple sugars.<br />

1.3.2 Biodegradable Polymer Materials<br />

Currently available degradable polymer materials can be broken down into two main groups:<br />

<br />

<br />

Polyester polymers,<br />

Synergistic and hybrid polymers.<br />

1.3.2.1 Biodegradable Polyesters<br />

Biodegradable polyesters which do not c<strong>on</strong>tain six-carb<strong>on</strong> rings are known as aliphatic polyesters.<br />

<strong>The</strong>y will typically react with moisture at elevated temperatures to breakdown <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g polymer chains. This<br />

process, called chemical hydrolysis, reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> higher molecular weight polymer to much smaller<br />

hydrocarb<strong>on</strong> compounds. <strong>The</strong> resulting molecules can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be absorbed by microorganisms and metabolized<br />

for energy. Since it is a chemical reacti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrolysis occurs at a much higher rate than <strong>on</strong>e would expect<br />

for a purely biological process, and as a result, relatively quick degradati<strong>on</strong> is observed.<br />

Aliphatic polyesters have attracted interest as biodegradable plastic materials; however <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

typically have poor physical and mechanical properties like strength, flexibility, heat resistance, etc. [Chen<br />

et al., 2008]. Some comm<strong>on</strong> biodegradable polyester polymers in commercial use include<br />

poly(caprolact<strong>on</strong>e), poly(glycolic acid) and poly(butylene succinate) (cf. chemical formula reported <strong>on</strong><br />

Figure 1.1). Although expensive to make, <str<strong>on</strong>g>the</str<strong>on</strong>g>se biodegradable polymers are ideal for use in specialized, high<br />

margin applicati<strong>on</strong>s such as medical devices (e.g. dissolving, drug delivery systems, tissue engineering<br />

scaffolds and b<strong>on</strong>e repair etc.) [Ikada and Tsuji, 1999].<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r well known aliphatic polyester is poly(lactic acid). PLA is a syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymer made<br />

from fermented sugars extracted primarily from food crops such as corn, beets or sugarcane. <strong>The</strong> resulting<br />

lactic acid m<strong>on</strong>omer is chemically processed and <str<strong>on</strong>g>the</str<strong>on</strong>g>n polymerized, in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a metal catalyst, to<br />

form <str<strong>on</strong>g>the</str<strong>on</strong>g> high molecular weight plastic material. Like petroleum-based biodegradable polyesters, PLA has<br />

- 11 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same undesirable mechanical properties, such as low heat deflecti<strong>on</strong> temperature. <strong>The</strong> polymer<br />

is also very brittle and has a low-melt strength leading to difficulty in processing. C<strong>on</strong>sequently, most<br />

commercial applicati<strong>on</strong>s using PLA require a syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rubber and/or acrylic additive to compensate for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se deficiencies.<br />

Figure 1.1: Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> selected biodegradable polymers.<br />

[Gross and Kalra, 2002]<br />

Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA occurs quickly through a multistep process <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical depolymerizati<strong>on</strong>,<br />

followed by dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediate lactic acid in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture, and <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms with subsequent metabolizati<strong>on</strong> [Dunja Manal Abou Zeid, 2001]. Initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this chain <str<strong>on</strong>g>of</str<strong>on</strong>g> events typically occurs at elevated temperatures (above heat deflecti<strong>on</strong> temperatures), such as<br />

c<strong>on</strong>diti<strong>on</strong>s existing in an industrial compost operati<strong>on</strong>. <strong>The</strong> relatively fast chemical reacti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chain <str<strong>on</strong>g>of</str<strong>on</strong>g> events explains <str<strong>on</strong>g>the</str<strong>on</strong>g> surprisingly quick degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer in an industrial compost<br />

envir<strong>on</strong>ment. This mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical attack followed by cell metabolism does not meet <str<strong>on</strong>g>the</str<strong>on</strong>g> true<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a biodegradable material.<br />

1.3.2.2 Synergistic or Hybrid Polymers<br />

Synergistic polymers are typically intimate mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> oil-based and naturally occurring polymers<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> two have some chemical affinity for each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. When mixed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is intimate c<strong>on</strong>tact between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two polymer chains so as to create a homogenous single phase. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, <strong>on</strong>ce mixed <str<strong>on</strong>g>the</str<strong>on</strong>g>y could<br />

not be mechanically separated. A good example <str<strong>on</strong>g>of</str<strong>on</strong>g> a commercial, synergistic, biodegradable material is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastic starch. <strong>The</strong> key to this blend <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two natural starch polymers, amylose and amylopectin, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymer, polyvinyl alcohol (PVOH), is <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natural affinity to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> large<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyl (OH) groups present in <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds (cf. Figure 1.1). This hybrid can be made into<br />

foamed articles, plastic films or moulded parts such as cutlery.<br />

<strong>The</strong> intimate mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural and syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymers can be taken <strong>on</strong>e step fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r: where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic and natural polymers is enhanced by grafting o<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemically compatible groups<br />

al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> chains <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural and/or syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymers. Initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process begins with <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a bio-film <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, which is facilitated by <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compatible natural<br />

polymers. <strong>The</strong>se films <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms have been shown to efficiently biodegrade petroleum based<br />

polymers [Seneviratne et al., 2006].<br />

- 12 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

2 Polyesters Based Bio-materials<br />

2.1 Polylactides (PLA)<br />

2.1.1 Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid<br />

<strong>The</strong> term "Bio-polyester" can be understood in several different ways. Bio-polyesters can be<br />

interpreted as polyesters <str<strong>on</strong>g>of</str<strong>on</strong>g> strictly biological origin. Poly(lactic acid) bel<strong>on</strong>gs to <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> aliphatic<br />

polyesters comm<strong>on</strong>ly made from acid, and are c<strong>on</strong>sidered as biodegradable and compostable [Kaplan,<br />

1998]. One can also interpret bio-polyesters as polyesters that have been syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized by biological means,<br />

for instance by enzyme-catalyzed polymerizati<strong>on</strong> reacti<strong>on</strong>s. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are hybrids between <str<strong>on</strong>g>the</str<strong>on</strong>g>se two<br />

strict definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bio-polyesters. For example, m<strong>on</strong>omer syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis for poly(lactic acid) came from a<br />

biological process in which lactic acid is produced microbially by <str<strong>on</strong>g>the</str<strong>on</strong>g> fermentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a renewable<br />

polysaccharide-based resource, mostly corn. Lactic acid is subsequently polymerized chemically into<br />

poly(lactic acid) by a c<strong>on</strong>densati<strong>on</strong> reacti<strong>on</strong>. It is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> few polymers in which <str<strong>on</strong>g>the</str<strong>on</strong>g> stereo-chemical<br />

structure can easily be modified by polymerizing a c<strong>on</strong>trolled mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> L- or D-isomers to produce<br />

high molecular weight amorphous or semi-crystalline polymers that can be used for food c<strong>on</strong>tact and are<br />

generally recognized as safe [C<strong>on</strong>n et al., 1995].<br />

<strong>The</strong> structural formulas <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(lactic acid) are given in Figure 1.2. As PLA c<strong>on</strong>tains an<br />

asymmetrical carb<strong>on</strong> atom in its structural unit, iso-tactic P L LA and P D LA polymers are optically active.<br />

C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> meso-lactide P D,,L LA is a syndio-tactically alternating D,L-copolymer or a copolymer<br />

having L-units and D-units and is n<strong>on</strong> optically active [Van de Velde and Kiekens, 2002]. Latter findings<br />

have been ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red under ‘PLAs’ and are thought to be mostly n<strong>on</strong>-syndio-tactic P D,L LA. All polyesters, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural and syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic origins, are characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> formula presented in Figure 1.2.<br />

2.1.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid<br />

Figure 1.2: Stereo-forms <str<strong>on</strong>g>of</str<strong>on</strong>g> lactides.<br />

[Madhavan Nampoothiri et al., 2010]<br />

It can be easily produced in a high molecular weight form through ring-opening polymerizati<strong>on</strong><br />

(cf. Figure 1.3) using most comm<strong>on</strong>ly a stannous octoate catalyst (sometimes tin (II) chloride).<br />

- 13 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

Figure 1.3: Ring opening polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactide to polylactide.<br />

Lactic acid is obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> fermentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> engineered microbes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Lactobacilli.<br />

<strong>The</strong>se microorganisms are highly efficient sources <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic acid. Lactobacilli can be subdivided into strains<br />

that produce ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> L (+) or <str<strong>on</strong>g>the</str<strong>on</strong>g> D (-) isomer. A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different sugars is used as carb<strong>on</strong> sources in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fermentati<strong>on</strong> process. <strong>The</strong>se sugars are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r specifically prepared enzymatically from starch for lactic acid<br />

producti<strong>on</strong>, or are by products from fruit processing.<br />

In additi<strong>on</strong>, lactose, a by-product in <str<strong>on</strong>g>the</str<strong>on</strong>g> cheese industry, can also be used as a carb<strong>on</strong> source for<br />

lactic acid producti<strong>on</strong>. In all cases sugars from renewable resources are transformed into a value-added<br />

product by an enzymatic whole-cell catalysis process. <strong>The</strong> subsequent steps in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA are<br />

based <strong>on</strong> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic chemistry and involve <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimer by a self-c<strong>on</strong>densati<strong>on</strong> reacti<strong>on</strong> that<br />

results in a low molecular weight prepolymer. Depolymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> prepolymer gives lactide, which is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n polymerized through ring-opening polymerizati<strong>on</strong>. <strong>The</strong> prepolymer can also be polymerized into high<br />

molecular weight PLA by <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chain coupling agents. In c<strong>on</strong>trast to lactic acid, glycolic acid is<br />

produced in an industrial scale by a chemical process. <strong>The</strong> different ways <str<strong>on</strong>g>of</str<strong>on</strong>g> producing PLA are ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red in<br />

Figure 1.4.<br />

Figure 1.4: Different ways <str<strong>on</strong>g>of</str<strong>on</strong>g> producing PLA.<br />

[Garlotta, 2001]<br />

- 14 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

2.1.3 <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactic Acid<br />

Commercially available PLA grades are copolymers <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(L-lactide) with meso-lactide or D-<br />

lactide. <strong>The</strong> D/L ratio is known to affect <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA (melting temperature, degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity<br />

and so <strong>on</strong>). PLA has a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical properties, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal plasticity, and biodegradability and is<br />

readily processed [Fang and Hanna, 1999]. Different properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA are summarized in Tables 1.1. <strong>The</strong><br />

homopolymer <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide (P L LA) is a semi-crystalline polymer. <strong>The</strong>se types <str<strong>on</strong>g>of</str<strong>on</strong>g> materials exhibit high<br />

tensile strength and low el<strong>on</strong>gati<strong>on</strong> and c<strong>on</strong>sequently have a high modulus that makes <str<strong>on</strong>g>the</str<strong>on</strong>g>m more suitable<br />

for load-bearing applicati<strong>on</strong>s such as in orthopaedic fixati<strong>on</strong> and sutures [Van de Velde and Kiekens, 2002].<br />

<strong>The</strong> racemic P D,L LA is an amorphous polymer exhibiting a random distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both isomeric forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lactic acid, and accordingly is unable to arrange into an organized crystalline structure. This material has<br />

lower tensile strength, higher el<strong>on</strong>gati<strong>on</strong>, and a much more rapid degradati<strong>on</strong> time, making it more attractive<br />

as a drug delivery system. Poly(L-lactide) is about 37% crystalline, with a melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> 173−178°C and a<br />

glass-transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 60−65°C. <strong>The</strong> degradati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA is much slower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> P D,L LA,<br />

requiring more than 2 years to be completely absorbed. Copolymers <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide and D,L-lactide have been<br />

prepared to disrupt <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide and accelerate <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> process [Middlet<strong>on</strong> and<br />

Tipt<strong>on</strong>, 1998].<br />

<strong>The</strong> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA and P D,L LA are reported in Table 1.2. <strong>The</strong>y are mostly based <strong>on</strong> standards<br />

such as ASTM D792. Density can be a very important design parameter since elevated density values imply<br />

high transportati<strong>on</strong> costs. Density is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘specific properties’, i.e. dividing<br />

mechanical properties by <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate density. All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r properties can be compared am<strong>on</strong>g each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

Tensile properties are clearly best for <str<strong>on</strong>g>the</str<strong>on</strong>g> densest reported polymers. Varying <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight from 50<br />

over 150 to 200 kDalt<strong>on</strong>s will increase tensile strengths for P L LA <str<strong>on</strong>g>of</str<strong>on</strong>g> 15.5, 80 and 150 MPa, respectively<br />

[Van de Velde and Kiekens, 2002].<br />

Table 1.2: Main physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different PLAs.<br />

[Van de Velde and Kiekens, 2002]<br />

<strong>Properties</strong> Unit P L LA P D,L LA<br />

Molecular weight (M w ) Dalt<strong>on</strong> 100–300 −<br />

Density ρ - 1.24−1.30 1.25−1.27<br />

Tensile strength σ MPa 15.5−150 27.6−50<br />

Specific tensile strength S* Nm/g 40−66.8 22.1−39.4<br />

Tensile modulus E GPa 2.7−4.1 1−3.5<br />

Specific tensile modulus E* kNm/g 2.2−3.8 0.8−2.4<br />

Strength at break MPa 44−66 −<br />

Flexural strength MPa 88−119 −<br />

Ultimate strain ε % 3−6 2−10<br />

El<strong>on</strong>gati<strong>on</strong> at break % 100–180 −<br />

Glass transiti<strong>on</strong> temperature T g °C 60−65 55−60<br />

Melting point T m °C 173−178 amorphous<br />

Heat <str<strong>on</strong>g>of</str<strong>on</strong>g> melting H m J/g 8.1–93.1 −<br />

Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity, % 10–40 −<br />

Surface energy J/m 2 38 −<br />

Solubility parameter δ H (J/ml) 1/2 19–20.5 −<br />

Polylactic acid can be processed like most <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastics into fibre (for example by using<br />

c<strong>on</strong>venti<strong>on</strong>al melt spinning processes) and film. <strong>The</strong> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA can be increased 40–50°C<br />

by physically blending <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with P D LA. P L LA and P D LA are known to form a highly regular stereocomplex<br />

with increased crystallinity. <strong>The</strong> maximum effect in temperature stability is achieved when a 50-50<br />

blend is used, but even at lower c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 3–10% <str<strong>on</strong>g>of</str<strong>on</strong>g> P D LA a substantial effect is achieved. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 15 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

latter case P D LA is used as a nucleating agent, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallizati<strong>on</strong> rate. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> higher<br />

crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> this stereo-complex, <str<strong>on</strong>g>the</str<strong>on</strong>g> biodegradability will become slower. <strong>The</strong> interesting feature is that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer blend remains transparent.<br />

Even when burned, PLA produces no nitrogen oxide gases and <strong>on</strong>ly <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong><br />

heat generated by polyolefins; it does not damage <str<strong>on</strong>g>the</str<strong>on</strong>g> incinerator and provides significant energy savings.<br />

<strong>The</strong> increasing appreciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA, coupled with knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how such<br />

properties can be improved to achieve compatibility with <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastics processing, manufacturing, and<br />

end-use requirements, has fuelled technological and commercial interest in PLA. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last few years, a<br />

wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>s have been undertaken to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties and <str<strong>on</strong>g>the</str<strong>on</strong>g> impact<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA. It can <str<strong>on</strong>g>the</str<strong>on</strong>g>refore compete with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r low-cost biodegradable/biocompatible or commodity<br />

polymers.<br />

<strong>The</strong>se efforts have made use <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradable and n<strong>on</strong>-biodegradable fillers and plasticizers or<br />

blending <str<strong>on</strong>g>of</str<strong>on</strong>g> PLA with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r polymers [Martin and Avérous, 2001]. In recent years <str<strong>on</strong>g>the</str<strong>on</strong>g> nano-scale has<br />

afforded unique opportunities to create revoluti<strong>on</strong>ary material combinati<strong>on</strong>s. Nano-structured materials or<br />

nano-composites based <strong>on</strong> polymers have been an area <str<strong>on</strong>g>of</str<strong>on</strong>g> intense industrial and academic research over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

past <strong>on</strong>e and a half decades [Sinha Ray and Okamoto, 2003; Biswas and Ray, 2001; Alexandre and Dubois,<br />

2000; Zanetti et al., 2000; LeBar<strong>on</strong> et al., 1999]. In principle, nano-composites are an extreme case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

composite materials in which interfacial interacti<strong>on</strong>s between two phases are maximized. In <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> term nano-composite is generally used for polymers with submicrometer dispersi<strong>on</strong>s. In polymer-based<br />

nano-composites, nanometer-sized particles <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic or organic-materials are homogeneously dispersed<br />

as separate particles in a polymer matrix. This is <strong>on</strong>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizing this type <str<strong>on</strong>g>of</str<strong>on</strong>g> material. <strong>The</strong>re is, in<br />

fact, a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-particles and <str<strong>on</strong>g>of</str<strong>on</strong>g> ways to differentiate <str<strong>on</strong>g>the</str<strong>on</strong>g>m and to classify <str<strong>on</strong>g>the</str<strong>on</strong>g>m by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>y possess. <strong>The</strong>ir shape varies and includes:<br />

i. needlelike or tubelike structures regarded as <strong>on</strong>e-dimensi<strong>on</strong>al particles (for example,<br />

inorganic nano-tubes, carb<strong>on</strong> nano-tubes, or sepiolites);<br />

ii.<br />

iii.<br />

two-dimensi<strong>on</strong>al platelet structures (for example, layered silicates); and<br />

spheroidal three-dimensi<strong>on</strong>al structures (for example, silica or zinc oxide).<br />

To date, various types <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-reinforcements such as nano-clay, cellulose nano-whiskers,<br />

ultrafine layered titanate, nano-alumina, and carb<strong>on</strong> nano-tubes have been used for <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocomposites<br />

with PLA [Yu, 2009; Mark, 2006; Kim et al., 2006; Nishida et al., 2005; Nazhat et al., 2001;<br />

Dumitriu, 1994].<br />

2.2 Poly(lactide-co-glycolide acid) (PLGA)<br />

2.2.1 General Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA Copolymers<br />

Glycolic acid is present in small amounts in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> fruits and vegetables. It accumulates<br />

during photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in a side path <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Krebs cycle. So far, ec<strong>on</strong>omically viable methods to produce<br />

glycolic acid in photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic biological systems do not exist. At an industrial scale, carb<strong>on</strong> m<strong>on</strong>oxide,<br />

formaldehyde and water are reacted at elevated temperature and pressure to produce glycolic acid. PLGA is<br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized by means <str<strong>on</strong>g>of</str<strong>on</strong>g> random ring-opening co-polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two different m<strong>on</strong>omers, <str<strong>on</strong>g>the</str<strong>on</strong>g> LA and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GA (cf. Figure 1.5).<br />

Comm<strong>on</strong> catalysts used in <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this polymer include Tin (II) 2-Ethylhexanoate, Tin<br />

(II) Alkoxides or aluminum isopropoxide. During polymerizati<strong>on</strong>, successive m<strong>on</strong>omeric units (<str<strong>on</strong>g>of</str<strong>on</strong>g> glycolic<br />

- 16 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

or lactic acid) are linked toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r in PLGA by ester linkages, thus resulting in linear, aliphatic polyester as a<br />

product [Middlet<strong>on</strong> and Tipt<strong>on</strong>, 1998]. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> polyglycolide and polylactide properties as a starting point,<br />

it is possible to copolymerize <str<strong>on</strong>g>the</str<strong>on</strong>g> two m<strong>on</strong>omers to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> homopolymer properties.<br />

Copolymers <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolide with both L-lactide and D,L-lactide have been developed for both device and drug<br />

delivery applicati<strong>on</strong>s.<br />

Figure 1.5: Schemaic syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(lactide-co-glycolide).<br />

[Middlet<strong>on</strong> and Tipt<strong>on</strong>, 1998]<br />

To tailor <str<strong>on</strong>g>the</str<strong>on</strong>g> processability and to enhance biodegradati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>se copolymers are fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r modified<br />

by copolymerizing with linear dicarboxylic acids (e.g. adipic acid) and glycol comp<strong>on</strong>ents with more than<br />

four methylene groups (e.g. hexanediol) [Sublett, 1983]. To enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mentally benevolent aspect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se materials and to broaden <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use, aliphatic-aromatic co-polyesters blended with<br />

cellulose esters have been processed into useful fibres, films and moulded objects [Buchanan et al., 1994,<br />

1995].<br />

2.2.2 <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA Copolymers<br />

Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(glycolic acid), as well as different PLGAs, are ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red in Table 1.3.<br />

Table 1.3: Main physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA and several PLGAs.<br />

<strong>Properties</strong> Unit PGA P D,L LGA 50:50 P D,L LGA 75:25 P D,L LGA 85:15<br />

Density ρ gm/cm 3 1.5−1.7 1.3−1.4 1.3 1.25<br />

Tensile strength σ MPa 60−99.7 41.4−55.2 41.4−55.2 45−52<br />

Tensile modulus E GPa 6−7 1−4.3 1.4−4.1 2.0*<br />

Ultimate strain ε % 1.5−20 2−10 2.5−10 −<br />

Specific tensile strength S* Nm/g 40−45.1 30.9−41.2 31.8−42.5 −<br />

Specific tensile modulus E* kNm/g 4−4.5 8−2.1 1.1−2.1 −<br />

Glass transiti<strong>on</strong> temperature T g °C 35−40 45−50 50−55 55−55<br />

Melting point T m °C 225−230 amorphous amorphous amorphous<br />

[Van de Velde and Kiekens, 2002]<br />

Polyglycolide has a glass transiti<strong>on</strong> temperature between 35 and 45°C and its melting point is<br />

reported to be in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 225-230°C. PGA also exhibits a higher degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity than PLA (~ 45-<br />

55 %), thus resulting in better mechanical properties but insolubility in water [Middlet<strong>on</strong> and Tipt<strong>on</strong>, 1998].<br />

<strong>The</strong> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> this polyester is somewhat unique, in that its high molecular weight form is insoluble in<br />

almost all comm<strong>on</strong> organic solvents (acet<strong>on</strong>e, dichloromethane, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm, ethyl acetate, tetrahydr<str<strong>on</strong>g>of</str<strong>on</strong>g>uran).<br />

<strong>The</strong> excepti<strong>on</strong>s are highly fluorinated organics such as HFIP (hexafluoroisopropanol) while low molecular<br />

weight oligomers sufficiently differ in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir physical properties to be more soluble. Sutures <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA lose<br />

about 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir strength after 2 weeks and 100% at 4 weeks, and are completely absorbed in 4~6 m<strong>on</strong>ths.<br />

Glycolide has been copolymerized with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<strong>on</strong>omers to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting fibres<br />

[Middlet<strong>on</strong> and Tipt<strong>on</strong>, 1998].<br />

- 17 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

It is important to note that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not a linear relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> copolymer PLGA<br />

compositi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical and degradati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials. For example, a copolymer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

50% glycolide and 50% D,L-lactide degrades faster than ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r homopolymer (cf. Table 1.4). All PLGAs are<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r amorphous than crystalline and show a glass transiti<strong>on</strong> temperature in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 40–60°C. Unlike<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> homo-polymers <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactide and polyglycolide which show poor solubilities, PLGA can be dissolved<br />

by a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> solvents, including chlorinated solvents, tetrahydr<str<strong>on</strong>g>of</str<strong>on</strong>g>uran, acet<strong>on</strong>e or ethyl<br />

acetate.<br />

Table 1.4: Degradati<strong>on</strong> times <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> polylactides.<br />

Polymer T g (°C) Degradati<strong>on</strong> Time (M<strong>on</strong>ths)<br />

PGA 35 − 40 6 to 12<br />

P L LA 60 − 65 >24<br />

P D,L LA 55 − 60 12 to 16<br />

P D,L LGA 85:15 50 − 55 5 to 6<br />

P D,L LGA 75:25 50 − 55 4 to 5<br />

P D,L LGA 50:50 45 − 50 1 to 2<br />

[Adhikari and Gunatillake, 2003]<br />

PLGAs are approved copolymers which are used in a host <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rapeutic devices, owing to its<br />

biodegradability and biocompatibility as a major comp<strong>on</strong>ent in biodegradable sutures, b<strong>on</strong>e fixati<strong>on</strong> nails<br />

and screws [Moghimi et al., 2001; Gombotz and Pettit, 1995]. <strong>The</strong>y are well-characterized copolymers, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

degradati<strong>on</strong> sub-products are n<strong>on</strong> toxic and <str<strong>on</strong>g>the</str<strong>on</strong>g>y provide c<strong>on</strong>trolled drug release pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles by changing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PLGA copolymer ratio [Ghosh, 2004; Bala et al., 2004; Moghimi et al., 2001; Anders<strong>on</strong> and Shive, 1997;<br />

Gombotz and Pettit, 1995]. PLGAs <str<strong>on</strong>g>of</str<strong>on</strong>g> different molecular weights (from 10 kDa to over 100 kDa) and<br />

different copolymer molar ratios (50:50, 75:25 and 85:15) are available <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> market. Molecular weight and<br />

copolymer molar ratio influence <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> process and release pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drug entrapped. In<br />

general, low molecular weight PLGA with higher amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolic acid <str<strong>on</strong>g>of</str<strong>on</strong>g>fers faster degradati<strong>on</strong> rates<br />

[Anders<strong>on</strong> and Shive, 1997].<br />

3 Adjuvant and Fillers<br />

3.1 Adjuvant<br />

3.1.1 Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Hyalur<strong>on</strong>ic Acid (HA)<br />

Hyalur<strong>on</strong>ic acid was first biochemically purified in 1934 by Meyer and Palmer, who discovered<br />

this unique ‘polysaccharide acid <str<strong>on</strong>g>of</str<strong>on</strong>g> high molecular weight’ from <str<strong>on</strong>g>the</str<strong>on</strong>g> vitreous body <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine eyes [Garg and<br />

Hales, 2004c]. Since it is believed that <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule <str<strong>on</strong>g>the</str<strong>on</strong>g>y isolated c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘an ur<strong>on</strong>ic acid, an amino<br />

sugar, and possible a pentose, <str<strong>on</strong>g>the</str<strong>on</strong>g>y so named <str<strong>on</strong>g>the</str<strong>on</strong>g> substance ‘hyalur<strong>on</strong>ic acid’ (HA) [Garg and Hales, 2004b].<br />

<strong>The</strong>y also reported that HA was not sulf<strong>on</strong>ated; this meant that <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule could be reproduced by a cell<br />

that syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizes HA, including animals and bacteria [Varki et al., 1999].<br />

Interestingly, HA also differs from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r structurally related GlycosAminoGlycans (Ch<strong>on</strong>droitin 4<br />

and 6 Sulfate, Heparan Sulfate, etc) in that it can be syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized without attachment to proteins [Garg and<br />

Hales, 2004c]. Hyalur<strong>on</strong>ic acid also labelled hyalur<strong>on</strong>an is a simple, linear glycosaminoglycan composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

repeating disaccharide units <str<strong>on</strong>g>of</str<strong>on</strong>g> β-1,4-glucur<strong>on</strong>ic acid (GlcA) and β-1,3-N-acetylglucosamine (GlcNAc)<br />

[Garg and Hales, 2004c]. Figure 1.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> alternating β-1,3 and β-1,4 glycosidic linkages between<br />

GlcA and GlcNAc. Polymers <str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>an can range in size from 5 to 20 000 kDa in vivo [Saari et al.,<br />

1993].<br />

- 18 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

Figure 1.6: Electr<strong>on</strong> micrograph and chemical HA structure.<br />

[Varki et al., 1999]<br />

3.1.2 Physicochemical and Biological <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HA<br />

<strong>The</strong> inherent physicochemical structure and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> HA−high molecular weight, β-glycosidic<br />

linkages, internal hydrogen b<strong>on</strong>ds, and interacti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent - enable <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule to behave in a<br />

highly n<strong>on</strong>-newt<strong>on</strong>ian, gel-like manner, even in dilute soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HA [Ch<strong>on</strong>g et al., 2004]. <strong>The</strong> result is a<br />

unique water-binding and high retenti<strong>on</strong> capacity – for example, <strong>on</strong>e gram <str<strong>on</strong>g>of</str<strong>on</strong>g> HA is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> holding up to<br />

6 litres <str<strong>on</strong>g>of</str<strong>on</strong>g> water.<br />

As a natural c<strong>on</strong>juncti<strong>on</strong> to its physicochemical properties, HA also has various roles at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

biological level [Garg and Hales, 2004a]. As an essential structural comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular matrix <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vertebrate tissues, HA regulates water balance and fills space, interacting with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular<br />

molecules [Garg and Hales, 2004b]. HA is also known to activate intracellular signalling pathways and to<br />

induce proliferative and migratory resp<strong>on</strong>ses [Garg and Hales, 2004b].<br />

Hyalur<strong>on</strong>ic acid is fairly stable, partially because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> way that its disaccharide comp<strong>on</strong>ents are<br />

positi<strong>on</strong>ed. <strong>The</strong> bulkier parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule are spaced far apart. By lowering this crowding, which is also<br />

known as "steric hindrance," <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule is able to be flexible, but also resistant to break down.<br />

Hyalur<strong>on</strong>an is found in many tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> body, such as skin, cartilage, and <str<strong>on</strong>g>the</str<strong>on</strong>g> vitreous humour.<br />

<strong>The</strong>refore, it is well suited to biomedical applicati<strong>on</strong>s targeting <str<strong>on</strong>g>the</str<strong>on</strong>g>se tissues. <strong>The</strong> first hyalur<strong>on</strong>an<br />

biomedical product, Heal<strong>on</strong>, was developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s and 1980s and is approved for use in eye surgery<br />

(i.e., corneal transplantati<strong>on</strong>, cataract surgery, glaucoma surgery, and surgery to repair retinal detachment).<br />

Hyalur<strong>on</strong>an is also used to treat osteoarthritis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> knee [Puhl and Scharf, 1997]. Such<br />

treatments, called viscosupplementati<strong>on</strong>, are administered as a course <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>s into <str<strong>on</strong>g>the</str<strong>on</strong>g> knee joint, and<br />

are believed to supplement <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> joint fluid, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby lubricating <str<strong>on</strong>g>the</str<strong>on</strong>g> joint, cushi<strong>on</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> joint,<br />

and producing an analgesic effect. It has also been suggested that hyalur<strong>on</strong>an has positive biochemical<br />

effects <strong>on</strong> cartilage cells. However, some placebo-c<strong>on</strong>trolled studies have cast doubt <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hyalur<strong>on</strong>an injecti<strong>on</strong>s, and hyalur<strong>on</strong>an is recommended primarily as a last alternative before surgery<br />

[Karlss<strong>on</strong> et al., 2002; Holmes et al., 1988].<br />

HA is an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> skin, where it is involved in tissue repair. <strong>The</strong> skin needs an<br />

optimum proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water to retain its s<str<strong>on</strong>g>of</str<strong>on</strong>g>tness and suppleness. Hydro regulative ingredients incorporated<br />

into cosmetic emulsi<strong>on</strong>s provide <str<strong>on</strong>g>the</str<strong>on</strong>g> skin with moisture. Hyalur<strong>on</strong>ic acid is a gel-like, water-holding<br />

molecule that is <str<strong>on</strong>g>the</str<strong>on</strong>g> space filler and cushi<strong>on</strong>ing agent for skin. <strong>The</strong> remarkable ability <str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>ic acid to<br />

hold moisture ensures s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, smooth, hydrated and elastic skin with <str<strong>on</strong>g>the</str<strong>on</strong>g> desired sensory effect. Many cosmetic<br />

products c<strong>on</strong>tain HA as a moisturiser and claim to have anti-ageing and anti-wrinkle effect via topical<br />

applicati<strong>on</strong>s. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> HA used in topical creams, it is unlikely and unproven that any<br />

penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dermis occurs. HA acts as a free radical scavenger, absorbing and degrading <str<strong>on</strong>g>the</str<strong>on</strong>g>m. When<br />

skin is excessively exposed to UV B (wavelength 290 to 320 nm) rays and becomes inflamed (sunburn), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 19 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

cells in <str<strong>on</strong>g>the</str<strong>on</strong>g> dermis stop producing as much HA and increase <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> its degradati<strong>on</strong>. HA degradati<strong>on</strong><br />

products also accumulate in <str<strong>on</strong>g>the</str<strong>on</strong>g> skin after UV exposure [Averbeck et al., 2006].<br />

Due to its high biocompatibility and its natural presence in <str<strong>on</strong>g>the</str<strong>on</strong>g> extracellular matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues, HA<br />

is gaining popularity as a biomaterial scaffold in tissue engineering research. In some cancers, HA levels<br />

correlate well with malignancy and poor prognosis. HA is thus <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used as a tumor marker for prostate and<br />

breast cancer. It may also be used to m<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g> progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease.<br />

3.2 Calcium Phosphates and Tricalcium Phosphates<br />

Seventy percent <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ], tooth enamel is also<br />

largely calcium phosphate. Like o<str<strong>on</strong>g>the</str<strong>on</strong>g>r apatites, it has a calcium and phosphate comp<strong>on</strong>ent in a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.67<br />

(Ca/P ratio) but is associated with a hydroxyl group. <strong>The</strong>re are several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-apatitic calcium phosphates<br />

that are distinguished from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir molecular formulae, Ca/P ratios that differ from 1.67, crystal<br />

structures and solubilities, which have higher dissoluti<strong>on</strong> rates than stoichiometric hydroxyapatite.<br />

3.2.1 Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> Calcium Phosphate<br />

Calcium phosphate Ca 3 (PO 4 ) 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g> name given to a family <str<strong>on</strong>g>of</str<strong>on</strong>g> minerals c<strong>on</strong>taining calcium i<strong>on</strong>s<br />

(Ca 2+ ) toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with orthophosphates (PO 4 3- ). Tricalcium phosphates (TCP) are am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>lyused<br />

calcium phosphates compounds in implant materials. <strong>The</strong>y are found in ceramic b<strong>on</strong>e substitutes,<br />

metallic pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis coatings, cements and composite materials. From a strict chemical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view,<br />

‘tricalcium phosphate’ refers to a compositi<strong>on</strong>, even though, in <str<strong>on</strong>g>the</str<strong>on</strong>g> minds <str<strong>on</strong>g>of</str<strong>on</strong>g> many users, this term is used to<br />

describe a structure, generally that <str<strong>on</strong>g>of</str<strong>on</strong>g> β tricalcium phosphate (βTCP). Tricalcium phosphates exist in four<br />

different forms:<br />

<br />

<br />

ATCP will hereby designate amorphous tricalcium phosphate;<br />

Ap TCP: apatitic tricalcium phosphate: Ca 9 (HPO 4 )(PO 4 ) 5 (OH);<br />

TCP: <str<strong>on</strong>g>the</str<strong>on</strong>g> most widely used member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TCP family having a crystalline structure: -Ca 3 (PO 4 ) 2 ;<br />

TCP: <str<strong>on</strong>g>the</str<strong>on</strong>g> metastable high-temperature crystalline structure: α-Ca 3 (PO 4 ) 2 .<br />

Amorphous tricalcium phosphate (ATCP) and apatitic tricalcium phosphate (Ap TCP) are low<br />

temperature, unstable phases generally obtained by precipitati<strong>on</strong>, whereas and tricalcium phosphates (<br />

and TCP) are high-temperature crystalline phases.<br />

3.2.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Different Calcium Phosphate Phases<br />

<strong>The</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tricalcium phosphate-based ceramics generally involves TCP powder<br />

preparati<strong>on</strong> and, in a successive stage, powder processing in order to obtain cohesive biomaterials in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> dense or macro-porous ceramics, coatings, cements or composites for b<strong>on</strong>e filling, substituti<strong>on</strong><br />

and/or rec<strong>on</strong>structi<strong>on</strong> applicati<strong>on</strong>s. In several cases, however, calcium phosphate phases form during<br />

processing, as, for example, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyapatite (HAp) plasma spraying. We will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

elaborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different tricalcium phosphate phases (amorphous, and polymorphic forms), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

structure, and main physicochemical properties and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir processing.<br />

3.2.2.1 Amorphous TriCalcium Phosphate (ATCP)<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most c<strong>on</strong>venient preparati<strong>on</strong> methods is double decompositi<strong>on</strong> between a calcium salt<br />

soluti<strong>on</strong> and a hydrogen phosphate salt soluti<strong>on</strong> in aqueous media, at ambient temperature and at a pH close<br />

to 10 [Somrani et al., 2005; Heughebaert and M<strong>on</strong>tel, 1982]. It can also be obtained in hydroalcoholic<br />

- 20 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

soluti<strong>on</strong> [Rodrigues and Lebugle, 1998; Lebugle et al., 1986]. <strong>The</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol in <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong><br />

medium influences <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous phase and especially its HPO 4 2- c<strong>on</strong>tent and Ca/P ratio.<br />

<strong>The</strong> main difficulties in <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP are related to its instability and reactivity.<br />

Generally, ATCP cannot be obtained at neutral or slightly acidic pH. However, it can be stabilised by<br />

various mineral i<strong>on</strong>s or organic molecules which can be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitating and/or washing soluti<strong>on</strong>s.<br />

For example, ATCP can be prepared under more acidic c<strong>on</strong>diti<strong>on</strong>s (around pH 6) and in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnesium or citrate i<strong>on</strong>s, known as crystal growth inhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> apatite phase [Holt et al., 1989]. Owing to<br />

its reactivity and ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r high water c<strong>on</strong>tent, precipitated ATCP is generally freeze-dried and stored at ~ 18°C<br />

to prevent any fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evoluti<strong>on</strong>. Dry, heated ATCP can, however, be stored at room temperature in dry<br />

atmosphere. In c<strong>on</strong>trast with syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis methods in soluti<strong>on</strong>, ATCP can also be obtained via a dry, hightemperature<br />

route through rapid quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> melted calcium phosphate. In <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<br />

Ca 2+ and PO 3- 4 , <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous phase which is forming is analogous to anhydrous precipitated ATCP [Ranz,<br />

1996]. However, in practice, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r ani<strong>on</strong>s such as O 2- are also observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature amorphous<br />

phase, increasing its Ca/P atomic ratio (1.5). Observed by transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM),<br />

ATCP morphology is mostly spherical, although <str<strong>on</strong>g>the</str<strong>on</strong>g>se particles generally tend to agglomerate into larger,<br />

irregularly shaped, branched clusters [Chow and Eanes, 2001]. <strong>The</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spheroid particles varies in a<br />

large range (20 to 200 nm). Amjad [1997] reported that spheroidal particles <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 nm in size were <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dominant and most stable morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP.<br />

Eanes [1970] also investigated ATCP through <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-chemical experiments and c<strong>on</strong>cluded that<br />

such amorphous tricalcium phosphate corresp<strong>on</strong>ds to a hydrated tri-calcium phosphate phase, suggesting a<br />

Ca 3 (PO 4 ) 2 ,n(H 2 O) chemical formula. <strong>The</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> water is an intrinsic feature <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP. Even freezedried,<br />

amorphous calcium phosphate still c<strong>on</strong>tains around 15–20 wt. % <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Sedlak and Beebe [1974]<br />

c<strong>on</strong>cludes from temperature-programmed dehydrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP that two types <str<strong>on</strong>g>of</str<strong>on</strong>g> bound water exist in this<br />

compound: loosely held water, and tightly bound water held inside <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous particles. ATCP can also<br />

easily incorporate ‘foreign’ i<strong>on</strong>s through i<strong>on</strong>ic substituti<strong>on</strong>s. Interestingly, ATCP can trap carb<strong>on</strong>ate i<strong>on</strong>s<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> soluti<strong>on</strong>s [Greenfield and Eanes, 1972], and <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate c<strong>on</strong>tent tends to increase<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> pH. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r substituti<strong>on</strong>s have also been reported, including Mg 2+ and PO 4<br />

3-<br />

pyrophosphate<br />

i<strong>on</strong>s. More generally, ATCP can trap several mineral i<strong>on</strong>s exhibiting biological activity (Sr 2+ , Zn 2+ , Mg 2+ ,<br />

Mn + Cu + , etc.). <strong>The</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silver was recently shown to bring antimicrobial performances to<br />

ATCP [Aimanova et al., 2005].<br />

3.2.2.2 Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Str<strong>on</strong>tium<br />

Str<strong>on</strong>tium has been subject <str<strong>on</strong>g>of</str<strong>on</strong>g> study in recent years due to its relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> preventi<strong>on</strong> and<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporosis. It is a very widespread in nature with a chemical structure quite similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calcium. Indeed, str<strong>on</strong>tium is an element bel<strong>on</strong>gs to group IIA <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic table <str<strong>on</strong>g>of</str<strong>on</strong>g> elements and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore<br />

it presents chemical properties very similar to calcium.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> human body str<strong>on</strong>tium is accumulated mainly in <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>e, so 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>tent is in this<br />

tissue. <strong>The</strong> extraordinary similarity to <str<strong>on</strong>g>the</str<strong>on</strong>g> calcium to that str<strong>on</strong>tium is metabolic routes are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> calcium, that is to say, absorpti<strong>on</strong> takes place in <str<strong>on</strong>g>the</str<strong>on</strong>g> intestine, <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> in b<strong>on</strong>e and excreti<strong>on</strong><br />

occur through urine [Cohen-Solal, 2002].<br />

<strong>The</strong> major route <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure is by ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food or water. Compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

str<strong>on</strong>tium ingested <strong>on</strong>ly 25−30% is absorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> intestine. Distributi<strong>on</strong> str<strong>on</strong>tium b<strong>on</strong>e is proporti<strong>on</strong>al to<br />

plasma levels (between 0.11 − 0.31 mmol / l), durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure and gender. <strong>The</strong> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium in<br />

- 21 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

b<strong>on</strong>e replacement is c<strong>on</strong>diti<strong>on</strong>ed b<strong>on</strong>e. <strong>The</strong>refore, cortical b<strong>on</strong>e has a smaller c<strong>on</strong>tent in str<strong>on</strong>tium that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trabecular b<strong>on</strong>e.<br />

Although str<strong>on</strong>tium at high doses can produce undesirable effects in <str<strong>on</strong>g>the</str<strong>on</strong>g> body as human b<strong>on</strong>e<br />

alterati<strong>on</strong>s, rickets, mineralizati<strong>on</strong> defects and change pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralizati<strong>on</strong> in low doses poses no health<br />

risk. Indeed, ATSDR (Agency <str<strong>on</strong>g>of</str<strong>on</strong>g> Toxic Substances and Disease Registry) said explicitly in his paper<br />

Toxicological str<strong>on</strong>tium that exposure to low doses <str<strong>on</strong>g>of</str<strong>on</strong>g> stable str<strong>on</strong>tium affects not <str<strong>on</strong>g>the</str<strong>on</strong>g> health <str<strong>on</strong>g>of</str<strong>on</strong>g> adult men.<br />

In additi<strong>on</strong> to hand administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium (str<strong>on</strong>tium ranelate) as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rapeutic method for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporosis has been well studied in <str<strong>on</strong>g>the</str<strong>on</strong>g> past years and <str<strong>on</strong>g>the</str<strong>on</strong>g> results were<br />

positive in relati<strong>on</strong> to b<strong>on</strong>e regenerati<strong>on</strong>. <strong>The</strong> in-vitro experiments showed that str<strong>on</strong>tium produces an<br />

increase in training and decreased b<strong>on</strong>e resorpti<strong>on</strong>.<br />

<strong>The</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain cati<strong>on</strong>s to materials based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> CPA to improve interfacial<br />

interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer composites has been studied for some number <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s (Ag + , Fe +2 , Zn +2 , Al +3 ,<br />

Fe +3 ) [O’D<strong>on</strong>nell et al., 2009]. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies have shown <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> divalent cati<strong>on</strong>s str<strong>on</strong>tium and zinc as<br />

preventive agents <str<strong>on</strong>g>of</str<strong>on</strong>g> dental caries [Baig et al., 1999].<br />

3.2.2.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Isomorphous Substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Str<strong>on</strong>tium in <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP<br />

<strong>The</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphous substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium in calcium-deficient apatite was already<br />

studied [Baig et al., 1999]. <strong>The</strong>se studies c<strong>on</strong>firm that <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> beta phosphate can<br />

accommodate up to 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium atoms, causing a widening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit cell. This fact agrees with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest i<strong>on</strong>ic radium str<strong>on</strong>tium relative calcium.<br />

We can define <str<strong>on</strong>g>the</str<strong>on</strong>g>se calcium-deficient apatite resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formula n<strong>on</strong>stoichiometric<br />

following:<br />

Ca 9-x Sr x (HPO 4 ) (PO 4 ) 5 (OH)<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium causes <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> bands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

phosphate group to minor frequencies. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> divalent i<strong>on</strong>s which replace <str<strong>on</strong>g>the</str<strong>on</strong>g> calcium<br />

appears to play an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> competiti<strong>on</strong> between HA and βTCP just described in previous<br />

secti<strong>on</strong>s. When you submit substituted apatite str<strong>on</strong>tium heat treatment acts as a stabilizer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> β phase<br />

agree with:<br />

Ca 9-x Sr x (HPO 4 ) (PO 4 ) 5 (OH) → 3(Ca (3-x/3) Sr x/3 ) (OP 4 ) + H 2 O (1.3)<br />

<strong>The</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> foreign i<strong>on</strong>s can alter some structural and physicochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP,<br />

such as lattice parameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallinity, solubility and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stability.<br />

Through <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Baig et al. [1999] and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting relati<strong>on</strong>ship between lattice parameters<br />

as c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium added (equati<strong>on</strong>s 1.4 and 1.5), we can estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

str<strong>on</strong>tium in βTCP <strong>on</strong> our experiment. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> structures <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP and α (Sr 3 (PO 4 ) 2 are very similar. <strong>The</strong><br />

lattice parameters follow <str<strong>on</strong>g>the</str<strong>on</strong>g> linear relati<strong>on</strong>ship:<br />

a = 10.434 + 0.00373xÅ = 8.3×10 -3 Å (1.4)<br />

c = 37.211 + 0.00250xÅ = 7×10 -2 Å (1.5)<br />

As in our case <str<strong>on</strong>g>the</str<strong>on</strong>g> atomic c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium is 10% atomic <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice parameters are:<br />

a = 10.4713Å<br />

c = 37.236 Å<br />

- 22 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

<strong>The</strong> cell volume changes with compositi<strong>on</strong> in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>:<br />

V=3507 + 4.9xÅ 3 = 13 Å 3<br />

So, in our case <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit cell is: V = 3556 Å 3<br />

3.2.2.4 Physicochemical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP Phases<br />

<strong>The</strong> solubility in water <str<strong>on</strong>g>of</str<strong>on</strong>g> α and βTCP has been fully investigated and reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature<br />

[Fowler and Kuroda, 1986; Gregory et al., 1974]. As a general trend, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se phases was<br />

found to decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> order α TCP > βTCP > Ca-deficient apatites > HAp [Ducheyne et al., 1993]. It may<br />

exhibit metastable solubility equilibrium, as recorded by Baig et al. [1999] in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e mineral and<br />

n<strong>on</strong>-stoichiometric apatites. Table 1.5 ga<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different comp<strong>on</strong>ents.<br />

Table 1.5: Solubility products <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases in water at 25°C.<br />

Phase Chemical Formula PK sp (25 °C) References<br />

αTCP α-Ca 3 (PO 4 ) 2 25.5 [Fowler and Kuroda, 1986]<br />

β-Ca 3 (PO 4 ) 2<br />

[Gregory et al., 1974]<br />

28.9−85.1<br />

Ca 10−x (PO4) 6−x (HPO4) x (OH) 2−x<br />

[Ratner, 2004]<br />

ATCP Ca 3 (PO 4 ) 2·n(H 2 O) 24.2 [Somrani et al., 2005]<br />

HAp Ca 10 (PO 4 ) 6 (OH) 2 117.2 [Ratner, 2004]<br />

βTCP<br />

Ca-deficient apatite<br />

3.2.2.5 <strong>The</strong>rmal Treatment in Air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TCP Phases<br />

No variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ca/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases can occur <strong>on</strong> heating in air. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tricalcium<br />

phosphate phases, α TCP is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> high-temperature stable form. Its stability regi<strong>on</strong> ranges from<br />

1125 to 1430°C [Welch and Gutt, 1961]. Under 1125°C, βTCP is <str<strong>on</strong>g>the</str<strong>on</strong>g> stable tricalcium phosphate phase.<br />

Rapid quenching from temperatures higher than 1125°C, however, permits <str<strong>on</strong>g>the</str<strong>on</strong>g> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> α-TCP<br />

phase at room temperature. <strong>The</strong> transiti<strong>on</strong> temperature between <str<strong>on</strong>g>the</str<strong>on</strong>g> β and α TCP phases may vary depending<br />

<strong>on</strong> i<strong>on</strong> impurities such as Mg, Zn and Fe which stabilise βTCP. Apatitic TCP can be c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> lowtemperature<br />

crystalline form <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP (e.g. up<strong>on</strong> drying at 80°C). On heating at temperatures higher than<br />

800°C, this phase transforms into βTCP [Destainville et al., 2003]. Pure ATCP remains amorphous when<br />

heated up to 630°C [Eanes, 1970]. Above this temperature, it crystallises first into <str<strong>on</strong>g>the</str<strong>on</strong>g> metastable α TCP<br />

generally associated with small fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP and, around 850°C, into pure βTCP. However, ATCP<br />

c<strong>on</strong>taining Mg i<strong>on</strong>s (or c<strong>on</strong>taining o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements stabilising <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP phase such as Fe and Zn) transforms<br />

directly into <str<strong>on</strong>g>the</str<strong>on</strong>g> βTCP phase without <str<strong>on</strong>g>the</str<strong>on</strong>g> intermediary formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> α TCP. It has been suggested, based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic and nuclear magnetic res<strong>on</strong>ance studies, that α TCP formed by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ATCP could be more stable and c<strong>on</strong>tains fewer defects than <str<strong>on</strong>g>the</str<strong>on</strong>g> α TCP phase obtained by quenching from<br />

temperatures above <str<strong>on</strong>g>the</str<strong>on</strong>g> β to α TCP transiti<strong>on</strong> [Somrani et al., 2003; Belgrand, 1993].<br />

<strong>The</strong>rmal treatment in air <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> low-temperature phases, ATCP and Ap TCP, at 900°C, for several<br />

hours does indeed lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP, and this is a way to prepare this phase with high purity.<br />

When TCP’s Ca/P atomic ratio is not exactly 1.5, impurities appear. <strong>The</strong> main impurities, hydroxyapatite<br />

(corresp<strong>on</strong>ding to a Ca/P atomic ratio above 1.5) and β calcium pyrophosphate (corresp<strong>on</strong>ding to a Ca/P<br />

atomic ratio under 1.5), can be detected, respectively, by XRD and FTIR spectroscopy. α TCP is generally<br />

obtained by heating βTCP above 1125°C (<str<strong>on</strong>g>the</str<strong>on</strong>g> allotropic transiti<strong>on</strong> temperature for β → α), followed by rapid<br />

quenching. It is interesting to note that α TCP can also be obtained transitorily by heating ATCP at<br />

temperatures lower than 1125°C (between 630 and 850°C), but this method generally leads to a product<br />

c<strong>on</strong>taining traces <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP [Somrani et al., 2003; Eanes, 1970].<br />

Both α and βTCP can also be prepared from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r starting powders and, more c<strong>on</strong>veniently, from<br />

mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca-P phases with <str<strong>on</strong>g>the</str<strong>on</strong>g> adequate global Ca/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be obtained by<br />

- 23 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

heating an intimate mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> CaHPO 4 (di-calcium phosphate anhydrous) and CaCO 3 (calcium carb<strong>on</strong>ate)<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> molar ratio 2/1, between 1150 – 1200°C, for at least <strong>on</strong>e day. α TCP is <str<strong>on</strong>g>the</str<strong>on</strong>g>n obtained by quenching in<br />

liquid nitrogen whereas prol<strong>on</strong>ged heating at about 900°C (until complete disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> α TCP) leads to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP. Several authors also reported <str<strong>on</strong>g>the</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> pure βTCP by heating a di-calcium<br />

phosphate dihydrate, calcium carb<strong>on</strong>ate mixture in <str<strong>on</strong>g>the</str<strong>on</strong>g> molar ratio 2/1 at 930°C, for 2 hours [Yang and<br />

Wang, 1998] or, at 900°C, for 14 hours [Vallet-Regí et al., 1997].<br />

From a structural point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, βTCP is a stable anhydrous tricalcium phosphate phase. It<br />

crystallises in <str<strong>on</strong>g>the</str<strong>on</strong>g> rhombohedral system with 21 formula units Ca 3 (PO 4 ) 2 per hexag<strong>on</strong>al unit cell [Dickens et<br />

al., 1974]. A thorough structural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase is given in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature based mainly <strong>on</strong> a<br />

comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> phase Ba 3 (VO 4 ) 2 and it will <str<strong>on</strong>g>the</str<strong>on</strong>g>refore not be reported here [Elliott, 1994]. An<br />

interesting structural feature <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP is, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> columns <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s (ani<strong>on</strong>s and cati<strong>on</strong>s)<br />

which can be distinguished parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> c-axis.<br />

3.2.2.6 Aqueous Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP Phases<br />

In aqueous medium, it is worthwhile reminding that <str<strong>on</strong>g>the</str<strong>on</strong>g> first precipitates obtained under given<br />

c<strong>on</strong>diti<strong>on</strong>s (pH, temperature and i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s) from calcium phosphate soluti<strong>on</strong>s do not necessarily<br />

corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamically most stable phase. For example, phases such as ATCP or<br />

Ca 8 H 2 (PO 4 ) 6 ,5H 2 0 (octocalcium phosphate) may form transiently in soluti<strong>on</strong>, somewhat analogous to<br />

precursor phases prior to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir progressive hydrolysis into apatite [Tung, 1998]. In particular, ATCP is<br />

generally <str<strong>on</strong>g>the</str<strong>on</strong>g> first solid phase that sp<strong>on</strong>taneously precipitates up<strong>on</strong> mixing alkaline calcium and phosphate<br />

soluti<strong>on</strong>s [Chow and Eanes, 2001].<br />

When immersed in soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> most soluble TCP phases, α TCP and ATCP, show a str<strong>on</strong>g<br />

tendency to evolve towards a more stable phase through a hydrolysis process. At alkaline and neutral pH,<br />

ATCP progressively transforms into n<strong>on</strong>-stoichiometric hydroxylated apatites [Eanes and Meyer, 1977].<br />

According to Heughebaert [1977], in this process ATCP is generally found to remain amorphous up to half<br />

hydrolysis corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> Ca 9 (PO 4 ) 5 (HPO 4 )(OH) and apatite structure crystallisati<strong>on</strong>. <strong>The</strong><br />

apatite obtained by hydrolytic c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ATCP may, however, evolve differently in <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong><br />

depending <strong>on</strong> pH, temperature, maturati<strong>on</strong> time and i<strong>on</strong> c<strong>on</strong>tent. Generally, an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ca/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> solid is noticed, associated with a decrease in HPO 4 2− c<strong>on</strong>tent and an increase in OH − c<strong>on</strong>tent [Somrani<br />

et al., 2005]. It was found that an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ca/P ratio in <str<strong>on</strong>g>the</str<strong>on</strong>g> starting soluti<strong>on</strong>s led to faster<br />

crystallisati<strong>on</strong> into hydroxyapatite [Kim et al., 2004]. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some i<strong>on</strong>ic species such<br />

as Mg 2+ , CO 3 2−, and P 2 O 7 4− which inhibit apatite crystal growth was shown to delay this hydrolysis process<br />

[LeGeros et al., 2005; Boskey and Posner, 1974]. C<strong>on</strong>sidering heated ATCP, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> rate into apatite<br />

has been shown to be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> residual water c<strong>on</strong>tent and rehydrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> powder appears as a<br />

determining stage [Somrani et al., 2005].<br />

α TCP also hydrolyses rapidly in aqueous soluti<strong>on</strong> [M<strong>on</strong>ma et al., 1981; M<strong>on</strong>ma, 1980]. <strong>The</strong><br />

hydrolysis products are generally Ca 8 H 2 (PO 4 ) 6 ,5H 2 0 (octocalcium phosphate) and n<strong>on</strong>-stoichiometric<br />

apatite, although CaHPO 4 (di-calcium phosphate anhydrous or m<strong>on</strong>etite) and CaHPO 4 ,2H 2 O (di-calcium<br />

phosphate dihydrate or brushite) can also form. <strong>The</strong> transformati<strong>on</strong> mechanism is generally identified with<br />

dissoluti<strong>on</strong>–reprecipitati<strong>on</strong> reacti<strong>on</strong>s. Although less investigated than <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Am-CP, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> α-TCP is believed to depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same physicochemical factors (temperature, pH, hydrolysis<br />

time, soluti<strong>on</strong> compositi<strong>on</strong> and presence <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic impurities).<br />

In c<strong>on</strong>trast, βTCP does not show a tendency to hydrolyse rapidly in soluti<strong>on</strong>, at physiological<br />

temperatures. However, pure βTCP has been shown to hydrolyse completely into relatively well-crystallised<br />

- 24 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

n<strong>on</strong>-stoichiometric apatitic phases in boiling aqueous suspensi<strong>on</strong>s within 24 hours [Rey, 1984]. Faster<br />

hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP into apatite also occurs under hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>diti<strong>on</strong>s (e.g. 120°C, in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water vapour). <strong>The</strong>se reacti<strong>on</strong>s have been found to depend str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> purity <str<strong>on</strong>g>of</str<strong>on</strong>g> βTCP as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are<br />

str<strong>on</strong>gly inhibited in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> traces <str<strong>on</strong>g>of</str<strong>on</strong>g> Mg 2+ i<strong>on</strong>s.<br />

3.2.2.7 Surface <strong>Properties</strong><br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> surface interacti<strong>on</strong>s between biomaterials and body fluids is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

utmost importance for following bio-integrati<strong>on</strong> and bioactivity, few data are available to date <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP phases, despite <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high involvement in <str<strong>on</strong>g>the</str<strong>on</strong>g> biomaterials field.<br />

Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> indicati<strong>on</strong>s reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> surface properties or reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tri-calcium phosphates, most deal ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with adsorpti<strong>on</strong> or i<strong>on</strong> exchange processes. However, elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding mechanisms and <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship with intrinsic surface properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TCP phases<br />

involved, are <strong>on</strong>ly rarely addressed.<br />

Adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinant human transforming growth factor-β 1 <strong>on</strong> tricalcium phosphate-coated<br />

titanium-based implants has been investigated in dogs [Lind et al., 2001]. In this article, authors pointed out<br />

a clear increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>e volume formed around <str<strong>on</strong>g>the</str<strong>on</strong>g> implant coated with TCP with adsorbed recombinant<br />

human transforming growth factor-β 1 , thus showing <str<strong>on</strong>g>the</str<strong>on</strong>g> potential importance <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorpti<strong>on</strong> phenomena <strong>on</strong><br />

TCP phases. Adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various proteins <strong>on</strong> βTCP and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r calcium phosphates has been investigated by<br />

Ohta et al., [2001]. Two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorpti<strong>on</strong> sites were distinguished: positively charged sites (Ca sites)<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorbing acidic proteins (e.g. bovine serum albumin,) and negatively charged sites (P sites)<br />

which adsorb alkaline proteins. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium sites <strong>on</strong> βTCP was <str<strong>on</strong>g>the</str<strong>on</strong>g>n found to be<br />

significantly lower than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r calcium phosphates tested, including hydroxyapatite.<br />

3.2.3 Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> and -tricalcium Phosphates in Biomaterials<br />

Macro-porous composite scaffolds can be processed using different methods: solvent<br />

casting/particulate leaching, emulsi<strong>on</strong> freeze drying or <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally induced phase separati<strong>on</strong>. Biodegradable<br />

composite including resorbable polymer such as polylactic acid (PLA) and/or polyglycolic acid (PGA) and a<br />

resorbable apatite can be prepared at ambient temperature [Chen et al., 2001a; Linhart et al., 2001].<br />

Recently, Mathieu et al. [2006] reported <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a supercritical CO 2 foaming process to prepare porous<br />

PLA-HAp and/or PLA-TCP composites exhibiting mechanical behaviour analogous to b<strong>on</strong>e (anisotropy in<br />

compressive and viscoelastic properties).<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer-apatite composite can also corresp<strong>on</strong>d to a first step in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-crystalline apatite porous ceramic. For example, Tadic et al. [2004] reported <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

processing <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-crystalline apatites-based biomaterials porous bio-ceramics using both sodium chloride<br />

salt and polyvinyl alcohol fibres as water-soluble pore agents and cold isostatic pressing without sintering.<br />

4 C<strong>on</strong>clusi<strong>on</strong><br />

In this chapter, we have discussed extensively different types <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers to be used for<br />

composite materials with different industrial applicati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers with different types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fillers and surface modifiers for tissue and b<strong>on</strong>e engineering. <strong>The</strong> physical, mechanical and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

properties have been under c<strong>on</strong>siderati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g>y have great impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting product. Biodegradable<br />

polymers from renewable resources have been attracting ever-increasing attenti<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> past two decades,<br />

predominantly for two reas<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> first being envir<strong>on</strong>mental c<strong>on</strong>cerns and <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d being <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong><br />

that our petroleum resources are finite. Biodegradable polymers and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir products will play an important<br />

- 25 -


Chapter 1.<br />

Polylactide Based Bio-Materials<br />

role for transplantati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> coming era. Polylactides are currently used in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> biomedical<br />

applicati<strong>on</strong>s, such as sutures, stents, dialysis media and drug delivery devices. Also polylactides are used for<br />

tissue, cartilage and b<strong>on</strong>e regenerati<strong>on</strong>. Hyalur<strong>on</strong>ic acid is hydrophilic in nature and using it with polylactide<br />

will enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> surface adhesi<strong>on</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold produced. As a result it will augment <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

adhesi<strong>on</strong>, differentiati<strong>on</strong> and proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human cell <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold to be transplanted. Tri-calcium<br />

phosphate is added as mineral in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold.<br />

<strong>The</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> TCP added depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature and mechanical property <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold required to be<br />

transplanted.<br />

- 26 -


Chapter 2<br />

Chapter<br />

2<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to<br />

Manufacture Foams<br />

and to Functi<strong>on</strong>alize<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Tissue engineering <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an alternative technique to tissue transplantati<strong>on</strong> for diseased or<br />

malfuncti<strong>on</strong>ed organs. Adequate porosity and equivalent pore size as well as interc<strong>on</strong>nected pore structure<br />

are crucial to allow for easy dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold structure. Scaffold structure is<br />

directly related to fabricati<strong>on</strong> methods, which are presented in this chapter <strong>on</strong>e by <strong>on</strong>e. We adopted <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technique using supercritical CO 2 in our experiments. This process is a green technology which provides<br />

adequate porosity and pore size with no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive mass in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold matrix. <strong>The</strong> surface and<br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold will be enhanceed by adapting <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing and co-grinding <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer<br />

matrix with surface modifier and filler. Hyalur<strong>on</strong>ic acid (HA) has a number <str<strong>on</strong>g>of</str<strong>on</strong>g> potential biomedical<br />

applicati<strong>on</strong>s in drug delivery and tissue engineering. By co-grinding, it coats <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactide and<br />

being hydrophilic in nature thus improves <str<strong>on</strong>g>the</str<strong>on</strong>g> adhesi<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix. Similarly filler having<br />

higher mecahnical properties than polymer enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus and strength <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix.<br />

1 Generalities <strong>on</strong> Polymer Foams<br />

<strong>The</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric-foam materials can be carried out by ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r mechanical, chemical, or<br />

physical means. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>ly used methods are <str<strong>on</strong>g>the</str<strong>on</strong>g> following [Landrock, 1995]:<br />

<br />

<br />

<br />

<br />

<strong>The</strong>rmal decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical blowing agents generating ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r nitrogen or carb<strong>on</strong> dioxide, or<br />

both, by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat, or as <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> during polymerizati<strong>on</strong>.<br />

Mechanical whipping <str<strong>on</strong>g>of</str<strong>on</strong>g> gases (frothing) into a polymer system (melt, soluti<strong>on</strong> or suspensi<strong>on</strong>) which<br />

hardens, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by catalytic acti<strong>on</strong> or heat, or both, thus entrapping <str<strong>on</strong>g>the</str<strong>on</strong>g> gas bubbles in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

matrix.<br />

Volatilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low-boiling liquids such as fluorocarb<strong>on</strong>s or methylene chloride within <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

mass as <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>, or by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat.<br />

Volatilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gases produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> during polymerizati<strong>on</strong> such as<br />

occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isocyanate with water to form carb<strong>on</strong> dioxide.<br />

- 27 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<br />

<br />

<br />

Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved gas in a polymer mass <strong>on</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hollow microspheres into a polymer mass. <strong>The</strong> microspheres may c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hollow glass or hollow plastic beads or salts.<br />

Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gas-filled beads by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat or expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se beads in a polymer mass by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>, e.g. expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polystyrene beads in a polyurethane or epoxy resin system.<br />

<strong>The</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foams can take place by many different techniques. <strong>The</strong>se may include<br />

[Landrock, 1995]:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

C<strong>on</strong>tinuous slab-stock producti<strong>on</strong> by pouring or impingement, using multi-comp<strong>on</strong>ent foam machines.<br />

Compressi<strong>on</strong> molding <str<strong>on</strong>g>of</str<strong>on</strong>g> foams.<br />

Reacti<strong>on</strong>-injecti<strong>on</strong> molding (RIM), usually by impingement.<br />

Foaming-in-place by pouring from a dual- or multi-comp<strong>on</strong>ent head.<br />

Spraying <str<strong>on</strong>g>of</str<strong>on</strong>g> foams.<br />

Extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foams using expandable beads or pellets.<br />

Injecti<strong>on</strong> molding <str<strong>on</strong>g>of</str<strong>on</strong>g> expandable beads or pellets.<br />

Rotati<strong>on</strong>al casting <str<strong>on</strong>g>of</str<strong>on</strong>g> foams.<br />

Frothing <str<strong>on</strong>g>of</str<strong>on</strong>g> foams, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air or <str<strong>on</strong>g>of</str<strong>on</strong>g> a low-boiling volatile solvent (e.g.<br />

dichlorodifluoromethane, F-12).<br />

Laminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foams (foam-board producti<strong>on</strong>).<br />

Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foam composites.<br />

Precipitati<strong>on</strong> foam processes where a polymer phase is formed by polymerizati<strong>on</strong> or precipitati<strong>on</strong> from a<br />

liquid which is later allowed to escape.<br />

2 Manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> Porous Materials by Wet Methods<br />

An ideal scaffold should be biocompatible, biodegradable, and highly porous with interc<strong>on</strong>nected<br />

pores with adequate mechanical properties depending up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>.<br />

2.1 Solvent Casting/Particulate Leaching<br />

To prepare three-dimensi<strong>on</strong>al biodegradable porous scaffolds, a method that incorporates salt<br />

particles as <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen material can be used [Ma and Choi, 2001; Mikos et al., 1994]. <strong>The</strong> porogen leaching<br />

method provides easy c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore structure. <strong>The</strong> pore structure, porosity, and pore size can be easily<br />

c<strong>on</strong>trolled by regulating <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and size <str<strong>on</strong>g>of</str<strong>on</strong>g> salt. This method involves casting a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer<br />

soluti<strong>on</strong> (polymer/chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm or polymer/methylene chloride) and porogen in a mould, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n leaching<br />

out <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen with water to generate <str<strong>on</strong>g>the</str<strong>on</strong>g> pores and freeze-drying <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture. Water-soluble particulates,<br />

such as salts and carbohydrates, are used as <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen materials. Solvent casting / particulate leaching<br />

(SC/PL) involves <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> water-soluble porogen, such as gelatine microspheres or sodium chloride.<br />

<strong>The</strong> procedure is shown in Figure 2.1 and is applied as follows [Devin et al., 1996; Mo<strong>on</strong>ey et al.,<br />

1995; Mikos et al., 1994]:<br />

- 28 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

(h)<br />

(i)<br />

Salt particulates are prepared by sieving. <strong>The</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt particulates are c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desirable sieving.<br />

Polymer soluti<strong>on</strong>s are prepared by dissolving different amounts and types <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers in solvent<br />

(e.g. methylene chloride or chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm).<br />

Sieved salt particulates are added to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> is gently vortexed.<br />

<strong>The</strong> soluti<strong>on</strong> is poured into <str<strong>on</strong>g>the</str<strong>on</strong>g> designed silic<strong>on</strong> mould.<br />

Subsequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> mould with dispersi<strong>on</strong> is pressed (~ 6 MPa) by pressure apparatus.<br />

<strong>The</strong> formed samples are taken out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mould.<br />

Samples are dissolved for a desirable time (48 h) in dei<strong>on</strong>ised water.<br />

Salt-removed samples are freeze-dried for a desirable time (about 48 h) at low temperature and<br />

reduced pressure (around 8 Pa,−55°C).<br />

<strong>The</strong> scaffolds are dried in a vacuum oven at 25°C for 1 week to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> residual solvent.<br />

Scaffolds are kept under vacuum until use.<br />

(a) Salt<br />

(b) Preparing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer,<br />

solvent, salt<br />

(c) Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer,<br />

solvent, salt<br />

(d) Moulding<br />

(e) Pressing<br />

(f) Removal from (g) Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salt (h) Freezing & freeze<br />

drying<br />

(i) Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> residual<br />

solvent and storage<br />

Figure 2.1: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> solvent casting/particulate leaching.<br />

[Khang et al., 2007]<br />

Porosity is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> particle diameters, but increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> salt. A minimum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> salt particles is needed to create interc<strong>on</strong>nected pores [Mikos et al., 1994]. When particle diameter<br />

increases, pore size increases. Mechanical properties, such as compressive strength or modulus, are<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> pore size but decrease when porosity increases. Porosity up to 90-95%, with varying pore<br />

size, and a compressive modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.15 to 150 MPa, depending <strong>on</strong> porosity can be achieved. This method<br />

is <strong>on</strong>ly applicable to <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thin films since all <str<strong>on</strong>g>the</str<strong>on</strong>g> salt particles <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk must be leached out<br />

completely. To obtain thicker scaffolds <str<strong>on</strong>g>of</str<strong>on</strong>g> desired shape, an improved porogen salt-leaching technique has<br />

been proposed [Gross and Rodríguez-Lorenzo, 2004]. By adding small hydroxyapatite (HAp) fibres to a<br />

PLGA soluti<strong>on</strong>, it is possible to create composite foams with a c<strong>on</strong>trolled porosity [Hou et al., 2003; Chen et<br />

al., 2001b; Thoms<strong>on</strong> et al., 1998; Widmer et al., 1998].<br />

2.2 Ice Particle-Leaching<br />

Previous scaffold manufacturing usually involves (1) dissolving <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer in organic solvent,<br />

(2) incorporating porogens, and (3) leaching porogens. Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>se advantages, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> residual<br />

- 29 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

porogen used to prepare 3D scaffolds remains. <strong>The</strong>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al method <str<strong>on</strong>g>of</str<strong>on</strong>g> porogen leaching by<br />

washing with water is replaced by freeze-drying, facilitating <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen and making<br />

removal more complete. <strong>The</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> porogen leaching by using ice particulates as <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen material<br />

can be employed to fabricate porous 3D scaffolds for tissue engineering. Using ice particulates as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

porogen material, scaffolds are prepared by mixing a polymer soluti<strong>on</strong> in a solvent with ice particulates,<br />

freezing <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture in liquid nitrogen, and freeze-drying. This method can be applied to biodegradable<br />

polymers like polylactides that are soluble in a solvent such as chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm or methylene chloride. Sieved ice<br />

particles are dispersed in a polymer/chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm soluti<strong>on</strong>. <strong>The</strong> ice particles are eventually leached out by<br />

selective dissoluti<strong>on</strong> in water or by freeze-drying to produce a porous 3D scaffold as described in Figure 2.2:<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

Ice particulates are prepared by spraying dei<strong>on</strong>ised water into liquid nitrogen [Figure a].<br />

Polymer soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various c<strong>on</strong>centrati<strong>on</strong>s are prepared by dissolving different amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polymer in solvent (e.g. methylene chloride or chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm) and cooling. <strong>The</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ice<br />

particulates are c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> desirable sieving <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to −20°C [Figures b and c]. Ice<br />

particulates are added to <str<strong>on</strong>g>the</str<strong>on</strong>g> precooled polymer soluti<strong>on</strong>.<br />

<strong>The</strong> dispersi<strong>on</strong> is gently vortexed [Figure d].<br />

It is <str<strong>on</strong>g>the</str<strong>on</strong>g>n poured into a precooled designed mould [Figure e].<br />

Subsequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> mould with dispersi<strong>on</strong> is frozen by placing at low temperature [Figure f].<br />

<strong>The</strong> mould with dispersi<strong>on</strong> is freeze-dried for a desirable time under low temperature [Figure g].<br />

Often, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r drying at elevated temperatures is required to completely remove <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent after<br />

freeze-drying.<br />

(a) Spraying (b) Sieving (c) Sieved Ice<br />

particles<br />

(d) Vortexing<br />

(e) Moulding (f) Freezing (g) Freeze-drying<br />

Figure 2.2: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> ice particle–leaching.<br />

[Kim et al., 2007b]<br />

2.3 Gas-Foaming/Salt-Leaching Technique<br />

<strong>The</strong> biodegradable scaffolds prepared by <str<strong>on</strong>g>the</str<strong>on</strong>g> particulate-leaching method <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibit a dense<br />

surface skin layer, which hampers in vitro cell seeding into <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds and tissue ingrowth after in vivo<br />

implantati<strong>on</strong>. Additi<strong>on</strong>ally, poor interc<strong>on</strong>nectivities between macropores lower cell viability and result in<br />

n<strong>on</strong>-uniform distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeded cells throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix. Sodium bicarb<strong>on</strong>ate salt or amm<strong>on</strong>ium<br />

bicarb<strong>on</strong>ate salt with acidic excipients such as citric acid has been used for effervescent gas-evolving oral<br />

tablets, due to its carb<strong>on</strong> dioxide – evolving property up<strong>on</strong> c<strong>on</strong>tact in acidic aqueous soluti<strong>on</strong>. Thus, various<br />

alkalinising analgesic oral tablets are commercially available. In particular, amm<strong>on</strong>ium bicarb<strong>on</strong>ate salt –<br />

up<strong>on</strong> c<strong>on</strong>tact in an acidic aqueous soluti<strong>on</strong> and/or incubated at elevated temperature – evolves gaseous<br />

amm<strong>on</strong>ia and carb<strong>on</strong> dioxide by itself.<br />

- 30 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<strong>The</strong> gas-foaming/salt-leaching method is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that sieved salt particles <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium<br />

bicarb<strong>on</strong>ate dispersed within a polymer–solvent mixture can generate amm<strong>on</strong>ia and carb<strong>on</strong> dioxide gases<br />

within solidifying matrices up<strong>on</strong> c<strong>on</strong>tact with hot water or aqueous acidic soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby producing highly<br />

porous structures (cf. Figure 2.3). <strong>The</strong>se scaffolds show macro-pore structures over 200 μm with no visible<br />

surface skin layers, thus permitting sufficient cell seeding within <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds. In additi<strong>on</strong>, porosities can be<br />

c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium bicarb<strong>on</strong>ate incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong>. It is possible to<br />

make various scaffolds with different geometries and sizes by a hand-shaping or moulding process because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer–salt mixture becomes a gel paste after partial evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent.<br />

Polylactides must be completely dissolved in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm. An excess volume <str<strong>on</strong>g>of</str<strong>on</strong>g> cold ethanol is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n added to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong>. <strong>The</strong> whole is <str<strong>on</strong>g>the</str<strong>on</strong>g>n mixed homogeneously. A gel-like slurry precipitates<br />

immediately in <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent/n<strong>on</strong> solvent mixture. <strong>The</strong> turbid soluti<strong>on</strong> is removed and <str<strong>on</strong>g>the</str<strong>on</strong>g> gel slurry is<br />

recovered. Amm<strong>on</strong>ium bicarb<strong>on</strong>ate is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> which is mixed to make a homogeneous gel<br />

paste mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer/salt. A small volume <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm can be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> slurry as a plasticizer. <strong>The</strong><br />

paste mixture is <str<strong>on</strong>g>the</str<strong>on</strong>g>n casted into a disc–shaped Tefl<strong>on</strong> ® mould or manipulated to <str<strong>on</strong>g>the</str<strong>on</strong>g> desired shape. <strong>The</strong> gel<br />

paste mixture is dried by partial evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol, under atmospheric pressure, to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> semisolidified<br />

mixture. A polymer/salt complex is removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> mould and wetted with cold ethanol. <strong>The</strong><br />

matrix is immersed into supersaturated citric acid soluti<strong>on</strong> to effervescence from embedded salt particles.<br />

After complete effervescence, <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds are washed with H 2 O <str<strong>on</strong>g>the</str<strong>on</strong>g>n freeze-dried and finally stored at<br />

−80°C with desiccant until use.<br />

Polymer Gel Prepared by<br />

n<strong>on</strong>solvent precipitati<strong>on</strong><br />

Solvent<br />

Semi solidified<br />

Polymer / Salt complex<br />

Polymer<br />

gel paste<br />

Sieved<br />

Amm<strong>on</strong>ium bicarb<strong>on</strong>ate<br />

salt particles<br />

Freeze dry<br />

Gas Forming<br />

In acidic aqueous soluti<strong>on</strong><br />

or hot water<br />

Macroporous<br />

scaffold<br />

2.4 Gel-Pressing Technique<br />

Figure 2.3: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> gas foaming/salt-leaching method.<br />

[Park, 2007b]<br />

<strong>The</strong> particulate-leaching process dissolves <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactide in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n casts it <strong>on</strong>to a<br />

dish filled with <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen. After evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer/salt composite is leached in water<br />

to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen. <strong>The</strong> process is easy to carry out. <strong>The</strong> pore size can be c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

salt crystals, and <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity by <str<strong>on</strong>g>the</str<strong>on</strong>g> salt/polymer ratio. However, certain critical variables such as pore<br />

shape, limited membrane thickness (3 mm), plastic operati<strong>on</strong>, and interpore openings are not c<strong>on</strong>trollable.<br />

To overcome <str<strong>on</strong>g>the</str<strong>on</strong>g>se shortcomings, a method to fabricate porous, biodegradable scaffolds using a combined<br />

gel-pressing method and salt-leaching technique has been developed (cf. Figure 2.4):<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

A polymer/salt composite is firstly prepared by dissoluti<strong>on</strong> process in a solvent.<br />

<strong>The</strong> polymer is dissolved in a solvent and <str<strong>on</strong>g>the</str<strong>on</strong>g>n mixed with salts.<br />

<strong>The</strong> solvent is evaporated under air c<strong>on</strong>diti<strong>on</strong> to form gels.<br />

Gels are put inside moulds.<br />

Polymer gels are pressed.<br />

- 31 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

(f)<br />

(g)<br />

(h)<br />

(i)<br />

Scaffolds are processed to fabricate a tubular or sheet-types.<br />

After evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent, <str<strong>on</strong>g>the</str<strong>on</strong>g> salt particles in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>struct are leached out to make an openpore<br />

structure.<br />

Scaffolds are freeze-dried for a desired time under low temperature.<br />

Scaffolds are obtained by finally under <str<strong>on</strong>g>the</str<strong>on</strong>g> return to <str<strong>on</strong>g>the</str<strong>on</strong>g> room temperature.<br />

Polymer soluti<strong>on</strong><br />

Salt (NaCl)<br />

(a) Mixing (b) Polymer soluti<strong>on</strong> (c) Evaporati<strong>on</strong> (d) Moulding (e) Gel pressing<br />

(f) Shaping (g) Salt leaching (h) Freeze-drying (i) Scaffolds<br />

Figure 2.4: Procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds by gel-pressing method.<br />

[Kim, 2007]<br />

2.5 PLGA Microspheres for Tissue-Engineered Scaffold<br />

PLGA-based microspheres are biodegradable particulate delivery systems providing both drug<br />

protecti<strong>on</strong>, encapsulated inside a polymeric matrix, and its release at a slow and c<strong>on</strong>tinuous rate.<br />

Microsphere manufacturing usually involves (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trolling <str<strong>on</strong>g>of</str<strong>on</strong>g> a disintegrated polymer, (2) cell toxicity,<br />

and (3) a suitable envir<strong>on</strong>ment for cell culture. <strong>The</strong> size and degradable pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile can be easily managed by<br />

c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer and <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricati<strong>on</strong>.<br />

PLGA microspheres are particularly attractive for tissue regenerati<strong>on</strong> approaches ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as an<br />

injectable system or as <str<strong>on</strong>g>the</str<strong>on</strong>g> integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> a replacement clinical c<strong>on</strong>struct. <strong>The</strong> small, spherical nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se polymers enables <str<strong>on</strong>g>the</str<strong>on</strong>g> encapsulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> growth factors or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r drugs, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir subsequent delivery to a<br />

specific and designated area. C<strong>on</strong>trolled release <str<strong>on</strong>g>of</str<strong>on</strong>g> bioactive molecules, such as cytokines and growth<br />

factors, has become an important aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering because it allows modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

functi<strong>on</strong> and tissue formati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> afflicted site. Cell cultures using microspheres have an advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

passage abbreviati<strong>on</strong> to improve cell activity. <strong>The</strong> PLGA microspheres regulate many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

activity, including cell proliferati<strong>on</strong>, cell differentiati<strong>on</strong>, and extracellular matrix metabolism, in a time- and<br />

c<strong>on</strong>centrati<strong>on</strong>-dependent fashi<strong>on</strong>. <strong>The</strong> procedure to prepare PLGA microsphere scaffolds is presented in<br />

Figure 2.5.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

<strong>The</strong> polymer is dissolved in a solvent, and is ready to add to a soluti<strong>on</strong> in surfactant.<br />

<strong>The</strong> polymer soluti<strong>on</strong> is dropped into an aqueous soluti<strong>on</strong> in surfactant by a pipette.<br />

This soluti<strong>on</strong> is stirred at 400 rpm for 7 h using a mechanical stirrer.<br />

<strong>The</strong> fabricated microspheres are collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom by a centrifugal separator.<br />

<strong>The</strong> hardened microspheres are centrifuged, washed with dei<strong>on</strong>ised water.<br />

- 32 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

(f)<br />

(g)<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g>n put into a freezer.<br />

<strong>The</strong> manufactured microspheres are freeze-dried under low temperature and pressure.<br />

(a) Dissolving (b) Dropping (c) Stirring (d) Centrifuging (e) Washing (f) Freezing (g) Freeze-Drying<br />

Figure 2.5: Schematic procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA microsphere scaffolds.<br />

[Ko et al., 2007]<br />

2.6 Particle-Aggregated Scaffolds Technique<br />

<strong>The</strong> particle aggregati<strong>on</strong> method described herein allows <strong>on</strong>e to obtain scaffolds with high<br />

mechanical properties (thus assuring scaffold stability) and full three-dimensi<strong>on</strong>al interc<strong>on</strong>nectivity, which is<br />

assured in a 3D perspective by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact points between <str<strong>on</strong>g>the</str<strong>on</strong>g> particles. <strong>The</strong> described technique is based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> random packing <str<strong>on</strong>g>of</str<strong>on</strong>g> prefabricated microspheres with fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r aggregati<strong>on</strong> by physical or <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal means to<br />

create a three-dimensi<strong>on</strong>al porous structure. <strong>The</strong> polymer (at desired c<strong>on</strong>centrati<strong>on</strong>) is dissolved in a good<br />

solvent. For <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composite particles, hydroxyapatite (HAp) is added at an adequate<br />

c<strong>on</strong>centrati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> and dispersed homogeneously. <strong>The</strong> detailed procedure (cf. Figure 2.6) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following:<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

<strong>The</strong> polymer or composite (polymer plus HAp) soluti<strong>on</strong> is left overnight to assure complete<br />

dissoluti<strong>on</strong> [Figure a]. <strong>The</strong> polymer/composite soluti<strong>on</strong> is filtered to eliminate any residual particles.<br />

<strong>The</strong> polymer/composite soluti<strong>on</strong> is extruded through a syringe in a dispenser (syringe pump) at a<br />

c<strong>on</strong>trolled and c<strong>on</strong>stant rate in order to shape <str<strong>on</strong>g>the</str<strong>on</strong>g> particles into a NaOH soluti<strong>on</strong> [Figure b]. <strong>The</strong><br />

particle size can be c<strong>on</strong>trolled by tailoring <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>, needle diameter, and<br />

dispensing rate.<br />

<strong>The</strong> particles are <str<strong>on</strong>g>the</str<strong>on</strong>g>n exhaustively washed to remove all exceeding reagents, namely from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitati<strong>on</strong> bath [Figure c]. To produce composite particles, cross-linking can be used with<br />

appropriate polymer cross-linkers. <strong>The</strong> particles are immersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-linking soluti<strong>on</strong> for a<br />

determined short period and <str<strong>on</strong>g>the</str<strong>on</strong>g>n washed again.<br />

For producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds, appropriate particles are press-fitted into a specific mould [Figure d].<br />

And left in <str<strong>on</strong>g>the</str<strong>on</strong>g> oven for a necessary time for aggregati<strong>on</strong> to take place [Figure e].<br />

(a) (b) (c) (d) (e)<br />

Figure 2.6: Schematic procedure for manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds with <str<strong>on</strong>g>the</str<strong>on</strong>g> particle-aggregated technique.<br />

[Malafaya and Reis, 2007]<br />

2.7 Freeze-Drying Method<br />

Porosity can be acquired in <str<strong>on</strong>g>the</str<strong>on</strong>g> first step <str<strong>on</strong>g>of</str<strong>on</strong>g> freeze-drying (lyophilising) <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> c<strong>on</strong>taining<br />

polymeric biomaterials, when <str<strong>on</strong>g>the</str<strong>on</strong>g> ice crystals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solvents are formed within <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. <strong>The</strong> ice crystals<br />

serve as a porogen whose size can be easily c<strong>on</strong>trolled by adjusting <str<strong>on</strong>g>the</str<strong>on</strong>g> freezing temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 33 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. Structural integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous sp<strong>on</strong>ge-like structure should also be<br />

maintained, even after wetting in <str<strong>on</strong>g>the</str<strong>on</strong>g> interstitial fluid or culture medium. If <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold is made from watersoluble<br />

materials without cross-linkage or if <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D frame is maintained by <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>ic interacti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 3D sp<strong>on</strong>ge structure can be easily resolved or turned into a gel-like structure in <str<strong>on</strong>g>the</str<strong>on</strong>g> aqueous envir<strong>on</strong>ment.<br />

This structural integrity in <str<strong>on</strong>g>the</str<strong>on</strong>g> aqueous envir<strong>on</strong>ment is determined mainly by <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

accessibility within <str<strong>on</strong>g>the</str<strong>on</strong>g> frames <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold and <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> enzymes, which is more<br />

importantly regulated by <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>ic status, water solubility, and innate property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biomaterial itself.<br />

<strong>The</strong>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>, i<strong>on</strong>ic status <str<strong>on</strong>g>of</str<strong>on</strong>g> biomaterials, solvents, and freezing temperature are<br />

important factors to be c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable tissue engineering scaffolds. <strong>The</strong><br />

procedure for freezing-drying is (cf. Figure 2.7):<br />

(a)<br />

(b)<br />

<strong>The</strong> polymer is solubilized in a good solvent. <strong>The</strong> insoluble materials are removed by filtrati<strong>on</strong><br />

through sintered glass filter. <strong>The</strong> filtered soluti<strong>on</strong> is stored overnight at room temperature to remove<br />

entrapped air bubbles. <strong>The</strong> soluti<strong>on</strong> is neutralised.<br />

<strong>The</strong> soluti<strong>on</strong> is poured into a Tefl<strong>on</strong>-coated mould. <strong>The</strong> soluti<strong>on</strong> is freeze at – 70°C or – 196°C, for<br />

12 h.<br />

(c) <strong>The</strong> soluti<strong>on</strong> is freeze-dried by lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure below 7 mTorr, for 48 h.<br />

(d)<br />

(e)<br />

<strong>The</strong> soluti<strong>on</strong> is neutralized by removing excess acid within <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold by washing with absolute<br />

ethanol for 1 h. and with water for 3 h.<br />

<strong>The</strong> scaffold is soaked in <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> c<strong>on</strong>taining growth factors or matrix proteins. <strong>The</strong> scaffold is<br />

freeze at − 70°C and lyophilised in order to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> original form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold.<br />

(a) (b) (c) (d) Introduc<br />

Figure 2.7: Schematic preparati<strong>on</strong> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold by <str<strong>on</strong>g>the</str<strong>on</strong>g> freeze-drying method.<br />

[Kim et al., 2007a]<br />

2.8 <strong>The</strong>rmally Induced Phase Separati<strong>on</strong> (TIPS) Technique<br />

Freeze-drying via TIPS has received much attenti<strong>on</strong> in industrial applicati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

isotropic, highly interc<strong>on</strong>nected, and porosity-designed membranes. Figure 2.8.a represents a schematic<br />

temperature–compositi<strong>on</strong> phase diagram for a binary polymer/solvent system. Above <str<strong>on</strong>g>the</str<strong>on</strong>g> binodal curve, a<br />

single polymer soluti<strong>on</strong> phase is formed; and if cooling below <str<strong>on</strong>g>the</str<strong>on</strong>g> curve, polymer-rich and polymer-poor<br />

phases are separated in a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic equilibrium state. <strong>The</strong> spinodal curve is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> line at<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d derivative Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing is equal to zero, and it divides <str<strong>on</strong>g>the</str<strong>on</strong>g> two-phase regi<strong>on</strong><br />

into unstable and metastable regi<strong>on</strong>s. If <str<strong>on</strong>g>the</str<strong>on</strong>g> system is quenched into <str<strong>on</strong>g>the</str<strong>on</strong>g> metastable regi<strong>on</strong>, phase separati<strong>on</strong><br />

occurs in a nucleati<strong>on</strong> and growth mechanism, leading to a bead-like isolated cellular structure. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hand, if <str<strong>on</strong>g>the</str<strong>on</strong>g> system temperature is quenched into <str<strong>on</strong>g>the</str<strong>on</strong>g> unstable regi<strong>on</strong>, phase separati<strong>on</strong> takes place in a<br />

spinodal decompositi<strong>on</strong> mechanism (liquid–liquid phase separati<strong>on</strong>), resulting in a micro-porous<br />

interc<strong>on</strong>nected structure. <strong>The</strong> phase separati<strong>on</strong> and freeze-drying method appears as a versatile technique to<br />

prepare highly porous three-dimensi<strong>on</strong>al polymer scaffolds that fulfil all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for cell<br />

transplantati<strong>on</strong>. Porosity can be c<strong>on</strong>trolled in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> pore size and morphology by a suitable choice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

processing c<strong>on</strong>diti<strong>on</strong>s and by a strict c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> phase separati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s such as quenching temperature,<br />

- 34 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

quenching depth, ageing time, polymer c<strong>on</strong>centrati<strong>on</strong>, molecular weight, solvent/n<strong>on</strong> solvent compositi<strong>on</strong>,<br />

and additives.<br />

<strong>The</strong> schematic procedure for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally induced phase separati<strong>on</strong> is given in Figure 2.8.<br />

Polylactide soluti<strong>on</strong> with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> good and bad solvent is prepared [Figure a]. <strong>The</strong> sample is reheated to<br />

15°C above <str<strong>on</strong>g>the</str<strong>on</strong>g> measured cloud point temperature, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n placed in a water bath preheated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quenching temperature. It is kept for 2, 10, 30, 60 or 120 min, at <str<strong>on</strong>g>the</str<strong>on</strong>g> quenching temperature. <strong>The</strong> annealed<br />

sample is directly immersed in liquid nitrogen to be fast-frozen for 1 h, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n a small hole is cut in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vial cap to release <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent [Figure b].<br />

Freeze-drying is performed in a freeze-dryer at −77°C and 7 mTorr for 3 days in order to remove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> solvent and obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> macroporous scaffolds [Figure c]. <strong>The</strong> dry scaffolds are cut into cubes with a<br />

surgical blade. Prior to cell seeding, 3D scaffolds are pre-wetted with 70% ethanol for 3 h to sterilise <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

and enhance <str<strong>on</strong>g>the</str<strong>on</strong>g>ir water uptake. <strong>The</strong> ethanol is removed by soaking with agitati<strong>on</strong> for 1 h in six changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PBS, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds are left overnight in <str<strong>on</strong>g>the</str<strong>on</strong>g> culture media.<br />

Figure 2.8: Schematic preparati<strong>on</strong> processing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmally induced phase separati<strong>on</strong> method.<br />

[Kim and Doo, 2007a]<br />

2.9 Centrifugati<strong>on</strong> Method<br />

Recently, a centrifugati<strong>on</strong> method has been introduced as an effective method to fabricate<br />

scaffolds that have various shapes with a uniform surface and inside pore structures. <strong>The</strong> scaffolds can be<br />

fabricated in various shapes from many different natural and syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic polymers by <str<strong>on</strong>g>the</str<strong>on</strong>g> centrifugati<strong>on</strong><br />

method (cf. Figure 2.9).<br />

- 35 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Figure 2.9: Schematic procedure showing <str<strong>on</strong>g>the</str<strong>on</strong>g> fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds by centrifugati<strong>on</strong> method and<br />

photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> variously shaped scaffolds.<br />

[Oh and Lee, 2007b]<br />

1. <strong>The</strong> polymer soluti<strong>on</strong> is solubilized in a good solvent and poured into a syringe. A NaOH/CaCl 2<br />

aqueous soluti<strong>on</strong> is prepared into a beaker. <strong>The</strong> polymer soluti<strong>on</strong> is slowly dropped into <str<strong>on</strong>g>the</str<strong>on</strong>g> NaOH<br />

soluti<strong>on</strong> with vigorous agitati<strong>on</strong> using a homogenizer. <strong>The</strong> fibril-like polymer is obtained by<br />

precipitati<strong>on</strong> (suspensi<strong>on</strong> in NaOH soluti<strong>on</strong>). <strong>The</strong> fibril-like polymer is washed in excess phosphate<br />

buffered saline soluti<strong>on</strong> (PBS, pH ~7.4) and <str<strong>on</strong>g>the</str<strong>on</strong>g> following distilled water to remove residual solvent<br />

and NaOH. A neutralized fibril-like polymer suspensi<strong>on</strong> [in distilled water (pH ~7.0)] is obtained.<br />

2. <strong>The</strong> fibril-like polymer-suspended soluti<strong>on</strong> is poured into a cylindrical (or various-shaped) mould.<br />

3. <strong>The</strong> fibril-like polymer is centrifuged for accumulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mould and <str<strong>on</strong>g>the</str<strong>on</strong>g> following fibril<br />

b<strong>on</strong>ding.<br />

4. Supernatant is discarded from <str<strong>on</strong>g>the</str<strong>on</strong>g> mould.<br />

5. <strong>The</strong> fibril-like polymer accumulati<strong>on</strong> is frozen in <str<strong>on</strong>g>the</str<strong>on</strong>g> mould at ~70 o C for 12 h and <str<strong>on</strong>g>the</str<strong>on</strong>g>n lyophilised.<br />

6. <strong>The</strong> cylindrical (or various-shaped) scaffold is obtained.<br />

2.10 Injectable <strong>The</strong>rmosensitive Gel Technique<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest and most c<strong>on</strong>venient approaches in tissue engineering applicati<strong>on</strong>s is to inject<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer–cell or polymer–drug entity into <str<strong>on</strong>g>the</str<strong>on</strong>g> body. Injectable systems <str<strong>on</strong>g>of</str<strong>on</strong>g>fer specific advantages over<br />

preformed scaffolds, including easy applicati<strong>on</strong>, site-specific delivery, and improved compliance and<br />

comfort for patients. Water-soluble, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosensitive, or pH-sensitive polymers exhibiting reversible sol–gel<br />

transiti<strong>on</strong> and photopolymerisable hydrogels have been tailor-made as injectables.<br />

<strong>The</strong>rmosensitive hydrogels can be formed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by physical gelati<strong>on</strong> without covalent b<strong>on</strong>ding<br />

(e.g. i<strong>on</strong>ic interacti<strong>on</strong>, hydrophobic associati<strong>on</strong>, hydrogen b<strong>on</strong>ding between polymer chains in an aqueous<br />

soluti<strong>on</strong>) or by chemical gelati<strong>on</strong> caused by <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosensitive chemical cross-linkers. <strong>The</strong> former may go<br />

through sol–gel phase transiti<strong>on</strong>s in resp<strong>on</strong>se to changes in temperature, but <str<strong>on</strong>g>the</str<strong>on</strong>g> latter may undergo<br />

- 36 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

swelling/shrinking. <strong>The</strong>rmo-sensitive hydrogels made by physical cross-links between polymer chains are<br />

very useful for injectable tissue engineering because no toxic organic cross-linkers are usually employed.<br />

Polyphosphazenes are a new class <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic backb<strong>on</strong>e polymers that are superior to many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

organic systems in term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir molecular structural diversity and property variati<strong>on</strong>s. <strong>The</strong>se polymers can<br />

be used as a reactive macromolecular intermediary by replacing chlorine atoms with organic side groups to<br />

give various hydrolytically stable polymers.<br />

<strong>The</strong> schematic reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> injectable <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosensitive gel are presented in Figure 2.10. Before <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reacti<strong>on</strong>, L-isoleucine ethyl ester (IleOEt), glycolic or lactic acid ester and α-amino-ω-methoxy-polyethylene<br />

glycol (AMPEG) are respectively dried for 1 day, at 50°C in vacuum, for moisture removal.<br />

Tetrahydr<str<strong>on</strong>g>of</str<strong>on</strong>g>urane (THF) is dried by reflux over sodium/benzophen<strong>on</strong>e under nitrogen atmosphere.<br />

Triethylamine (TEA) and acet<strong>on</strong>itrile are distilled over baryum oxide (BaO) under nitrogen atmosphere. L-<br />

isoleucine ethyl ester hydrochloride suspended in dry THF c<strong>on</strong>taining triethylamine is slowly added to<br />

poly(dichloro-phosphazene) dissolved in dry THF. <strong>The</strong> reacti<strong>on</strong> is performed for 4 hr at 4°C, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n for 20<br />

hr at room temperature. TEA and ethyl-2(O-glycol)lactate (GlyLacOEt) oxalic salt dissolved in acet<strong>on</strong>itrile<br />

are added to this mixture, and <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> mixture is stirred for 19 h at room temperature.<br />

Figure 2.10: Reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injectable <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosensitive gel.<br />

[S<strong>on</strong>g and Lee, 2007]<br />

After AMPEG dissolved in dry THF-c<strong>on</strong>taining TEA is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reacti<strong>on</strong> mixture is stirred for 2 days at 40°C–50°C. <strong>The</strong> above reacti<strong>on</strong> mixture is filtered. After <str<strong>on</strong>g>the</str<strong>on</strong>g> filtrate<br />

is c<strong>on</strong>centrated, it is poured into n-hexane to obtain precipitate, which is reprecipitated twice in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

solvent. <strong>The</strong> re-precipitated polymer is c<strong>on</strong>centrated. <strong>The</strong> polymer product is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r purified by dialysis in<br />

methanol for 4 days and <str<strong>on</strong>g>the</str<strong>on</strong>g>n in distilled water for 4 days at 4°C. <strong>The</strong> final dialysed soluti<strong>on</strong> is freeze-dried<br />

to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> final polymer.<br />

2.11 Liquid-Liquid Phase Separati<strong>on</strong> Technique<br />

A n<strong>on</strong> solvent such as water is added to a polylactide soluti<strong>on</strong> in order to create an emulsi<strong>on</strong> by<br />

homogenizing <str<strong>on</strong>g>the</str<strong>on</strong>g>se two immiscible phases. A liquid-liquid phase separati<strong>on</strong> occurs at a temperature higher<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent crystallizati<strong>on</strong> temperature. Quenching <str<strong>on</strong>g>the</str<strong>on</strong>g>n locks in <str<strong>on</strong>g>the</str<strong>on</strong>g> emulsi<strong>on</strong> liquid state structure.<br />

Solvent and water are <str<strong>on</strong>g>the</str<strong>on</strong>g>n removed by freeze-drying to create porosity. Various factors, such as viscosity,<br />

interfacial energy, polymer microstructure and c<strong>on</strong>centrati<strong>on</strong>, must be c<strong>on</strong>trolled to stabilize <str<strong>on</strong>g>the</str<strong>on</strong>g> emulsi<strong>on</strong><br />

with a c<strong>on</strong>tinuous polymer-rich phase and a dispersed water phase [Schugens et al., 1996].<br />

- 37 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Liquid-liquid phase separati<strong>on</strong> gives rise to scaffolds with porosity up to 90% and an average pore<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 to 35 μm depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> processing parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer/solvent<br />

system. In comparis<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous technique, this method leads to scaffolds with a much larger surface<br />

area. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> overall pore size is smaller, and organic solvents are still required. Both limit <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liquid-liquid phase separati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e tissue engineering [van de Witte et al., 1996].<br />

2.12 Solid-Liquid Phase Separati<strong>on</strong> Technique<br />

A polylactide-solvent soluti<strong>on</strong> is quenched below <str<strong>on</strong>g>the</str<strong>on</strong>g> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent and dried under<br />

vacuum to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent by sublimati<strong>on</strong>. Solid–liquid phase separati<strong>on</strong>, with solvent crystallizati<strong>on</strong>,<br />

leads to ladder or sheet-like anisotropic morphologies, which str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quenching rate [Ma<br />

and Choi, 2001; Lo et al., 1995]. <strong>The</strong> ladder-like structure results from <str<strong>on</strong>g>the</str<strong>on</strong>g> forward progress <str<strong>on</strong>g>of</str<strong>on</strong>g> solvent<br />

crystallizati<strong>on</strong> fr<strong>on</strong>t [Schugens et al., 1996]. When <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer c<strong>on</strong>centrati<strong>on</strong> increases, pore diameter and<br />

porosity tend to decrease. Porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> 80−95%, with a pore size mainly between 20 and 100 μm and a<br />

compressive modulus up to 20 MPa in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal directi<strong>on</strong> could be obtained.<br />

This technique was also used to manufacture composite scaffolds, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with hydroxyapatite<br />

[Zhang and Ma, 1999b]or Bioglass ® particles [Maquet et al., 2004; Boccaccini and Maquet, 2003]. Fillers<br />

were added to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong> before quenching and solvent removal. Similar ladder-like anisotropic<br />

morphology was obtained, becoming more heterogeneous as filler c<strong>on</strong>tent was increased.<br />

2.13 Fibre Mesh/Fibre B<strong>on</strong>d<strong>on</strong>g Technique<br />

Fibres, produced by textile technology, have been used to make n<strong>on</strong>-woven scaffolds from PGA<br />

and P L LA [Cima et al., 1991]. <strong>The</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> structural stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se n<strong>on</strong>woven scaffolds, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten resulted in<br />

significant deformati<strong>on</strong> due to c<strong>on</strong>tractile forces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells that have been seeded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold. This led<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a fibre b<strong>on</strong>ding technique to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds<br />

[Mikos et al., 1993]. This is achieved by dissolving polylactide in methylene chloride and casting over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polygycolide mesh. <strong>The</strong> solvent is allowed to evaporate and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>struct is <str<strong>on</strong>g>the</str<strong>on</strong>g>n heated above <str<strong>on</strong>g>the</str<strong>on</strong>g> melting<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> PGA-P L LA c<strong>on</strong>struct has cooled, <str<strong>on</strong>g>the</str<strong>on</strong>g> P L LA is removed by dissolving in methylene<br />

chloride again. This treatment results in a mesh <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA fibres joined at <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-points [Sachlos and<br />

Czernuszka, 2003].<br />

B<strong>on</strong>ded PGA fibre structures with high and open porosity, a high area-to-volume ratio and pore<br />

diameters up to 500 μm were thus produced. <strong>The</strong>se biocompatible matrices, with structural integrity, are<br />

suitable as scaffolds for organ regenerati<strong>on</strong>. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> technique does not lend itself to easy and<br />

independent c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> porosity and pore size. Finally <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic chemicals and high<br />

temperature presents difficulties if cells or bioactive molecules, such as growth factors or proteins, are to be<br />

included in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold during processing.<br />

2.14 Hydrocarb<strong>on</strong> Templating Technique<br />

By using a hydrocarb<strong>on</strong> particulate phase as a template it is also possible to form pore for a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers. <strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong> template allows for enhanced c<strong>on</strong>trol over pore structure,<br />

porosity, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r structural and bulk characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer foam. Polymer foams have been<br />

produced with densities as low as 0.120, porosity as high as 87% and high surface areas (20 m 2 /g). Foams <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polylactides produced by this process have been used to engineer a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different structures, including<br />

tissues with complex geometries such as in <str<strong>on</strong>g>the</str<strong>on</strong>g> likeness <str<strong>on</strong>g>of</str<strong>on</strong>g> a human nose [Gibs<strong>on</strong> and Ashby, 1999; Yoda,<br />

1998; Szycher and Lee, 1992; Guidoin et al., 1988; Suh and Webb, 1988; Alsbjörn, 1984; Pruitt and Levine,<br />

- 38 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

1984; Bruck, 1982; Lindenauer et al., 1976].A schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steps involved in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric foams is given in Figure 2.11.<br />

Step 1: <strong>The</strong> polymer is dissolved in a suitable solvent and <str<strong>on</strong>g>the</str<strong>on</strong>g>n mixed with <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrocarb<strong>on</strong> porogen<br />

(e.g. paraffin, beeswax, b<strong>on</strong>ewax) to yield a mouldable mixture.<br />

Step 2: This mixture is <str<strong>on</strong>g>the</str<strong>on</strong>g>n compacted in a Tefl<strong>on</strong> ® mould.<br />

Step 3: <strong>The</strong> polymer/porogen mixture in <str<strong>on</strong>g>the</str<strong>on</strong>g> mould is <str<strong>on</strong>g>the</str<strong>on</strong>g>n immersed in an aliphatic hydrocarb<strong>on</strong><br />

solvent (pentane, hexane), which is a n<strong>on</strong>solvent for <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. During this step, <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen and polymer<br />

solvent are extracted with c<strong>on</strong>current precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer phase. To improve <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solvent penetrati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> mould is equipped with small openings <strong>on</strong> all faces. Residual porogen is removed by<br />

repeating <str<strong>on</strong>g>the</str<strong>on</strong>g> last step. <strong>The</strong> foam obtained is <str<strong>on</strong>g>the</str<strong>on</strong>g>n dried under vacuum to remove any trace <str<strong>on</strong>g>of</str<strong>on</strong>g> solvents.<br />

Figure 2.11: Schematic stepwise representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymeric foaming using hydrocarb<strong>on</strong> porogen.<br />

[Shastri et al., 2000]<br />

2.15 Microspheres B<strong>on</strong>ding Technique<br />

PLGA has been also sintered with microspheres <str<strong>on</strong>g>of</str<strong>on</strong>g> varying sizes [Borden et al., 2003]. <strong>The</strong>se<br />

authors manufactured foams with porosity ranging between 30 and 40%, and an elastic modulus ranging<br />

beween 135 and 300 MPa. <strong>The</strong>y presented <str<strong>on</strong>g>the</str<strong>on</strong>g>ir scaffold as a reverse template <str<strong>on</strong>g>of</str<strong>on</strong>g> trabecular b<strong>on</strong>e, since<br />

scaffold resorpti<strong>on</strong> would leave a porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> about 70%, corresp<strong>on</strong>ding to b<strong>on</strong>e void volume.<br />

2.16 Rapid Prototyping Techniques<br />

Rapid prototyping technologies aim at producing complex free-form parts directly from a<br />

computer aided design model. 2D printing or 3D prototyping and fused depositi<strong>on</strong> modelling were tested to<br />

obtain porous structures in <str<strong>on</strong>g>the</str<strong>on</strong>g> biomedical field. 3D prototyping c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> printing a binder through a print<br />

head nozzle <strong>on</strong>to a powder bead [Cima et al., 1991]. Removing <str<strong>on</strong>g>the</str<strong>on</strong>g> excess powder leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> porous<br />

structure. <strong>The</strong> part is built sequentially in layers, at room temperature. <strong>The</strong> main problem with bioresorbable<br />

polymers is <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> fused depositi<strong>on</strong> modelling process, parts are also fabricated in layers, where a layer is built<br />

by extruding <str<strong>on</strong>g>the</str<strong>on</strong>g> material in a particular lay-down pattern, directly defined from a computer aided design<br />

(CAD) file [Hutmacher, 2000]. A drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se techniques is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are cost-effective, and require<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> complex and specific equipment. Fused depositi<strong>on</strong> modelling uses a moving nozzle to extrude a<br />

fibre <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric material (x- and y-axis c<strong>on</strong>trol) from which <str<strong>on</strong>g>the</str<strong>on</strong>g> physical model is built layer-by-layer.<br />

<strong>The</strong> model is lowered (z-axis c<strong>on</strong>trol) and <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure repeated. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> fibre must also produce<br />

external structures to support overhanging or unc<strong>on</strong>nected features that need to be manually removed, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 39 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

pore sizes in tissue engineering scaffolds are sufficiently small enough for <str<strong>on</strong>g>the</str<strong>on</strong>g> fibre strand to bridge across<br />

without additi<strong>on</strong>al support structures. Figure 2.12 shows this system.<br />

Figure 2.12: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fused depositi<strong>on</strong> modelling (FDM) system.<br />

[Sachlos and Czernuszka, 2003; Scott, 1992]<br />

2.16.1 Three Dimensi<strong>on</strong>al Printing (3 DP)<br />

This system, developed by researchers at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Freiburg, [Landers and Mülhaupt,<br />

2000] involves a moving extruder head (x-, y- and z-axis c<strong>on</strong>trol) and uses compressed air to force out a<br />

liquid or paste-like plotting medium. <strong>The</strong> extruder head can be heated to <str<strong>on</strong>g>the</str<strong>on</strong>g> required temperature. <strong>The</strong><br />

medium solidifies when it comes in c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate or previous layer. Figure 2.13-A shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

general principle <str<strong>on</strong>g>of</str<strong>on</strong>g> this system.<br />

Figure 2.13: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D Bioplotter TM system.<br />

[Sachlos and Czernuszka, 2003]<br />

In Figure 2.13-B, 3DP incorporates c<strong>on</strong>venti<strong>on</strong>al ink jet printing technology (x- and y-axis<br />

c<strong>on</strong>trol) to eject a binder from a jet head, which moves in accordance to <str<strong>on</strong>g>the</str<strong>on</strong>g> CAD cross-secti<strong>on</strong>al data, <strong>on</strong>to a<br />

polymer powder surface [Sachs et al., 1998]. <strong>The</strong> binder dissolves and joins adjacent powder particles. <strong>The</strong><br />

pist<strong>on</strong> chamber is lowered (z-axis c<strong>on</strong>trol) and refilled with ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r layer <str<strong>on</strong>g>of</str<strong>on</strong>g> powder and <str<strong>on</strong>g>the</str<strong>on</strong>g> process is<br />

repeated. <strong>The</strong> unbound powder acts to support overhanging or unc<strong>on</strong>nected features and needs to be<br />

removed after comp<strong>on</strong>ent completi<strong>on</strong>.<br />

2.16.2 Stereolithography (SLA)<br />

<strong>The</strong> process involves selective polymerisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid photo-curable m<strong>on</strong>omer by an ultraviolet<br />

laser beam [Hull, 1990]. <strong>The</strong> UV beam is guided (x- and y-axis c<strong>on</strong>trol) <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid m<strong>on</strong>omer surface in<br />

accordance to <str<strong>on</strong>g>the</str<strong>on</strong>g> CAD cross-secti<strong>on</strong>al data. After <str<strong>on</strong>g>the</str<strong>on</strong>g> first layer is built, <str<strong>on</strong>g>the</str<strong>on</strong>g> elevator holding <str<strong>on</strong>g>the</str<strong>on</strong>g> model is<br />

lowered into <str<strong>on</strong>g>the</str<strong>on</strong>g> vat (z-axis c<strong>on</strong>trol) so as to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid photopolymer to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. A wiper<br />

- 40 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

arm is <str<strong>on</strong>g>the</str<strong>on</strong>g>n displaced over <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid to flatten <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <strong>The</strong> procedure is repeated until <str<strong>on</strong>g>the</str<strong>on</strong>g> model is<br />

completed. This system requires support structures to be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> model, to prevent any overhanging or<br />

unc<strong>on</strong>nected features from falling to <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid-filled vat. After completi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is raised<br />

and any support structures are removed manually. Figure 2.14 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> this system.<br />

Figure 2.14: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Stereolithography (SLA) system.<br />

[Sachlos and Czernuszka, 2003]<br />

2.17 O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Derivated Techniques<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> techniques presented has its advantages, but n<strong>on</strong>e can be c<strong>on</strong>sidered as ideal<br />

processing method for a scaffold to be employed for all tissues [Murphy and Mikos, 2007]. Macro-porous<br />

polymeric foams have been produced by dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a gaseous phase in a fluid polymer phase, leaching <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water-soluble inorganic fugitive phase, phase separati<strong>on</strong>, polymer precipitati<strong>on</strong>, particle sintering, extrusi<strong>on</strong>,<br />

and injecti<strong>on</strong> moulding [Gibs<strong>on</strong> and Ashby, 1999; Suh and Webb, 1988; Frisch and Saunders, 1972]. Air<br />

drying phase inversi<strong>on</strong> has been also tested [Park et al., 1997]. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se processes do not generally<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer optimal c<strong>on</strong>trol over pore structure (cell diameter and pore interc<strong>on</strong>nectivity) and bulk characteristics<br />

(density, void volume, mechanical and electrical properties). Since P L LA is partially crystalline, it is not<br />

possible to obtain uniform porous structures with <str<strong>on</strong>g>the</str<strong>on</strong>g> gas foaming technique at temperatures lower than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

melting point [Quirk et al., 2004].<br />

2.17.1 Combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Leaching <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fugitive Phase and Polymer Precipitati<strong>on</strong><br />

By combining two distinct foaming processes, (i) leaching <str<strong>on</strong>g>of</str<strong>on</strong>g> a fugitive phase with (ii) polymer<br />

precipitati<strong>on</strong>, <strong>on</strong>e could attain enhanced c<strong>on</strong>trol over both porosity and bulk properties <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer foam.<br />

This was achieved by using a n<strong>on</strong>-water-soluble particulate hydrocarb<strong>on</strong> fugitive phase derived from waxes,<br />

which allowed for <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with c<strong>on</strong>comitant precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer phase. <strong>The</strong> macroporosity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer foam was determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrocarb<strong>on</strong> fugitive phase (porogen), which also<br />

functi<strong>on</strong>ed as a template for <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. Bulk properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam could be<br />

manipulated independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> macro-porosity and pore size by incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic and organic<br />

fillers into <str<strong>on</strong>g>the</str<strong>on</strong>g> highly viscous polymer phase.<br />

<strong>The</strong> process is applicable to a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer systems including water-soluble polymers, as<br />

l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are satisfied [Shastri et al., 2000]:<br />

- <strong>The</strong> hydrocarb<strong>on</strong> porogen is extracted below <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, to ensure<br />

isotropy in <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting foam.<br />

- <strong>The</strong> polymer has good solubility (at least 100 mg/ml) in a solvent that is a poor solvent for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

porogen, to obtain a viscous polymer soluti<strong>on</strong> wherein <str<strong>on</strong>g>the</str<strong>on</strong>g> porogen can be distributed uniformly.<br />

- 41 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

- <strong>The</strong> polymer has a molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 40 kDa, to ensure structural stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting<br />

foam.<br />

2.17.2 Phase-Change Jet Printing<br />

This system comprises two ink-jet print heads; each delivering a different material, <strong>on</strong>e material<br />

for building <str<strong>on</strong>g>the</str<strong>on</strong>g> actual model and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r acting as support for any unc<strong>on</strong>nected or overhanging features<br />

[Sanders et al., 1996]. Molten micro-droplets are generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> jet heads, which are heated above <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material, and deposited in a drop-<strong>on</strong>-demand fashi<strong>on</strong>. <strong>The</strong> micro-droplets solidify<br />

<strong>on</strong> impact to form a bead. Overlapping <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent beads forms a line and overlapping <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent lines<br />

forms a layer. After layer formati<strong>on</strong>, a horiz<strong>on</strong>tal rotary cutter arm can be used to flatten <str<strong>on</strong>g>the</str<strong>on</strong>g> top surface and<br />

c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> layer thickness. <strong>The</strong> platform is lowered and <str<strong>on</strong>g>the</str<strong>on</strong>g> process is repeated to build <str<strong>on</strong>g>the</str<strong>on</strong>g> next layer, which<br />

adheres to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous, until <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is complete. Once built, <str<strong>on</strong>g>the</str<strong>on</strong>g> model can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be<br />

immersed in a selective solvent for <str<strong>on</strong>g>the</str<strong>on</strong>g> support material, but a n<strong>on</strong>-solvent for <str<strong>on</strong>g>the</str<strong>on</strong>g> build material, so as to<br />

leave <str<strong>on</strong>g>the</str<strong>on</strong>g> physical model in its desired shape. Figure 2.15 shows this system.<br />

Figure 2.15: Schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase change jet printing system, <str<strong>on</strong>g>the</str<strong>on</strong>g> Model-Maker II.<br />

[Sachlos and Czernuszka, 2003]<br />

3 Polymer Processing by Supercritical Fluids<br />

Solvents that have interesting potential as envir<strong>on</strong>mentally benign alternatives to organic solvents<br />

include water, i<strong>on</strong>ic liquids, fluorous phases, and supercritical or dense phase fluids [Anastas et al., 2002;<br />

DeSim<strong>on</strong>e, 2002]. Obviously, each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se approaches exhibits specific advantages and potential<br />

drawbacks. I<strong>on</strong>ic liquids (room-temperature molten organic salts), for example, have a vapour pressure that<br />

is negligible. Because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are n<strong>on</strong>-volatile, commercial applicati<strong>on</strong> would significantly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> volatile<br />

organic comp<strong>on</strong>ent emissi<strong>on</strong>. Recently, various supercritical fluid processing methods have been developed<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer-based materials such as foams, micro-particles, and fibres. Microcellular<br />

polymers can be foamed with no use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents through <str<strong>on</strong>g>the</str<strong>on</strong>g> gas foaming technique.<br />

3.1 Bases <strong>on</strong> Supercritical Fluids<br />

In 1822, Bar<strong>on</strong> Cagniard de la Tour discovered <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance in his famous<br />

cann<strong>on</strong> barrel experiments [Kemmere and Meyer, 2005]. Listening to disc<strong>on</strong>tinuities in <str<strong>on</strong>g>the</str<strong>on</strong>g> sound <str<strong>on</strong>g>of</str<strong>on</strong>g> a rolling<br />

flint ball, in sealed cann<strong>on</strong>, he observed <str<strong>on</strong>g>the</str<strong>on</strong>g> critical temperature. Above this temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> distincti<strong>on</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid phase and <str<strong>on</strong>g>the</str<strong>on</strong>g> gas phase disappears, resulting in a single supercritical fluid phase<br />

behaviour. In 1875, Andrews discovered <str<strong>on</strong>g>the</str<strong>on</strong>g> critical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 [Kemmere and Meyer, 2005]. <strong>The</strong><br />

reported values were a critical temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 304.05 K and a critical pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.40 MPa, which are in<br />

close agreement with today’s accepted values <str<strong>on</strong>g>of</str<strong>on</strong>g> 304.1 K and 7.38 MPa.<br />

- 42 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

A supercritical fluid is defined as a substance for which <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and pressure are above<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir critical values and which has a density close to or higher than its critical density [Darr and Poliak<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

1999; Span and Wagner, 1996; Angus et al., 1976]. Above <str<strong>on</strong>g>the</str<strong>on</strong>g> critical temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> vapour-liquid<br />

coexistence line no l<strong>on</strong>ger exists. <strong>The</strong>refore, supercritical fluids can be regarded as “hybrid solvents”<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g> properties can be tuned from liquid-like to gas-like without crossing a phase boundary by simply<br />

changing <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure or <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature. Although this definiti<strong>on</strong> gives <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

supercritical state, it does not describe all <str<strong>on</strong>g>the</str<strong>on</strong>g> physical or <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties. Baldyga et al. [2004]<br />

explain <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical state differently by stating that <strong>on</strong> a characteristic microscale <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 10–<br />

100Å, statistical clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> augmented density define <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical state, with a structure resembling that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> liquids, surrounded by less dense and more chaotic regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed gas. <strong>The</strong> number and<br />

dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se clusters vary significantly with pressure and temperature, resulting in high<br />

compressibility near <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point. To illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> “hybrid” properties <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical fluids, Table 2.1<br />

gives some characteristic values for density, viscosity, and diffusivity. <strong>The</strong> unique properties <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical<br />

fluids as compared to liquids and gases provide opportunities for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial processes.<br />

Table 2.1: Typical values <str<strong>on</strong>g>of</str<strong>on</strong>g> physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> gas, supercritical fluid and liquid.<br />

[Poling et al., 2001]<br />

<strong>Properties</strong> Gas Supercritical Fluid Liquid<br />

Density 1 100 − 800 1000<br />

Viscosity (Pa.s) 0.001 0.005 − 0.01 0.05−0.1<br />

Diffusivity D (m 2 s -1 ) 1.10 -5 1.10 -7 1.10 -9<br />

In Figure 2.16, two projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide are presented: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure-temperature (Figure A) and <str<strong>on</strong>g>the</str<strong>on</strong>g> density-pressure (Figure B) diagrams. <strong>The</strong> critical point at <str<strong>on</strong>g>the</str<strong>on</strong>g> T c<br />

critical temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> P c critical pressure marks <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vapour-liquid equilibrium line and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical fluid regi<strong>on</strong>. Density <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure at different temperatures<br />

(solid lines) and at <str<strong>on</strong>g>the</str<strong>on</strong>g> vapor-liquid equilibrium line (dashed line). At <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point, <str<strong>on</strong>g>the</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equilibrium liquid phase and <str<strong>on</strong>g>the</str<strong>on</strong>g> saturated vapour phases become benefits. Supercritical carb<strong>on</strong> dioxide has<br />

also desirable physical and chemical properties.<br />

Figure 2.16: Phase diagrams P-T and -P for a pure CO 2 .<br />

[Span and Wagner, 1996; Angus et al., 1976]<br />

- 43 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

In Table 2.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> critical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> some compounds which are comm<strong>on</strong>ly used as supercritical<br />

fluids are shown. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se, carb<strong>on</strong> dioxide and water are <str<strong>on</strong>g>the</str<strong>on</strong>g> most frequently used in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicati<strong>on</strong>s.<br />

Table 2.2: Critical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several substances.<br />

[Leitner and Jessop, 1999]<br />

Recently, various supercritical fluid processing methods have been developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> polymer-based materials such as foams, micro-particles, and fibres. Microcellular polymers can be<br />

formed with no use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents through <str<strong>on</strong>g>the</str<strong>on</strong>g> gas foaming technique. In this process <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is<br />

saturated, first, with carb<strong>on</strong> dioxide (CO 2 ) at high pressure. <strong>The</strong>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> system is quenched in supersaturated<br />

state ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by reducing pressure or by increasing temperature resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> and growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pores—cells inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix [Goel and Beckman, 1994a]. This technique is adapted to PLGA<br />

because it is an amorphous polymer. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-crystalline polymers, <str<strong>on</strong>g>the</str<strong>on</strong>g> final porous structure<br />

obtained by this technique is n<strong>on</strong>-uniform, since <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid is different in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallites and<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous z<strong>on</strong>es [Fages et al., 2003; Lucien and Foster, 2000; Doroudiani et al., 1996]. With respect<br />

to dense phase fluids, supercritical water has been shown to be a very effective reacti<strong>on</strong> medium for<br />

oxidati<strong>on</strong> reacti<strong>on</strong>s [Thomas<strong>on</strong> and Modell, 1984; Modell, 1982].<br />

3.2 Basic Techniques in Supercritical Fluids Technology<br />

Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SCFs based techniques can be proposed according to <str<strong>on</strong>g>the</str<strong>on</strong>g> role played by <str<strong>on</strong>g>the</str<strong>on</strong>g> SCFs<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> process. Various SCFs processes include [Sekh<strong>on</strong>, 2010]:<br />

1. Rapid expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical soluti<strong>on</strong>s,<br />

2. Supercritical anti-solvent precipitati<strong>on</strong> technique,<br />

3. Particles from gas saturated soluti<strong>on</strong>s,<br />

4. Gas antisolvent system,<br />

5. Precipitati<strong>on</strong> using compressed antisolvent,<br />

6. Aerosol solvent extracti<strong>on</strong> system,<br />

7. Soluti<strong>on</strong> enhanced dispersi<strong>on</strong> by supercritical fluids,<br />

8. Supercritical antisolvent system with enhanced mass transfer,<br />

9. Impregnati<strong>on</strong> or infusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers with bioactive materials.<br />

- 44 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Super critical fluid Technologies, although envir<strong>on</strong>mentally friendly and suitable for mass<br />

producti<strong>on</strong>, requires specially designed equipment and is more expensive. In <str<strong>on</strong>g>the</str<strong>on</strong>g> early days, supercritical<br />

fluids were mainly used in extracti<strong>on</strong> and chromatography applicati<strong>on</strong>s [Smith, 1999; Dean, 1998;<br />

Vandenburg et al., 1997; McNally, 1995; Brunner, 1994; Hedrick et al., 1992]. A well-known example <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

supercritical fluid extracti<strong>on</strong> is caffeine extracti<strong>on</strong> from tea and c<str<strong>on</strong>g>of</str<strong>on</strong>g>fee [McHugh and Kruk<strong>on</strong>is, 1994].<br />

Supercritical chromatography was frequently used to separate polar compounds [Berger, 1997; Cantrell and<br />

Blackwell, 1997]. Nowadays, an increasing interest is being shown in supercritical fluid applicati<strong>on</strong>s for<br />

reacti<strong>on</strong>, catalysis, polymerizati<strong>on</strong>, polymer processing, and polymer modificati<strong>on</strong> [Eckert et al., 1996]. SCF<br />

technologies are now emerging as an alternative to c<strong>on</strong>venti<strong>on</strong>al materials processing methods in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tissue engineering [Duarte et al., 2009a; Duarte et al., 2009b]. ScCO 2 processing may be used to form<br />

foamed scaffolds in which <str<strong>on</strong>g>the</str<strong>on</strong>g> escape <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from a plasticized polymer melt generates gas bubbles that<br />

shape <str<strong>on</strong>g>the</str<strong>on</strong>g> developing pores.<br />

3.3 Scaffolds Prepared by Phase Inversi<strong>on</strong> using scCO 2 as Anti-solvent<br />

Phase inversi<strong>on</strong> using supercritical CO 2 as antis-olvent is analogous to traditi<strong>on</strong>al phase inversi<strong>on</strong><br />

with immersi<strong>on</strong> precipitati<strong>on</strong>. This technique c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> immersing a thin film <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer soluti<strong>on</strong> in a<br />

bath c<strong>on</strong>taining a n<strong>on</strong>-solvent (with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer). <strong>The</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final porous structure are<br />

mainly c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-solvent bath and <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casting soluti<strong>on</strong>. <strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a supercritical fluid as an antisolvent allows for <str<strong>on</strong>g>the</str<strong>on</strong>g> tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

antisolvent strength simply by regulating <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure. As a c<strong>on</strong>sequence, <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure is an additi<strong>on</strong>al<br />

parameter for tailoring <str<strong>on</strong>g>the</str<strong>on</strong>g> final structure [Tsivintzelis et al., 2007a].<br />

<strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 as an antisolvent for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porous structures with polymers has not<br />

been thoroughly investigated. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> foaming methods applied in <str<strong>on</strong>g>the</str<strong>on</strong>g> semicrystalline<br />

polymers involve <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an important advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> using phase inversi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical CO 2 . With this technique, it is possible to dry <str<strong>on</strong>g>the</str<strong>on</strong>g> final polymer structure simply by<br />

flashing <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure vessel with fresh CO 2 . Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no need for additi<strong>on</strong>al post-treatment in order to<br />

remove <str<strong>on</strong>g>the</str<strong>on</strong>g> residual organic solvent [Tsivintzelis et al., 2007a]. Dichloromethane can be selected as solvent<br />

since it is completely miscible with CO 2 at pressures higher than 95 bars and temperatures up to 55 o C<br />

[Tsivintzelis et al., 2004]. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA in CO 2 at <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s is negligible,<br />

making <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 an appropriate antisolvent for this system. Figure 2.17 represents a schematic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system.<br />

Figure 2.17: ScCO 2 experimental apparatus (A) CO 2 tank, (B) syringe pump and (C) pressure vessel.<br />

[Tsivintzelis et al., 2007a]<br />

- 45 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

3.4 Scaffolds Prepared by scCO2 Foaming<br />

Mo<strong>on</strong>ey and co workers [Harris et al., 1998; Mo<strong>on</strong>ey et al., 1996] were <str<strong>on</strong>g>the</str<strong>on</strong>g> first to describe <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical foaming for <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macr-oporous scaffolds for tissue engineering<br />

applicati<strong>on</strong>s. Interc<strong>on</strong>nected porous structures <str<strong>on</strong>g>of</str<strong>on</strong>g> P D,L LGA were successfully produced [Tai et al., 2007a;<br />

Singh et al., 2004]. Bioresorbable ceramic–polymer composites were also prepared and are described by<br />

Mathieu et al., [2005] and Georgiou et al., [2007]. <strong>The</strong> ability to process composite matrixes <str<strong>on</strong>g>of</str<strong>on</strong>g> ceramics<br />

and polymers or blends <str<strong>on</strong>g>of</str<strong>on</strong>g> different polymers dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> versatility <str<strong>on</strong>g>of</str<strong>on</strong>g> this technology and shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

potential to develop materials with <str<strong>on</strong>g>the</str<strong>on</strong>g> desired morphological and mechanical properties. <strong>The</strong> gas foaming<br />

process has also proven to be a very promising technique for <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds loaded with growth<br />

factors and cells. Howdle et al., [2001] have encapsulated proteins in biocompatible and biodegradable<br />

polymers, such as PLA, PLGA, and Polycaprolact<strong>on</strong>e (PCL), at relatively low temperatures and moderate<br />

pressures.<br />

CO 2 exhibits unique features and benefits, such as appreciable solubility in polymer melt and fast<br />

diffusivity that ensures an efficient mixing process, as well as envir<strong>on</strong>mental advantages and low cost. On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 as a foaming agent are mainly associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> higher-pressure<br />

operati<strong>on</strong>, dimensi<strong>on</strong>al instability during <str<strong>on</strong>g>the</str<strong>on</strong>g> foam shaping process, and paradoxically <str<strong>on</strong>g>the</str<strong>on</strong>g> high diffusivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam resulting in a quick loss <str<strong>on</strong>g>of</str<strong>on</strong>g> R-value (resistance to heat flow).<br />

<strong>The</strong> volumic variati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets and <str<strong>on</strong>g>the</str<strong>on</strong>g> foams are illustrated in Figure 2.18. This<br />

technique has <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to be used to prepare 3D materials having high porosity and interc<strong>on</strong>nected pores<br />

with a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering and regenerative medicine.<br />

Figure 2.18: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical fluid foaming process.<br />

[Duarte et al., 2009b]<br />

A foaming process can be carried out in a batch system where <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-shaped samples are placed<br />

in a pressurized autoclave to be saturated with CO 2 [Kumar and Weller, 1994a, 1994b; Park et al., 1994].<br />

Nucleati<strong>on</strong> and cell growth are c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure-release rate and foaming temperature. <strong>The</strong><br />

introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-particles to foams provides a novel soluti<strong>on</strong> to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r sharpen <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> window<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> product performance in weight, mechanics, insulati<strong>on</strong> and barrier. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foamed porous structure to some human tissues, CO 2 is also proposed to foam biodegradable or<br />

biocompatible polymers to produce porous scaffolds or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r medical devices. Since CO 2 can easily escape,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> prepared products are always assured to be solvent-free and n<strong>on</strong>-toxic.<br />

<strong>The</strong> principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 foaming by pressure quench method by supercritical carb<strong>on</strong> dioxide<br />

(scCO 2 ) were first described by Goel and Beckman [1994a]. Schematically, <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming effect can be<br />

separated in five stages (cf. Figure 2.19). <strong>The</strong> pellets were exposed to carb<strong>on</strong> dioxide for few minutes<br />

- 46 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

(t sat ). An increase <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature (T sat ) above T c enhances <str<strong>on</strong>g>the</str<strong>on</strong>g> free volume and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

(P sat ) above P c causes <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 . <strong>The</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature is at <str<strong>on</strong>g>the</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

departure <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 molecules and <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber causes <str<strong>on</strong>g>the</str<strong>on</strong>g> pore formati<strong>on</strong> inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer.Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> can be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r explained as under.<br />

<br />

<br />

Period I: <strong>The</strong> CO 2 is compressed to a pressure vessel where a polymer sample had already been<br />

placed (Part I <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 2.20). Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> process is carried out until a value above <str<strong>on</strong>g>the</str<strong>on</strong>g> critical<br />

pressure (P c ). Pressure and temperature increase with <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> until desired values called<br />

saturati<strong>on</strong> pressure (P sat ) and saturati<strong>on</strong> temperature (T sat ). <strong>The</strong> sorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 begins but<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> this period takes maximum 2 minutes, it can be neglected.<br />

Period II: <strong>The</strong> sorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 takes places. <strong>The</strong> solubility (phase equilibrium) is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

limiting factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer since <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is not soluble in<br />

CO 2 . Moreover, under high pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer brings <str<strong>on</strong>g>the</str<strong>on</strong>g> structural<br />

phase transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer. Polymer swells as <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 sorbed and <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> occurs from glassy<br />

to plasticized (rubbery) state, by lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. This<br />

period is called <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time (t sat ) (Part II <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 2.20).<br />

Figure 2.19: Schematic presentati<strong>on</strong> for scaffold generati<strong>on</strong> during scCO 2 foaming.<br />

Modified from [Cooper, 2003]<br />

<br />

Period III: Period II is followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber (III). <strong>The</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> (dP/dt) can be c<strong>on</strong>trolled. With <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber<br />

comes <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature drop (dT/dt). <strong>The</strong> temperature drop is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure is reduced from <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium state, <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei occurs as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

supersaturati<strong>on</strong>. <strong>The</strong>se nuclei grow by <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix.<br />

We can state that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore interface is <str<strong>on</strong>g>the</str<strong>on</strong>g> driving<br />

force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth. One must remember that, during <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 is not<br />

supercritical anymore, and its molecular volume is greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical state.<br />

Actually, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth is provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 (Part III <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 2.20).<br />

- 47 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<br />

Period IV: <strong>The</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores (<str<strong>on</strong>g>the</str<strong>on</strong>g> swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer) c<strong>on</strong>tinues until <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong><br />

(IV) where <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside polymer is not sufficient to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticized state. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first moments, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity comes more<br />

significant and finally c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> growing pores can<br />

coalesce and reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> global pore density (Part IV <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 2.20).<br />

Figure 2.20: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> occurring phenomena during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming with time.<br />

(C<strong>on</strong>tinuous and dotted lines corresp<strong>on</strong>d to P and T variati<strong>on</strong>s respectively).<br />

4 <strong>The</strong>oretical Background <str<strong>on</strong>g>of</str<strong>on</strong>g> Gas Foaming<br />

<strong>The</strong> modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers by pressure quench method requires <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sorpti<strong>on</strong> data and its modelling are required for such<br />

study.<br />

4.1 Diffusi<strong>on</strong><br />

<strong>The</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> studying <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> phenomen<strong>on</strong> is to calculate diffusi<strong>on</strong> coefficients for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sorpti<strong>on</strong>-diffusi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . <strong>The</strong>se coefficients provide informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into or from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with different c<strong>on</strong>diti<strong>on</strong>s. <strong>The</strong> diffusi<strong>on</strong> is vital to understand<br />

CO 2 -polymer interacti<strong>on</strong>s. <strong>The</strong> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into polymers results in several changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer such<br />

as lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> point, manipulating <str<strong>on</strong>g>the</str<strong>on</strong>g> chain mobility, swelling etc. Rubbery polymers<br />

(above T g ) obey simply <str<strong>on</strong>g>the</str<strong>on</strong>g> Fickian diffusi<strong>on</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>y have a homogenous liquid-like behaviour. N<strong>on</strong>-<br />

Fickian diffusi<strong>on</strong> occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> glassy polymer and will be modelled by <str<strong>on</strong>g>the</str<strong>on</strong>g> rules <str<strong>on</strong>g>of</str<strong>on</strong>g> Fickian diffusi<strong>on</strong>. For<br />

Fickian diffusi<strong>on</strong>, unsteady state <strong>on</strong>e dimensi<strong>on</strong>al equati<strong>on</strong> is given by:<br />

C<br />

t<br />

<br />

<br />

<br />

C<br />

D<br />

x x<br />

<br />

<br />

<br />

Where C is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas, x is <str<strong>on</strong>g>the</str<strong>on</strong>g> distance that <str<strong>on</strong>g>the</str<strong>on</strong>g> gas diffuses, D is <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

c<strong>on</strong>stant and t is <str<strong>on</strong>g>the</str<strong>on</strong>g> time. This equati<strong>on</strong> has been solved by Crank [1975] for c<strong>on</strong>stant diffusi<strong>on</strong> coefficient<br />

inside a plane sheet:<br />

(2.1)<br />

- 48 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

M<br />

M<br />

t<br />

<br />

1<br />

<br />

n0<br />

2 2<br />

8 D(2n<br />

1)<br />

t <br />

exp<br />

<br />

<br />

2 2<br />

2<br />

(2n<br />

1)<br />

4a<br />

<br />

(2.2)<br />

where a is <str<strong>on</strong>g>the</str<strong>on</strong>g> semi-thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer pellet, M t denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusing substance<br />

which has entered <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer during time t, and M ∞ <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding quantity after infinite time. On <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong>, M ∞ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 at zero time, M t , <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 which remains in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer at time t and n is gas molecules per cm 3 .<br />

<strong>The</strong> reduced versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Equati<strong>on</strong> (2.2) for short times is also given by [Crank, 1975].<br />

M<br />

M<br />

t<br />

Dt <br />

2<br />

2<br />

<br />

a <br />

1<br />

2<br />

1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

2<br />

n na<br />

2 ( 1)<br />

ierfc<br />

(2.3)<br />

n<br />

( Dt)<br />

<br />

Literature and experimental work revealed that, during <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> and desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer, <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient is not c<strong>on</strong>stant. It depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by polymer.<br />

One can say that <str<strong>on</strong>g>the</str<strong>on</strong>g> more CO 2 absorbed, <str<strong>on</strong>g>the</str<strong>on</strong>g> more CO 2 can diffuse easily into or from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. <strong>The</strong><br />

dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> several effects caused by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix such as manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix, swelling<br />

(decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk polymer density), lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> point, lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. Also, by activated state <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient is also temperature<br />

dependent and it increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing temperature [Koros and Madden, 2004].<br />

As proposed by Crank, <str<strong>on</strong>g>the</str<strong>on</strong>g> average diffusivity <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in polymers can be measured in a<br />

desorpti<strong>on</strong> experiment. For early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> (sorpti<strong>on</strong> or desorpti<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> gas remaining in<br />

a plane sample at any time is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient. This procedure has been applied to analyze<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers [Kumar and Weller, 1994b; Berens and Huvard, 1989b], and it can be<br />

used when <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> curve is plotted against<br />

approximately linear as far as M t /M ∞ = 0.5.<br />

2<br />

t / l<br />

, where l is <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> sample, if it is<br />

<strong>The</strong> Sanchez-Lacombe’s equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state (SL-EOS) has been used to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviours <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polymer-gas mixtures [Sanchez and Lacombe, 1976]. SL-EOS is a well defined statistical mechanical model<br />

which is not a physical model <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a gas into a polymer but an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state which defines <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. <strong>The</strong> SL-EOS is known as a lattice-gas model<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> P-V-T properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a pure comp<strong>on</strong>ent are calculated assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is broken into<br />

parts or “mers” that are placed into a lattice and are allowed to interact with a mean-field-type<br />

intermolecular potential. To obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> correct system density, an appropriate number <str<strong>on</strong>g>of</str<strong>on</strong>g> holes is also put<br />

into specific lattice sites, hence <str<strong>on</strong>g>the</str<strong>on</strong>g> name lattice-gas model [McHugh and Kruk<strong>on</strong>is, 1994]. We have to<br />

underline that this equati<strong>on</strong> can be used for rubbery and glassy states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous or liquid-like<br />

polymers. In its basic form, <str<strong>on</strong>g>the</str<strong>on</strong>g> SL-EOS is given by:<br />

2 <br />

1 <br />

<br />

R<br />

PR<br />

TR<br />

ln(1<br />

<br />

R<br />

) (1 ) <br />

R 0<br />

(2.4)<br />

<br />

r <br />

where T R , P R , ρ R are reduced temperature, pressure and density respectively and r represents <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lattice sites occupied by <strong>on</strong>e molecule.<br />

<strong>The</strong> reduced parameters can be calculated by:<br />

- 49 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

*<br />

MP M<br />

T R = T/T * P R = P/P * ρ R = ρ/ρ * r <br />

(2.5)<br />

* * * *<br />

RT <br />

where T * , P * , ρ * et ν * are respectively characteristic temperature, pressure, density and volume which<br />

characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> pure comp<strong>on</strong>ent; R is <str<strong>on</strong>g>the</str<strong>on</strong>g> gas c<strong>on</strong>stant and M is <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight.<br />

Different mixing rules have been applied in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature in order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures [Liu and Tomasko, 2007a; Kiszka et al., 1988]. We have used <str<strong>on</strong>g>the</str<strong>on</strong>g> following so-called<br />

van der Waals-1 mixing rules in order to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic parameters for binary mixture:<br />

P<br />

*<br />

<br />

i j<br />

P k<br />

P<br />

(2.6)<br />

i<br />

j<br />

P<br />

*<br />

ij<br />

P<br />

*<br />

* * 0.5<br />

ij<br />

( 1<br />

ij<br />

)(<br />

i j<br />

)<br />

(2.7)<br />

*<br />

* * Ti<br />

T P *<br />

P<br />

i<br />

i<br />

i<br />

(2.8)<br />

<br />

(2.9)<br />

m m <br />

* 1<br />

1<br />

1<br />

<br />

1<br />

*<br />

1<br />

2<br />

2<br />

<br />

2<br />

*<br />

2<br />

1<br />

r (2.10)<br />

<br />

r<br />

r<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> subscripts 1 and 2 denote <str<strong>on</strong>g>the</str<strong>on</strong>g> properties for comp<strong>on</strong>ents 1 and 2, respectively, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture, m is <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture,<br />

and k ij is <str<strong>on</strong>g>the</str<strong>on</strong>g> binary interacti<strong>on</strong> parameter.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> 2.7, <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing rule for P ij * carries <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two comp<strong>on</strong>ent. <strong>The</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> binary interacti<strong>on</strong> parameter in this<br />

equati<strong>on</strong> is providing a correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture characteristic pressure from <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric<br />

average. <strong>The</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> (1- k ij ) typically diverges ± 20 % from <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric average.<br />

Polymer-gas system has been solved by assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is n<strong>on</strong>-volatile and insoluble in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> gas phase and <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> (w/w) CO 2 /polymer is computed through a n<strong>on</strong>-linear Levenberg-Marquardt<br />

algorithm (<str<strong>on</strong>g>the</str<strong>on</strong>g> Minerr functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathcad) until <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium is reached, which means in both phases,<br />

temperature, pressure and chemical potentials are to be equal:<br />

G<br />

P<br />

T,<br />

P)<br />

( T,<br />

P,<br />

)<br />

(2.11)<br />

1<br />

(<br />

2<br />

i<br />

In equati<strong>on</strong> 2.11, G and P represent gas and polymer phases, respectively, subscripts 1 and 2<br />

represent <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer respectively, and <br />

i<br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> volume fracti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent i.<br />

According to SL-EOS, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ent i in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, is given by:<br />

P<br />

1 r1<br />

2<br />

<br />

R<br />

P1<br />

R<br />

(1 <br />

R<br />

) ln(1 <br />

R<br />

) ln <br />

R<br />

<br />

ln1<br />

(1 ) 2<br />

r1<br />

<br />

R<br />

X<br />

1<br />

2<br />

r1<br />

<br />

<br />

<br />

RT<br />

r2<br />

T1<br />

R<br />

T1R<br />

<br />

R<br />

r1<br />

<br />

(2.12)<br />

- 50 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

where X is given by:<br />

X<br />

*<br />

v1<br />

* * *<br />

( P1<br />

P2<br />

2<br />

12<br />

)<br />

(2.13)<br />

RT<br />

1<br />

P<br />

For a pure comp<strong>on</strong>ent, where = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential can be reduced to:<br />

P<br />

1 <br />

R<br />

P1<br />

R<br />

(1 <br />

R<br />

) ln(1 <br />

R<br />

) ln <br />

R<br />

<br />

r1<br />

<br />

<br />

<br />

RT T1<br />

R<br />

T1<br />

R<br />

<br />

R<br />

r1<br />

<br />

(2.14)<br />

Equati<strong>on</strong>s neglecting <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer in CO 2 , have been solved for <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid phase. As menti<strong>on</strong>ed above, <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> three characteristic parameters for each pure<br />

comp<strong>on</strong>ent and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e binary interacti<strong>on</strong> parameter for polymer-CO 2 mixture are required in <str<strong>on</strong>g>the</str<strong>on</strong>g> SL model.<br />

<strong>The</strong> pure comp<strong>on</strong>ent parameter values were all found in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, as reported in Table 2.3.<br />

Table 2.3: SL-EOS characteristic parameters for CO 2 and PLGA 50:50 .<br />

Comp<strong>on</strong>ent P * (bar) T * (K) ρ * (kg / m 3 ) Reference<br />

CO 2 5745.0 305 1.510 [Kiszka et al., 1988]<br />

PLGA 50:50 5727.4 649.63 1.4516 [Liu and Tomasko, 2007a]<br />

Below <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point, <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour predicted by SL equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state is that typical <str<strong>on</strong>g>of</str<strong>on</strong>g> a cubic<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state: at a given pressure, up to three roots, those are density values, and can be found from<br />

equati<strong>on</strong> 2.4. <strong>The</strong> Mathcad program proposed by Kennedy [2003] has been used to solve <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> set<br />

2.4−13 and it is presented in Annex A-1.1<br />

4.2 Plasticizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers by CO 2<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a few polymers, such as poly(dimethylsiloxane) and some specially<br />

syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized fluoropolymers, most high molecular weight polymers show poor dissoluti<strong>on</strong> in supercritical<br />

CO2 [Adamsky and Beckman, 1994; Desim<strong>on</strong>e et al., 1992]. In those circumstances, carb<strong>on</strong> dioxide acts as a<br />

diluent ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a solvent. As <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is increased in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer phase, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> and<br />

subsequent swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> an amorphous polymer can cause <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass-to-rubber transiti<strong>on</strong><br />

temperature (Tg) <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer by 30°C or more [Tomasko et al., 2003; C<strong>on</strong>do et al., 1992; Wissinger and<br />

Paulaitis, 1987].<br />

Gas foaming takes advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticizing properties <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide. It is qualitatively<br />

known for many years that <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid materials with gases alter <str<strong>on</strong>g>the</str<strong>on</strong>g> phase equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> pure<br />

comp<strong>on</strong>ent, in particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide lowers <str<strong>on</strong>g>the</str<strong>on</strong>g> T g <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous polymers, and in<br />

some cases, significantly. <strong>The</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature is a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic effect due to<br />

intermolecular interacti<strong>on</strong>s between carb<strong>on</strong> dioxide and <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. Str<strong>on</strong>ger interacti<strong>on</strong>s enhance T g<br />

depressi<strong>on</strong>, as does chain flexibility. <strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> this technique is, however, limited to amorphous polymers<br />

or semi-crystalline polymers with low T g .<br />

It was assumed that polymer segments remain completely immobile below Tg, while small<br />

plasticizers (e.g., gas molecules) are able to move and fill <str<strong>on</strong>g>the</str<strong>on</strong>g> holes within <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix. Tomasko et<br />

al. [2003] have shown that if a polymer is exposed to a pressurized gas, <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this <strong>on</strong>e decreases m<strong>on</strong>ot<strong>on</strong>ically. This analysis is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wissinger and Paulaitis [1991<br />

and Dimarzio and Gibbs [1963] that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>formati<strong>on</strong> entropy is zero.<br />

- 51 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<strong>The</strong> basic approach developed by Chow in 1980, is very useful in order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

T g <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diluent sorbed:<br />

Tg<br />

ln<br />

Tg<br />

0<br />

<br />

<br />

<br />

1<br />

<br />

ln1<br />

<br />

<br />

ln<br />

<br />

(2.15)<br />

where T g0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer without a diluent and <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters β and θ are<br />

given by:<br />

zR<br />

M<br />

m w<br />

<br />

M<br />

(2.16-a) and <br />

(2.16-b)<br />

<br />

zM 1<br />

w<br />

m C p(Tg )<br />

where, z is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinati<strong>on</strong>, R is <str<strong>on</strong>g>the</str<strong>on</strong>g> gas c<strong>on</strong>stant, M m is <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>omer,<br />

M d is <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diluent, ΔC p(Tg) is <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> heat capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer at glass<br />

transiti<strong>on</strong> and w is <str<strong>on</strong>g>the</str<strong>on</strong>g> mass fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diluent.<br />

In Table 2.4, we have presented <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters used for <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass<br />

transiti<strong>on</strong> point using Chow’s model. A basic Mathcad program is coded, and presented in Annex A.1.2,<br />

which calculates and plots <str<strong>on</strong>g>the</str<strong>on</strong>g> depressed T g as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> w CO2 sorbed.<br />

Table 2.4: <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T g according to Chow’s model.<br />

Polymer<br />

M m T g0 ΔC pTg References for T g0<br />

(g/mol) (°C) (J/g°C) and ΔC p<br />

P L,DL LA 72 60.1 0.347 Measured via DCS<br />

PLGA 85:15 70 53.1 0.451 Measured via DCS<br />

PLGA 50:50 65 49.2 0.499 Measured via DCS<br />

<strong>The</strong> Chow’s model provides a reas<strong>on</strong>able explanati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in Tg for polystyrene<br />

plasticized with high-pressure gases [Wang et al., 1982]. A similar approach was used by Barbari and<br />

C<strong>on</strong>forti [1992], who also reviewed recent <str<strong>on</strong>g>the</str<strong>on</strong>g>ories <str<strong>on</strong>g>of</str<strong>on</strong>g> gas sorpti<strong>on</strong> in glassy polymers. <strong>The</strong> Flory–Huggins<br />

lattice fluid <str<strong>on</strong>g>the</str<strong>on</strong>g>ory developed by Panayiotou and Vera [1982] and Sanchez and Lacombe [1978, 1977]<br />

appears to be particularly useful in applicati<strong>on</strong>s to polymers plasticized with high pressure gases and<br />

supercritical fluids. A statistical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic approach was developed by D<strong>on</strong>g and Fried [1997] to take<br />

account for <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers, small molecules, and holes, which are different in size. <strong>The</strong>y c<strong>on</strong>clude<br />

that plasticizing efficiency is largely determined by polymer–plasticizer interacti<strong>on</strong>s and plasticizer segment<br />

size. This approach shows that highly soluble CO 2 is expected to be a highly efficient plasticizer due to its<br />

small size although its interacti<strong>on</strong>s with polymer are quite weak.<br />

<strong>The</strong> plasticizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers induced by scCO 2 is characterized by increased segmental and<br />

chain mobility and by an increase in interchain distance. <strong>The</strong> plasticizing effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 molecules to interact with <str<strong>on</strong>g>the</str<strong>on</strong>g> basic sites in polymer molecules. It has also been shown<br />

experimentally that such interacti<strong>on</strong>s between CO 2 and polymer functi<strong>on</strong>al groups reduce chain–chain<br />

interacti<strong>on</strong>s and increase <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer segments [Kazarian et al., 1997]. High viscosity is a major<br />

obstacle in processing high molecular weight polymers. To overcome this obstacle, <strong>on</strong>e opti<strong>on</strong> is processing<br />

at higher temperatures since viscosity decreases with increasing temperature. However, at elevated<br />

temperatures <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers occurs. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 which in turn results in a reducti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity, allows processing <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers at low temperatures and polymer degradati<strong>on</strong> is avoided [Flichy<br />

et al., 2001].<br />

d<br />

- 52 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

4.3 Nucleati<strong>on</strong><br />

As we have explained earlier, when <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure is reduced from <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium state, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei occurs as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> supersaturati<strong>on</strong>. This number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei can be calculated by using<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> classical nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical chemistry. <strong>The</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores generated can be modeled by<br />

calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei generated.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> classical nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster <str<strong>on</strong>g>of</str<strong>on</strong>g> radius r in a<br />

closed iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal system in chemical equilibrium is given by Tsivintzelis et al. [2007a] and Adams<strong>on</strong> and<br />

Gast [1997]:<br />

3<br />

4 r<br />

G P<br />

4r<br />

2 <br />

(2.17)<br />

3<br />

where r is <str<strong>on</strong>g>the</str<strong>on</strong>g> radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spherical cluster, γ is <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> and ΔP is <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interface.<br />

radius r c :<br />

When ΔG is plotted against cluster size, <strong>on</strong>e obtains a curve that shows a maximum at a critical<br />

dG<br />

dr<br />

2<br />

0 rc<br />

<br />

(2.18)<br />

P<br />

Equati<strong>on</strong> 2.18 is <str<strong>on</strong>g>the</str<strong>on</strong>g> Young-Laplace equati<strong>on</strong>. <strong>The</strong> maximum value <str<strong>on</strong>g>of</str<strong>on</strong>g> ΔG for homogenous<br />

nucleati<strong>on</strong> is obtained by substituting equati<strong>on</strong> 2.17 into equati<strong>on</strong> 2.19):<br />

G<br />

*<br />

hom<br />

3<br />

16<br />

<br />

2<br />

3P<br />

(2.19)<br />

<strong>The</strong> interfacial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture is calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> given by Goel and<br />

Beckman [1994a]:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

mix<br />

4<br />

<br />

mix<br />

<br />

polymer<br />

( 1 wCO2<br />

)<br />

(2.20)<br />

<br />

polymer<br />

where ρ are <str<strong>on</strong>g>the</str<strong>on</strong>g> densities and w CO2s is <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 absorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer.<br />

<strong>The</strong> surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 can be taken as 35.3 N/m as reported by Vargha-Butler et al.<br />

[2001]. <strong>The</strong> interfacial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is essentially zero at supercritical state, thus it will not be introduced<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>. A more complicated model which predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interfacial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorpti<strong>on</strong> is proposed by Harris<strong>on</strong> et al. [1996]. Unfortunately, this model requires<br />

experimental data for <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 and will not be<br />

c<strong>on</strong>sidered here.<br />

1994a]:<br />

Steady state rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleati<strong>on</strong> can be described by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> [Goel and Beckman,<br />

*<br />

G<br />

<br />

hom<br />

N <br />

0<br />

Cf<br />

0<br />

exp (2.21)<br />

kT <br />

- 53 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

where C is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dissolved fluid inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix (number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules per<br />

volume), k is <str<strong>on</strong>g>the</str<strong>on</strong>g> Boltzmann c<strong>on</strong>stant, T is <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and f 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency factor for <str<strong>on</strong>g>the</str<strong>on</strong>g> gas molecules,<br />

which describes <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which nuclei with critical radius are transformed into stable bubbles.<br />

Frequency factor f 0 can be expressed as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> critical radius [Goel and Beckman, 1994a]:<br />

f<br />

2<br />

0<br />

4 c<br />

<br />

<br />

ZR imp<br />

r<br />

(2.22)<br />

where Z is <str<strong>on</strong>g>the</str<strong>on</strong>g> Zeldovich factor and R imp is <str<strong>on</strong>g>the</str<strong>on</strong>g> impingement rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas molecules per unit area. ZR imp<br />

can be used as a <strong>on</strong>e time fitter parameter within <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s.<br />

Since foaming is an unsteady state process, we have to take into c<strong>on</strong>siderati<strong>on</strong> time as a variable<br />

and integrate <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate in order to calculate total number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei generated within <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong><br />

time:<br />

N<br />

total<br />

<br />

t,<br />

vitr<br />

<br />

0<br />

P,<br />

vitr<br />

dP<br />

N<br />

0<br />

dt N<br />

0<br />

(2.23)<br />

dP dt<br />

P,<br />

sat<br />

where sat and vitr denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> and vitrificati<strong>on</strong> respectively.<br />

It is in our knowledge that <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers occurs while <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 is desorbs. Hence, <strong>on</strong>e<br />

can say that <str<strong>on</strong>g>the</str<strong>on</strong>g> dissolved amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix is not c<strong>on</strong>stant within <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming time and<br />

it decreases. Also, while foaming occurs, polymer swells as <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 changes its state from supercritical to<br />

gas (<str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 increases). So, <strong>on</strong>e can say that in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two effects <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix decreases. This c<strong>on</strong>centrati<strong>on</strong> dependency must be placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate<br />

equati<strong>on</strong> and nucleati<strong>on</strong> rate must be integrated with time. One can model <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> mass within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

foaming time by using equati<strong>on</strong> 2.3 and fitting it to <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> data. <strong>The</strong> change within <str<strong>on</strong>g>the</str<strong>on</strong>g> volume can<br />

be expressed with a linear relati<strong>on</strong>ship between initial and final volumes. One can assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no<br />

volume change after vitrificati<strong>on</strong>. <strong>The</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> is not c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> existing<br />

model.<br />

4.4 Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

Scaffolds must meet certain fundamental characteristics such as high porosity, appropriate pore<br />

size, biocompatibility, biodegradability and proper degradati<strong>on</strong> rate [Ma and Choi, 2001]. Scaffolds for<br />

tissues require specific properties such as an interc<strong>on</strong>nected porosity higher than 75% to provide a high void<br />

volume for nutrient diffusi<strong>on</strong> [Temen<str<strong>on</strong>g>of</str<strong>on</strong>g>f et al., 2000]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore an optimal pore size necessary to promote<br />

cell adhesi<strong>on</strong> must be in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 100−300 μm [Boyan et al., 1996]. Finally, mechanical properties<br />

should approximate those <str<strong>on</strong>g>of</str<strong>on</strong>g> native cartilage b<strong>on</strong>e, in order to support body load and avoid excessive micromoti<strong>on</strong>s<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold/b<strong>on</strong>e interface [Büchler et al., 2003; Temen<str<strong>on</strong>g>of</str<strong>on</strong>g>f et al., 2000].<br />

Ideally a scaffold should possess <str<strong>on</strong>g>the</str<strong>on</strong>g> following characteristics c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> desired biologic<br />

resp<strong>on</strong>se [Hutmacher, 2001]:<br />

<br />

<br />

<br />

three-dimensi<strong>on</strong>al and highly porous with an interc<strong>on</strong>nected pore network for cell/tissue growth and<br />

flow transport <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients and metabolic waste,<br />

biodegradable or bioresorbable with a c<strong>on</strong>trollable degradati<strong>on</strong> and resorpti<strong>on</strong> rate to match<br />

cell/tissue growth in vitro and/or in vivo,<br />

suitable surface chemistry for cell attachment, proliferati<strong>on</strong> and differentiati<strong>on</strong>,<br />

- 54 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<br />

<br />

mechanical properties matching those <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues at <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> implantati<strong>on</strong>,<br />

easily processable to form a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> shapes and sizes.<br />

In batch foaming, a polymer in disc or powder form is subjected to supercritical CO 2 flow without<br />

mixing. After venting <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 by depressurizati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic instability causes supersaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CO 2 dissolved in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix and hence, nucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells occurs. <strong>The</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cells c<strong>on</strong>tinues<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer vitrifies. <strong>The</strong> saturati<strong>on</strong> pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> critical parameters in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and <str<strong>on</strong>g>the</str<strong>on</strong>g> cell size distributi<strong>on</strong>. To predict <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> foams created, in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is several numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> influential studies <strong>on</strong> diffusi<strong>on</strong>induced<br />

pore growth. <strong>The</strong>se models c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer as a Maxwell fluid and solve systems <str<strong>on</strong>g>of</str<strong>on</strong>g> partial<br />

differential equati<strong>on</strong>s by numerical methods [Goel and Beckman, 1995; Arefmanesh and Advani, 1991].<br />

<strong>The</strong> cell number density increased and <str<strong>on</strong>g>the</str<strong>on</strong>g> cell size decreased with increasing pressure and<br />

decreasing temperature. A high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> super-saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved CO 2 at high pressure and low<br />

temperature are resp<strong>on</strong>sible for such results. Classical homogeneous nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is generally used to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate in foaming with supercritical CO 2 . <strong>The</strong> energy barrier for nucleati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory can be calculated as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> binary mixture and <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop. <strong>The</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier and <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> decrease as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure drop increases. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate increases and a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> small cells is<br />

obtained. In fact, both <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop rate and <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop determine <str<strong>on</strong>g>the</str<strong>on</strong>g> cell<br />

density and cell size in microcellular foaming. <strong>The</strong> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop rate, <str<strong>on</strong>g>the</str<strong>on</strong>g> greater <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong><br />

rate due to <str<strong>on</strong>g>the</str<strong>on</strong>g> high supersaturati<strong>on</strong> rate. This allows <strong>on</strong>ly a short time for existing cells to grow and,<br />

c<strong>on</strong>sequently, is in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small cells. Classical nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory fails to incorporate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure drop rate. Moreover, a noteworthy study <strong>on</strong> CO 2 -assisted microcellular foaming <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PLGA is reported by Sparacio and Beckman [1998], in which a minimum in cell size with increasing<br />

pressure was found instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> levelling <str<strong>on</strong>g>of</str<strong>on</strong>g>f according to <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. A plausible explanati<strong>on</strong> is low resistance<br />

to cell growth due to a large decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer and very low interfacial tensi<strong>on</strong> at<br />

high pressure.<br />

Detailed studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glassy polymer – CO 2 system by Wessling et al. [1994] suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nucleati<strong>on</strong> mechanism underlying <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process is heterogeneous in nature. <strong>The</strong> significant advance<br />

made by [Wessling et al., 1994] was that <str<strong>on</strong>g>the</str<strong>on</strong>g>y were able to detect and explained <str<strong>on</strong>g>the</str<strong>on</strong>g> appearance not <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> porous structure in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer film after saturati<strong>on</strong> with CO 2 but also <str<strong>on</strong>g>of</str<strong>on</strong>g> a dense layer next to <str<strong>on</strong>g>the</str<strong>on</strong>g> porous<br />

layer. <strong>The</strong>y provided a physical explanati<strong>on</strong> and a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> this dense<br />

layer. <strong>The</strong> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> McCarthy and coworkers [Stafford et al., 1999; Arora et al., 1998a] <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

residual oligomer in polystyrene <strong>on</strong> its foaming with scCO 2 have shown that its presence affects <str<strong>on</strong>g>the</str<strong>on</strong>g> cell size<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g>se foams. This work also questi<strong>on</strong>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> classical nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory to explain <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming<br />

mechanism in <str<strong>on</strong>g>the</str<strong>on</strong>g>se systems, and <str<strong>on</strong>g>the</str<strong>on</strong>g> authors suggest a spinodal mechanism as an alternative route <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

formati<strong>on</strong> [Stafford et al., 1999]. Foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polypropylene has also been studied extensively by Park and<br />

Cheung [1997], with <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent report by Liang and Wang [1999], who highlighted <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature drop during depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer in equilibrium with high-pressure CO 2 . Handa and<br />

Zhang [2000] used <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a rubbery state in <str<strong>on</strong>g>the</str<strong>on</strong>g> PMMA at low temperatures to generate foams by<br />

saturating <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with CO 2 at 24C to 90C. <strong>The</strong>y dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer plays an important role in c<strong>on</strong>trolling cell density and cell size. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 at 34<br />

bars and temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> – 0.2C is 22.5% (w/w), while at <str<strong>on</strong>g>the</str<strong>on</strong>g> same pressure but at 24C, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility is just<br />

7.9% (w/w).<br />

- 55 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r approach to create microcellular materials was dem<strong>on</strong>strated by Shi et al. [1999]. First,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized a number <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals soluble in scCO 2 or liquid CO 2 . <strong>The</strong>se chemicals comprise a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> “m<strong>on</strong>omers” c<strong>on</strong>taining <strong>on</strong>e or two urea groups and fluorinated “tail” groups that enhance solubility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se compounds in CO 2 . When <str<strong>on</strong>g>the</str<strong>on</strong>g>se compounds were dissolved in CO 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>ir self-associati<strong>on</strong> led to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gels. <strong>The</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 via depressurizati<strong>on</strong> resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foams with cells<br />

with an average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 1 m. Shi et al. [1999] reported that <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk density reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

foams was 97% compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> parent materials. Sheridan et al. [2000] studied <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

processing parameters (such as polymer compositi<strong>on</strong>, molecular mass, and gas type) <strong>on</strong> preparing threedimensi<strong>on</strong>al<br />

porous matrices from copolymers <str<strong>on</strong>g>of</str<strong>on</strong>g> lactide and glycolide and dem<strong>on</strong>strated that crystalline<br />

polymers did not produce foamed materials via this approach, while gas treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous copolymers<br />

produced matrices with porosity up to 95%. This work also dem<strong>on</strong>strated that <strong>on</strong>ly CO 2 am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

gases used (e.g., N2 and He) created highly porous polymer structures in <str<strong>on</strong>g>the</str<strong>on</strong>g>se copolymers [Sheridan et al.,<br />

2000] and explained this by <str<strong>on</strong>g>the</str<strong>on</strong>g> possible interacti<strong>on</strong>s between CO 2 and carb<strong>on</strong>yl groups in PLGA [Kazarian<br />

et al., 1996a].<br />

5 Manufacturing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Composite Biomaterials<br />

5.1 Fundements <str<strong>on</strong>g>of</str<strong>on</strong>g> Co-grinding Process<br />

5.1.1 Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Size Reducti<strong>on</strong><br />

<strong>The</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a material may be c<strong>on</strong>siderably influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size and, for example,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> fine particles is greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse particles. In additi<strong>on</strong>, far more intimate<br />

mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> solids can be achieved if <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is small [Richards<strong>on</strong> et al., 2002]. Practically every solid<br />

material undergoes size reducti<strong>on</strong> at some point in its processing cycle.<br />

Also reducti<strong>on</strong> in size causes [Richards<strong>on</strong> et al., 2002]:<br />

<br />

<br />

<br />

<br />

<br />

Both an increase in area and a reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> distance.<br />

Separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents, especially where <strong>on</strong>e is dispersed in small isolated pockets.<br />

<strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a material may be c<strong>on</strong>siderably influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size.<br />

Chemical reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> fine particles is greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse particles.<br />

In additi<strong>on</strong>, far more intimate mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> solids can be achieved if <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is small.<br />

<strong>The</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> is extremely complex. If a single lump <str<strong>on</strong>g>of</str<strong>on</strong>g> material<br />

is subjected to a sudden impact, it will generally break so as to yield a few relatively large particles and a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> fine particles, with relatively few particles <str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate size. If <str<strong>on</strong>g>the</str<strong>on</strong>g> energy in <str<strong>on</strong>g>the</str<strong>on</strong>g> blow is<br />

increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> larger particles will be <str<strong>on</strong>g>of</str<strong>on</strong>g> a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r smaller size and more numerous and, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fine particles will be appreciably increased, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size will not be much altered. It <str<strong>on</strong>g>the</str<strong>on</strong>g>refore appears that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine particles is closely c<strong>on</strong>nected with <str<strong>on</strong>g>the</str<strong>on</strong>g> internal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size reducti<strong>on</strong> processes, much energy is expended in causing plastic<br />

deformati<strong>on</strong> and this energy may be regarded as a waste as it does not result in fracture. Only part <str<strong>on</strong>g>of</str<strong>on</strong>g> it is<br />

retained in <str<strong>on</strong>g>the</str<strong>on</strong>g> system as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic recovery. It is not possible, however, to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> stress levels<br />

necessary for fracture to occur without first passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plastic deformati<strong>on</strong> and, in this<br />

sense, this must be regarded as a necessary state which must be achieved before fracture can possibly occur<br />

[Richards<strong>on</strong> et al., 2002].<br />

- 56 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<strong>The</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> force to <str<strong>on</strong>g>the</str<strong>on</strong>g> particles may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> breakage pattern. Four basic<br />

patterns may be identified, though it is sometimes difficult to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant mode in any given<br />

machine [Richards<strong>on</strong> et al., 2002].<br />

<br />

<br />

<br />

<br />

Impact: particle c<strong>on</strong>cussi<strong>on</strong> by a single rigid force.<br />

Compressi<strong>on</strong>: particle disintegrati<strong>on</strong> by two rigid forces.<br />

Shear: produced by a fluid or by particle–particle interacti<strong>on</strong>.<br />

Attriti<strong>on</strong>: arising from particles scraping against <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r or against a rigid surface.<br />

5.1.2 Fragmentati<strong>on</strong> Mechanisms<br />

<strong>The</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material in small fragments or in powder is obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grinding. <strong>The</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture mechanics and finally<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> particles subjected to <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical forces.<br />

<strong>The</strong> resulting stress field generally depends <strong>on</strong>, as reported by Zapata-Massot [2004]:<br />

<br />

<br />

<br />

<br />

Intrinsic parameters to <str<strong>on</strong>g>the</str<strong>on</strong>g> materials: <str<strong>on</strong>g>the</str<strong>on</strong>g>y determine its behaviour at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deformati<strong>on</strong>.<br />

<strong>The</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>straints determines <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fragments and <str<strong>on</strong>g>the</str<strong>on</strong>g> new created<br />

surfaces.<br />

<strong>The</strong> required energy to break <str<strong>on</strong>g>the</str<strong>on</strong>g> material: <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary energy to <str<strong>on</strong>g>the</str<strong>on</strong>g> rupture is additi<strong>on</strong>al energy<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fissure is energy c<strong>on</strong>sumer. It is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grain<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> energy stored is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> volume.<br />

Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>: it c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material.<br />

Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material: it is not limitless and necessitates most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> successive phases implying typical different <str<strong>on</strong>g>of</str<strong>on</strong>g> devices working mass.<br />

<strong>The</strong> fragmentati<strong>on</strong> process is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size reducti<strong>on</strong> process. Granular materials submitted to<br />

fine grinding may be subject to several modes <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> (abrasi<strong>on</strong>, chipping, cleavage, breakage)<br />

[Render, 1990]. <strong>The</strong> size evoluti<strong>on</strong> is not sufficient to clearly explain <str<strong>on</strong>g>the</str<strong>on</strong>g> grinding mechanisms. Thus o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

properties such as morphology have to be c<strong>on</strong>sidered. Indeed, it is recognized that <str<strong>on</strong>g>the</str<strong>on</strong>g> end-use properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a powder are influenced not <strong>on</strong>ly by <str<strong>on</strong>g>the</str<strong>on</strong>g> size but also by <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles. Qualitative SEM<br />

observati<strong>on</strong>s have been used to explain assumpti<strong>on</strong>s <strong>on</strong> phenomena appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> mills. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> particle fragmentati<strong>on</strong> has been limited. Thus, a quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology evoluti<strong>on</strong><br />

during grinding is needed. Experimental studies, carried out using various materials, have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

size decrease occurs in steps, which suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> fragmentati<strong>on</strong> mechanism is complex [Molina-<br />

Boisseau et al., 2002].<br />

5.1.3 Agglomerati<strong>on</strong> Phenomena<br />

<strong>The</strong> agglomerati<strong>on</strong> phenomena occur during <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous polymer material and<br />

powder filler.<br />

Size enlargement is any process whereby small particles are ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red into larger, relatively<br />

permanent masses in which <str<strong>on</strong>g>the</str<strong>on</strong>g> original particles can still be distinguished.<br />

Agglomerati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates through <str<strong>on</strong>g>the</str<strong>on</strong>g> sticking toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> feed and/or recycle<br />

material [Perry et al., 1997].<br />

- 57 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

<strong>The</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aggregates is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical interlocking that may occur,<br />

especially between particles in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g fibres. Wide size distributi<strong>on</strong>s generally lead to close<br />

packing requiring smaller amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> binder and, as a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g aggregates. <strong>The</strong> size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in an agglomerati<strong>on</strong> process is essentially determined by a populati<strong>on</strong> balance that<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various processes taking place simultaneously, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which result in<br />

particle growth and some in particle degradati<strong>on</strong>.<br />

In general, starting with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> particles <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform size, <str<strong>on</strong>g>the</str<strong>on</strong>g> following stages may be<br />

identified:<br />

<br />

<br />

<br />

<br />

Nucleati<strong>on</strong> in which fresh particles are formed, generally by attriti<strong>on</strong>.<br />

Layering or coating as material is deposited <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nuclei, thus increasing both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

size and total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles.<br />

Coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> particles which results in an increase in particle size but not in <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles.<br />

Attriti<strong>on</strong>. results in degradati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small particles, thus generating nuclei that reenter<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cycle again [Richards<strong>on</strong> et al., 2002].<br />

5.2 Obtenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Composites by <str<strong>on</strong>g>the</str<strong>on</strong>g> Co-grinding Process<br />

Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two main methods <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining composite materials. <strong>The</strong> first and most<br />

comm<strong>on</strong> are to extrude various raw materials. <strong>The</strong> sec<strong>on</strong>d is to chemically syn<str<strong>on</strong>g>the</str<strong>on</strong>g>size <str<strong>on</strong>g>the</str<strong>on</strong>g> desired composite.<br />

Currently a third method <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> composite materials is under development: co-grinding.<br />

<strong>The</strong> products from Extrusi<strong>on</strong> are preheated and introduced upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> an extrusi<strong>on</strong> screw. Within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extruder, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature gradually increases, leading to a change <str<strong>on</strong>g>of</str<strong>on</strong>g> state products. <strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> screw<br />

extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various morphologies can perform an intimate mixture between different compounds and<br />

disperse within <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r seamlessly. This technique is widely used for many industrial applicati<strong>on</strong>s by<br />

using materials in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> powder, flakes and granules.<br />

A sec<strong>on</strong>d method <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining composite is to syn<str<strong>on</strong>g>the</str<strong>on</strong>g>size chemically. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix is<br />

dissolved or suspended in a solvent and <str<strong>on</strong>g>the</str<strong>on</strong>g> load is activated in situ using an oxidizing agent <str<strong>on</strong>g>of</str<strong>on</strong>g>ten. <strong>The</strong><br />

composite particles are <str<strong>on</strong>g>the</str<strong>on</strong>g>n filtered and dried. This method is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to obtain electrical c<strong>on</strong>ducting<br />

polymers [Cassignol et al., 1998; Pouzet et al., 1993]. In However, it is rarely used for composites widely<br />

because it requires facilities very expensive.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two techniques for implementing composite materials cited earlier, has limitati<strong>on</strong>s<br />

which may be <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> extrusi<strong>on</strong>, or chemical, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. In additi<strong>on</strong>,<br />

both techniques have <strong>on</strong>e thing in comm<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersing <str<strong>on</strong>g>the</str<strong>on</strong>g> filler in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix. For <str<strong>on</strong>g>the</str<strong>on</strong>g> first,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> operating c<strong>on</strong>diti<strong>on</strong>s are not well understood, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> agglomerates, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d technique, agitati<strong>on</strong> al<strong>on</strong>e does not to obtain particle size small enough so as to have properties<br />

homogeneous. <strong>The</strong>refore, we decided to explore a new syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway to obtain composite materials: cogrinding.<br />

This technique c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding two materials A (polymer) and B (adjuvant/filler) toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> begining, <str<strong>on</strong>g>the</str<strong>on</strong>g>re occurs a phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles <str<strong>on</strong>g>of</str<strong>on</strong>g> different c<strong>on</strong>stituents (cf. Figure<br />

2.21) to a size limit. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two comp<strong>on</strong>ents is much more fragmented quickly, here comp<strong>on</strong>ent reaches<br />

its size limit before fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

- 58 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

Figure 2.21: Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding.<br />

<strong>The</strong> fine particles <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ent B will have a tendency, because <str<strong>on</strong>g>of</str<strong>on</strong>g> interparticle forces to stick to<br />

larger particles. More c<strong>on</strong>tinuous grinding, <str<strong>on</strong>g>the</str<strong>on</strong>g> more phenomen<strong>on</strong> is growing. Different stages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agglomerati<strong>on</strong> will be encountered: <str<strong>on</strong>g>the</str<strong>on</strong>g> simple b<strong>on</strong>ding between two or more particles, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coating particles and finally <str<strong>on</strong>g>the</str<strong>on</strong>g> agglomerati<strong>on</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> particles toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. <strong>The</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> observed phenomen<strong>on</strong><br />

will depend, am<strong>on</strong>g across <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> and products affinity. Figure 2.22 shows changes in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> agglomerati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding.<br />

Figure 2.22: Different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> agglomerati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> co-grinding: (a) adhesi<strong>on</strong>, (b) coating and (c)<br />

agglomerati<strong>on</strong>.<br />

This technique was developed accidentally in 1968 to manufacture metal alloys. <strong>The</strong> metals were<br />

co-milled in a str<strong>on</strong>gly energetic ball mill, producing a fine powder as an alternative mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> fractures<br />

and cold welds. Gilman and Benjamin [1983] were interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys formati<strong>on</strong> and<br />

have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> technique to a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> metallic elements to create a data library. Currently in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical alloying is no l<strong>on</strong>ger reserved solely for metals. Indeed, Yenikolopyan [1988] studied<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> system polypropylene / polyethylene low density in a ball mill. <strong>The</strong> co-grinding increases <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

specific powder c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> small clusters whose size varies between 100 nm and few micr<strong>on</strong>s. An X-ray<br />

analysis showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture increases with time <str<strong>on</strong>g>of</str<strong>on</strong>g> co-grinding. <strong>The</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> milling<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed polymer can thus produce very homogeneous powders. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies by Pan and<br />

Shaw [1994, 1995] showed that both polymers semi-crystalline and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastic (polyamid 6,6 polymer<br />

and high density) can be co-ground as a fine powder using a vibrating ball mill operating in <str<strong>on</strong>g>the</str<strong>on</strong>g> dry process.<br />

<strong>The</strong> mechanical alloying to produce a material with <strong>on</strong>e hand, a more homogeneous charge c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grains less than 1 micr<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r improved mechanical properties. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, this study was<br />

c<strong>on</strong>ducted in a small mill (a few tens <str<strong>on</strong>g>of</str<strong>on</strong>g> millilitres) whose dimensi<strong>on</strong>s are difficult to extrapolate, by<br />

technological complexity resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> vibrating system. Few studies have examined <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

composite materials by co-grinding and even <strong>on</strong> co-grinding in general. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> training methods and<br />

mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> materials have mostly been obscured in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials<br />

obtained. A similar study was d<strong>on</strong>e Zapata-Massot [2004] by Zapata for brittle polymer Poly vinyle acetate<br />

and a mineral filler calcium carb<strong>on</strong>ate to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> composite formed.<br />

In ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r study by Seyni [2009] shows <str<strong>on</strong>g>the</str<strong>on</strong>g> interest to implement vegetable biodegradable filler in<br />

composite materials. <strong>The</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> starch as filler in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymeric matrix was carried out by cogrinding,<br />

process supporting <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

composite properties. Co-grinding makes it possible to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical and <str<strong>on</strong>g>the</str<strong>on</strong>g> optical properties, as<br />

- 59 -


Chapter 2.<br />

<str<strong>on</strong>g>Processes</str<strong>on</strong>g> to Manufacture Foams and to Functi<strong>on</strong>alize <str<strong>on</strong>g>the</str<strong>on</strong>g> Surface<br />

well as <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance to water <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material, not <strong>on</strong>ly from <str<strong>on</strong>g>the</str<strong>on</strong>g> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> homogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> filler in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix, but also thanks to a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interface quality.<br />

6 C<strong>on</strong>clusi<strong>on</strong><br />

Different processes for manufacturing scaffolds were discussed in detail with advantages and<br />

disadvantages. Scaffolds obtained by each technique posses typical structure and morphology and can be<br />

used as per requirement. Scaffolds for tissue engineering should encourage <str<strong>on</strong>g>the</str<strong>on</strong>g> growth, migrati<strong>on</strong>, and<br />

organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, providing support while <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue is forming <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds will be replaced with host<br />

cells and a new extracellular matrix which in turn should provide functi<strong>on</strong>al and mechanical properties,<br />

similar to native tissue. <strong>The</strong> material and <str<strong>on</strong>g>the</str<strong>on</strong>g> 3-D structure <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds have a significant effect <strong>on</strong> cellular<br />

activity. Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and <str<strong>on</strong>g>the</str<strong>on</strong>g> specific applicati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> required scaffold material and<br />

its properties will be quite different. Gas foaming technique to manufacture scaffolds discussed with<br />

reference to kinetics and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic approach. Diffusi<strong>on</strong>, plasticizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer, nucleati<strong>on</strong> and<br />

desorpti<strong>on</strong> phenomena <str<strong>on</strong>g>the</str<strong>on</strong>g>ory play an important role during scaffold forming by gas foaming. <strong>The</strong><br />

experimental results obtained by this technique will be discussed extensively in <str<strong>on</strong>g>the</str<strong>on</strong>g> later chapters.<br />

- 60 -


Chapter 3<br />

Chapter<br />

3<br />

Analytical Methods<br />

and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experiments<br />

This chapter is primarily devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental facilities and<br />

analytical techniques employed during <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental work. Differential scanning Calorimetry (DSC) was<br />

used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal data. Viscosimetry and laser granulometry were used for <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer viscosity and particle size<br />

characterizati<strong>on</strong>. Various microscopic techniques such as porosity analysis, X-ray microtomography and<br />

scanning electr<strong>on</strong> micrography (SEM) were used. Macroscopic methods such as Brazilian test, surface<br />

energy analysis were applied.<br />

1 Differential Scanning Calorimetry (DSC)<br />

Phase transiti<strong>on</strong> analysis techniques are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to transfer heat to a material and<br />

m<strong>on</strong>itor its effects. This class <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques is known as <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis. Several techniques can be used to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature (T g ), <str<strong>on</strong>g>of</str<strong>on</strong>g> bio-polymeric materials, including differential scanning<br />

calorimetry (DSC), and dynamic mechanical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis (DMTA).<br />

1.1 Generalities <strong>on</strong> <strong>The</strong>rmal Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers<br />

<strong>The</strong>rmal analysis encompasses a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques such as:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> heating curves,<br />

dynamic adiabatic calorimetry,<br />

differential <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis, DTA<br />

differential scanning calorimetry, DSC<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmogravimetry, TG<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal mechanical analysis, TMA<br />

dynamic mechanical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis, DMTA<br />

- 61 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Differential scanning calorimetry (DSC) is a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoanalytical technique in which <str<strong>on</strong>g>the</str<strong>on</strong>g> difference in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat required to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample and reference is measured as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temperature. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and reference are maintained at nearly <str<strong>on</strong>g>the</str<strong>on</strong>g> same temperature throughout <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiment. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature program for a DSC analysis is designed such that <str<strong>on</strong>g>the</str<strong>on</strong>g> sample holder<br />

temperature increases linearly as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time.<br />

<strong>The</strong> technique was developed by Wats<strong>on</strong> and O’neill [1962] and was introduced commercially at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 1963, Pittsburgh C<strong>on</strong>ference <strong>on</strong> Analytical Chemistry and Applied Spectroscopy [ISO - Internati<strong>on</strong>al<br />

Organizati<strong>on</strong> for Standardizati<strong>on</strong>, 1963]. Heat-flux DSC and power-compensated DSC are <str<strong>on</strong>g>the</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DSC that have been widely used.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> big advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> DSC is that samples are very easily encapsulated, usually with little<br />

or no preparati<strong>on</strong>, ready to be placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> DSC cell, so that measurements can be quickly and easily made<br />

[Gabbott, 2008]. <strong>The</strong> specific heat <str<strong>on</strong>g>of</str<strong>on</strong>g> a material changes slowly with temperature in a particular physical<br />

state, but alters disc<strong>on</strong>tinuously at a change <str<strong>on</strong>g>of</str<strong>on</strong>g> state. As well as increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> sample temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

supply <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy may induce physical or chemical processes in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample, e.g. melting or<br />

decompositi<strong>on</strong>, accompanied by a change in enthalpy, <str<strong>on</strong>g>the</str<strong>on</strong>g> latent heat <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong>, heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> etc.<br />

In a heat flux DSC, <str<strong>on</strong>g>the</str<strong>on</strong>g> sample material, enclosed in a pan and an empty reference pan are placed<br />

<strong>on</strong> a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoelectric disk surrounded by a furnace. <strong>The</strong> furnace is heated at a linear heating rate and <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<br />

is transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and reference pan through <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoelectric disk (cf. Figure 3.1). <strong>The</strong> temperatures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two <str<strong>on</strong>g>the</str<strong>on</strong>g>rmometers are compared, and <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical power supplied to each heater adjusted, so that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and <str<strong>on</strong>g>the</str<strong>on</strong>g> reference remain equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> programmed temperature, i.e. any<br />

temperature difference which would result from a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal event in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is ‘zero’. <strong>The</strong> analogical<br />

signal, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> energy absorpti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> sample (e.g. W/s), is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> specific heat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample since <str<strong>on</strong>g>the</str<strong>on</strong>g> specific heat at any temperature determines <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy necessary to<br />

change <str<strong>on</strong>g>the</str<strong>on</strong>g> sample temperature by a given amount. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, <str<strong>on</strong>g>the</str<strong>on</strong>g> measuring principle is to compare <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat flow to <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and to an inert material which are heated or cooled at <str<strong>on</strong>g>the</str<strong>on</strong>g> same rate.<br />

1.2 First Order Transiti<strong>on</strong>s<br />

(A)-Apparatus<br />

(B)-Principle<br />

Figure 3.1: Differential scanning calorimetry.<br />

Changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> sample, which are associated with absorpti<strong>on</strong> or evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat, cause a change<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> differential heat flow which is <str<strong>on</strong>g>the</str<strong>on</strong>g>n recorded as a peak. <strong>The</strong> area under <str<strong>on</strong>g>the</str<strong>on</strong>g> peak is directly<br />

proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy change and its directi<strong>on</strong> indicates whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal event is endo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic or<br />

exo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a DSC <str<strong>on</strong>g>the</str<strong>on</strong>g>rmogram enables <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two important parameters: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transiti<strong>on</strong> temperature peak (taken at <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum T m or at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set T <strong>on</strong>set ), and <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

melting/crystallizati<strong>on</strong> (H m /H c ). <strong>The</strong> extrapolated <strong>on</strong>set temperature (T <strong>on</strong>set ) corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong><br />

temperature at zero heating rate can be obtained by plotting peak temperatures as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heating rate<br />

[Ruegg et al., 1977].<br />

- 62 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<strong>The</strong> T m value depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. So, lower grades will have lower<br />

melting points (cf. Figure 3.2). <strong>The</strong> crystallinity ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer can also be found using DSC from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following equati<strong>on</strong>:<br />

C = (H m −H c )/H m<br />

<br />

(3.1)<br />

where H m is <str<strong>on</strong>g>the</str<strong>on</strong>g> melting enthalpy, H c is <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallizati<strong>on</strong> enthalpy and H m <str<strong>on</strong>g>the</str<strong>on</strong>g> melting<br />

enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> totally crystallised PLA sample.<br />

According to Fischer et al. [1973], H m = 93 J.g -1 but according to Miyata and Masuko [1998]<br />

H m = 135 J.g -1 . It can be found from <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallizati<strong>on</strong> peak from <str<strong>on</strong>g>the</str<strong>on</strong>g> DSC graph since <str<strong>on</strong>g>the</str<strong>on</strong>g> heat <str<strong>on</strong>g>of</str<strong>on</strong>g> melting<br />

can be calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> area under an absorpti<strong>on</strong> peak as shown <strong>on</strong> Figure 3.2. Ahmed et al. [2008] and<br />

Wunderlich [2005] observed that both P L LA exhibits an endo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic melting peak during <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal run. P L LA<br />

samples exhibit crystallinity. However, for low molecular mass (M n < 1500) crystallizati<strong>on</strong> occurs during<br />

negative scan and for higher molecular mass, it is observed during positive run.<br />

1.3 Sec<strong>on</strong>d Order Transiti<strong>on</strong><br />

(A)<br />

(B)<br />

Figure 3.2: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> two P L LAs <str<strong>on</strong>g>of</str<strong>on</strong>g> different Mw.<br />

[Ahmed et al., 2008]<br />

<strong>The</strong> glass transiti<strong>on</strong> is a much more subtle transiti<strong>on</strong> than melting or evaporati<strong>on</strong>: glass transiti<strong>on</strong><br />

is a<str<strong>on</strong>g>the</str<strong>on</strong>g>rmic. In Figure 3.3, <str<strong>on</strong>g>the</str<strong>on</strong>g> change in heat capacity <strong>on</strong> going through <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature is<br />

drawn for a typical semi-crystalline PLGA polymer. <strong>The</strong>re is <strong>on</strong>ly a jump in <str<strong>on</strong>g>the</str<strong>on</strong>g> heat capacity in <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

20 to 190 °C.<br />

<strong>The</strong> increase in heat capacity, Cp, generally occurs over a temperature range <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 to 20 K, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> jump is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten 11 J.K -1 .mol -1 for mobile units in <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in heat capacity<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> is 11 J.K -1 .mol -1 , for a m<strong>on</strong>atomic liquid.<br />

Figure 3.3: Characteristic variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass transiti<strong>on</strong> in PLGA.<br />

- 63 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

To describe <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> half-vitrificati<strong>on</strong>, T g , should be specified, i.e.,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> temperature at which <str<strong>on</strong>g>the</str<strong>on</strong>g> heat capacity is midway between that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid and glassy states (cf. Figure<br />

3.3). This temperature usually corresp<strong>on</strong>ds closely to <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> inflecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> heat capacity, and also to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> breaks in <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy or volume versus temperature curves at <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong>. <strong>The</strong> <strong>on</strong>set<br />

temperature, T <strong>on</strong>set , is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten given.<br />

2 Intrinsic Viscosity<br />

2.1 Molecular Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer and Viscosity<br />

<strong>The</strong> M n number average molecular mass is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple arithmetical average <str<strong>on</strong>g>of</str<strong>on</strong>g> each molecule as a<br />

summati<strong>on</strong>, divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> average is <str<strong>on</strong>g>the</str<strong>on</strong>g> M w ‘weight’<br />

average, and is an expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> higher molecular mass fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer play a greater<br />

role in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> properties than do <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lower molecular mass.<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically, this is given by:<br />

Mw<br />

w M<br />

<br />

1 1<br />

(3.2)<br />

w1<br />

where, w 1 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> overall weight <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular mass M 1 . <strong>The</strong> M w weight<br />

average molecular mass is invariably greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> M n number average as its real effect is to square <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weight.<br />

Several methods <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring molecular weight are used and are summarized here:<br />

<br />

<br />

<br />

<br />

Osmometry. This is a vapour pressure method, useful for polymers <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular mass up to about<br />

25 000; membrane osmometry is used for molecular mass from 20 000 to 1 000 000. <strong>The</strong>se are<br />

number average methods.<br />

Light scattering. This is a weight average method.<br />

Gel permeati<strong>on</strong> chromatography. This is a direct fracti<strong>on</strong>ati<strong>on</strong> method using molecular mass. It is<br />

relatively rapid and has proved to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most valuable modern methods.<br />

Viscometry. This is a relative method, but <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest, and its applicati<strong>on</strong> is widespread in industry.<br />

Viscometry is <str<strong>on</strong>g>the</str<strong>on</strong>g> technique to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> materials noting <str<strong>on</strong>g>the</str<strong>on</strong>g> flow rate/efflux time by<br />

using different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> viscosimeters [Wars<strong>on</strong> and Finch, 2001].<br />

<strong>The</strong> absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> M w (molecular mass average) can <strong>on</strong>ly be determined by complex analytical<br />

methods such as light scattering. For linear and un-branched polymers, <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity average <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular<br />

weight (M vis ) is approximately equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> demi-sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M w molecular mass average and <str<strong>on</strong>g>the</str<strong>on</strong>g> M n number<br />

average molecular mass.<br />

2.2 General Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Viscosity Measurement<br />

Intrinsic viscosity, which is measured from <str<strong>on</strong>g>the</str<strong>on</strong>g> flow time <str<strong>on</strong>g>of</str<strong>on</strong>g> a soluti<strong>on</strong> through a simple glass<br />

capillary, has c<strong>on</strong>siderable historical importance for establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> very existence <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer molecules.<br />

<strong>The</strong> most useful kind <str<strong>on</strong>g>of</str<strong>on</strong>g> viscometer for determining intrinsic viscosity is <str<strong>on</strong>g>the</str<strong>on</strong>g> “suspended level” or Ubbelohde<br />

viscometer, sketched Figure 3.4.<br />

- 64 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Figure 3.4: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ubbelohde viscosimeter.<br />

<strong>The</strong> viscometer is called “suspended level” because <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid initially drawn into <str<strong>on</strong>g>the</str<strong>on</strong>g> small upper<br />

bulb is not c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir as it flows down <str<strong>on</strong>g>the</str<strong>on</strong>g> capillary during measurement. <strong>The</strong> capillary is<br />

suspended above <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir. In c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure-equalizati<strong>on</strong> tube, this ensures that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

pressure difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulb and <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capillary is that due to <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrostatic<br />

pressure, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid.<br />

Capillary viscometry is c<strong>on</strong>ceptually simple: <str<strong>on</strong>g>the</str<strong>on</strong>g> time it takes a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer soluti<strong>on</strong> to<br />

flow through a thin capillary is compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> time for a solvent flow. It turns out that <str<strong>on</strong>g>the</str<strong>on</strong>g> flow time is<br />

proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity, and inversely proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> density. <strong>The</strong> so called inherent viscosity or<br />

logarithmic viscosity number are defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> following relati<strong>on</strong>ships:<br />

t solvent<br />

<br />

and<br />

<br />

solvent<br />

solvent<br />

t sol ' n<br />

<strong>The</strong> inherent viscosity is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio:<br />

<br />

(3.3)<br />

<br />

sol'<br />

n<br />

sol'<br />

n<br />

inh<br />

ln rel<br />

t<br />

with soluti<strong>on</strong><br />

rel <br />

(3.4)<br />

C<br />

t solvent<br />

where C =c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer in soluti<strong>on</strong> (in g/dL) and t =corrected flow time.<br />

For most polymer soluti<strong>on</strong>s at low c<strong>on</strong>centrati<strong>on</strong>s, soluti<strong>on</strong> / solvent 1<br />

. Thus, to a very good<br />

approximati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative viscosity is a simple time ratio: t / t .<br />

rel<br />

soluti<strong>on</strong><br />

"Specific viscosity" represents <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong>al change in viscosity up<strong>on</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer:<br />

sp<br />

soluti<strong>on</strong><br />

solvent<br />

solvent<br />

solvent<br />

(Unitless) (3.5)<br />

Both rel and sp depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer c<strong>on</strong>centrati<strong>on</strong>, so to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> “intrinsic” properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer chain itself, <strong>on</strong>e must extrapolate to zero c<strong>on</strong>centrati<strong>on</strong>. Measuring at zero c<strong>on</strong>centrati<strong>on</strong> (C = 0)<br />

would be useless, but this c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> extrapolating to C = 0 is very important in polymer characterizati<strong>on</strong><br />

and in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics generally. As shown <strong>on</strong> Figure 3.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> [] intrinsic viscosity corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intercept to C = 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two quantities: <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced viscosity (sp/C) and <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent viscosity (C -1 .ln rel ).<br />

<strong>The</strong> intrinsic viscosity is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> [Russo et al., 1986]:<br />

<br />

<br />

<br />

C<br />

sp<br />

1<br />

lim limC<br />

ln<br />

. (3.6)<br />

rel<br />

C0<br />

C0<br />

- 65 -


.<br />

Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Reduced & Inherent Viscosities<br />

8<br />

red<br />

inh<br />

y = 2.4921x + 2.1789<br />

6<br />

PLDLA-LR 704 C<strong>on</strong>centrati<strong>on</strong> Vs red<br />

& inh<br />

4<br />

2<br />

y = -0.4146x + 2.1725<br />

0<br />

0.0 0.5 1.0 1.5 2.0<br />

C [g/100 ml]<br />

Figure 3.5: Variati<strong>on</strong> with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced specific and inherent viscosities <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA (LR 704).<br />

<strong>The</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> [] are inverse c<strong>on</strong>centrati<strong>on</strong>. Intrinsic viscosity has “grown up” around some fairly<br />

unc<strong>on</strong>venti<strong>on</strong>al units regarding c<strong>on</strong>centrati<strong>on</strong>. <strong>The</strong> most comm<strong>on</strong>ly used c<strong>on</strong>centrati<strong>on</strong> is g/dL, so [] is<br />

usually expressed as dL/g. As suggested by <str<strong>on</strong>g>the</str<strong>on</strong>g> units [] represents essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> volume occupied by a<br />

polymer per unit mass:<br />

R<br />

<br />

3<br />

<br />

(3.7)<br />

M<br />

where M is <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer molecular mass and R is <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrodynamic radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical<br />

Gaussian coil model. Thus, [] -1 is approximately <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, or <str<strong>on</strong>g>the</str<strong>on</strong>g> “overlap<br />

c<strong>on</strong>centrati<strong>on</strong>”. At c<strong>on</strong>centrati<strong>on</strong>s exceeding about [] -1 polymer molecules will touch and interpenetrate.<br />

<strong>The</strong> “semi dilute” regime <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers begins here.<br />

2.3 <strong>The</strong> Mark-Houwink Relati<strong>on</strong>ship (MHR)<br />

More importantly is <str<strong>on</strong>g>the</str<strong>on</strong>g> scaling relati<strong>on</strong>ship between [] and molecular weight known as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Mark-Houwink Relati<strong>on</strong>ship. For linear and un-branched polymers <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> a diluted polymers<br />

soluti<strong>on</strong> is directly correlated to <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular mass M vis by following MHR.<br />

a<br />

[ ] K.M vis<br />

(3.8)<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> log-log plots <str<strong>on</strong>g>of</str<strong>on</strong>g> [] against molecular mass have <str<strong>on</strong>g>the</str<strong>on</strong>g> intercept log(K) and slope a. <strong>The</strong><br />

slope c<strong>on</strong>tains informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules: <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mark–Houwink parameters, a and<br />

K, depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particular polymer-solvent system. Viscosity measurements are extremely sensitive to<br />

temperature. For a given couple solvent/polymer:<br />

<br />

A value <str<strong>on</strong>g>of</str<strong>on</strong>g> a = 0.5 is indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>ta solvent or limit c<strong>on</strong>diti<strong>on</strong> between a single and two<br />

phases.<br />

For most flexible polymers in "good" solvents i.e. solvents forming a single phase, 0.5 < a < 0.8.<br />

2.4 <strong>The</strong> Mark-Houwink C<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactides and Hyalur<strong>on</strong>ic Acid<br />

Different Mark-Houwink parameters are avalaible from literature [Välimaa and Laaksovirta,<br />

2004; Rak et al., 1985; Schindler and Harper, 1979]. As for polylactides, <strong>on</strong>e can find:<br />

- 66 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Poly(L lactide): K = 5.45×10 -4 dL/g and a = 0.73 in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm at 30°C.<br />

Poly(D,L lactide): K = 2.21×10 -4 dL/g and a = 0.77 in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm at 30°C.<br />

Poly(D,L lactide-co- L lactide): K = 1.29×10 -5 dL/g and a = 0.82 in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm at 25°C.<br />

Poly(D,L lactide-co-glycolide): K = 5.45×10 -4 dL/g and a = 0.73 in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm at 25°C;<br />

For hyalur<strong>on</strong>ic acid, <str<strong>on</strong>g>the</str<strong>on</strong>g> Mark-Houwink c<strong>on</strong>stants are K = 5.07510 -5 dL/g and a = 0.716, in 200<br />

mM NaCl at 20°C [Gura et al., 1998] and K = 2.22610 -5 dL/g and a = 0.796, in chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm at 25°C<br />

[Source Javene]..<br />

3 Laser Granulometry Method<br />

3.1 Granulometry<br />

Laser granulometry dates back to <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s. It is a technique for measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles c<strong>on</strong>tained in a powder. If this <strong>on</strong>e c<strong>on</strong>tains particles <str<strong>on</strong>g>of</str<strong>on</strong>g> different sizes, it permits to determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each size class.<br />

<strong>The</strong> measure is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> single scattering and laser diffracti<strong>on</strong>. Beam laser is<br />

obtained by collimating a beam from Helium – Ne<strong>on</strong> gas tube. This beam is sent to a sensor in which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

particles are kept in c<strong>on</strong>stant movement so that each particle passes at least <strong>on</strong>ce in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement time (cf. Figure 3.6).<br />

(A)<br />

(B)<br />

Figure 3.6: (A) Mastersizer 2000 (Malvern Instruments) (B) Schematic diagram showing <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a laser diffracti<strong>on</strong> particle size analyzer.<br />

[Storti and Balsamo, 2009]<br />

3.2 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Laser Analysis<br />

It uses <str<strong>on</strong>g>the</str<strong>on</strong>g> following hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses: spherical particles are c<strong>on</strong>sidered to be n<strong>on</strong> porous and n<strong>on</strong><br />

opaque at laser radiati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>se particles have a diameter superior to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir wave length, are in c<strong>on</strong>stant<br />

random moti<strong>on</strong> and diffract light efficiently regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size.<br />

When a laser beam sheds light <strong>on</strong> a particle, diffracti<strong>on</strong> patterns can be observed. <strong>The</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> diffracted radiati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong> angle differ according to <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles (cf. Figure 3.7).<br />

Thus, particles with large sizes diffract large light quantities <strong>on</strong> small angles, while small<br />

particles diffract small light quantities <strong>on</strong> large angles. <strong>The</strong> light angle and intensity permit to<br />

- 67 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size distributi<strong>on</strong>. Three <str<strong>on</strong>g>the</str<strong>on</strong>g>ories may be used for that: Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, Lorenz-<br />

Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory;<br />

3.2.1 Rayleigh’ <strong>The</strong>ory<br />

Figure 3.7: Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> laser diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spherical particle.<br />

Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory demands that <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size is much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> incident<br />

light. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole particle behaves similarly in a homogeneous electric field. <strong>The</strong> incident light<br />

penetrates <str<strong>on</strong>g>the</str<strong>on</strong>g> particle due to <str<strong>on</strong>g>the</str<strong>on</strong>g> polarizability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle. <strong>The</strong> penetrati<strong>on</strong> time is short compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> incident light. Induced dipole moment is formed when electric charges <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> polar particle are<br />

forced apart by subjecting <str<strong>on</strong>g>the</str<strong>on</strong>g> particle to electromagnetic wave. Like so, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarized particle is created.<br />

<strong>The</strong> electric field and <str<strong>on</strong>g>the</str<strong>on</strong>g> dipole moment oscillate synchr<strong>on</strong>ously and <str<strong>on</strong>g>the</str<strong>on</strong>g> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dipole moment is<br />

downright to <str<strong>on</strong>g>the</str<strong>on</strong>g> incident light as in Figure 3.8, which also describes <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering to different<br />

directi<strong>on</strong>s [Xu, 2000].<br />

According to this <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam is assumed to not <strong>on</strong>ly be diffracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> particles, but<br />

is also reflected and diffused. <strong>The</strong> light will spread until <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> refracti<strong>on</strong> index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

propagati<strong>on</strong> envir<strong>on</strong>ment. This index variati<strong>on</strong> will create a refracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ochromatic beam; <str<strong>on</strong>g>the</str<strong>on</strong>g> laser<br />

will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> detector having been subjected to several variati<strong>on</strong>s in its propagati<strong>on</strong> directi<strong>on</strong>.<br />

Figure 3.8: Three dimensi<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering from a dipole.<br />

[Xu, 2000]<br />

3.2.2 Lorenz-Mie’ <strong>The</strong>ory<br />

Lorenz-Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory (or Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory) is more detailed and wider <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> light scattering than<br />

Rayleigh’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. It can be used for spherical particles which can be small, large, transparent or opaque.<br />

According to Lorenz-Mie <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle (primary<br />

scattering) can be predicted with <str<strong>on</strong>g>the</str<strong>on</strong>g> refractive indexes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle and <str<strong>on</strong>g>the</str<strong>on</strong>g> medium. Lorenz-Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

- 68 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

also caters <str<strong>on</strong>g>the</str<strong>on</strong>g> light refracti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> particle (sec<strong>on</strong>dary scattering) which is very important when particle<br />

diameter is below 50 μm. This is also menti<strong>on</strong>ed in <str<strong>on</strong>g>the</str<strong>on</strong>g> standard for laser diffracti<strong>on</strong> measurements (ISO<br />

133201) [Kippax, 2005]. According to Lorenz-Mie’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> spheres are symmetric<br />

with axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident light. Scattering minima and maxima are in different angles, if <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

particles vary. Figure 3.9, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracti<strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> two particles with different sizes [Xu, 2000].<br />

With large particle (solid line) <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity is str<strong>on</strong>ger than with small particle (dashed line) and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

minimum intensity is much closer to axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident light. <strong>The</strong> intensity peaks are in <str<strong>on</strong>g>the</str<strong>on</strong>g> same locati<strong>on</strong>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> both positive and negative angles because <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetrical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering. Very illustrative way<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> displaying <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity distributi<strong>on</strong> is also a radial graph as in Figure 3.9. <strong>The</strong> bold trace describes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered light in different angles [Xu, 2000].<br />

Figure 3.9: Scattering patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> two particles <str<strong>on</strong>g>of</str<strong>on</strong>g> a different size.<br />

[Xu, 2000]<br />

3.2.3 Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ <strong>The</strong>ory<br />

Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ <str<strong>on</strong>g>the</str<strong>on</strong>g>ory covers <str<strong>on</strong>g>the</str<strong>on</strong>g> light diffracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> aperture which is described in Fresnel-<br />

Kirch<str<strong>on</strong>g>of</str<strong>on</strong>g>f’ diffracti<strong>on</strong> integral [Brittain, 2003]. In Fresnel diffracti<strong>on</strong> (Figure 3.10-A), distances from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point source and <str<strong>on</strong>g>the</str<strong>on</strong>g> screen to <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle forming <str<strong>on</strong>g>the</str<strong>on</strong>g> diffracti<strong>on</strong> pattern are relatively short. In Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’<br />

diffracti<strong>on</strong> (Figure 3.10-B), <str<strong>on</strong>g>the</str<strong>on</strong>g> distances are much l<strong>on</strong>ger and all lines from <str<strong>on</strong>g>the</str<strong>on</strong>g> source to <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle and<br />

forward to <str<strong>on</strong>g>the</str<strong>on</strong>g> screen can be c<strong>on</strong>sidered parallel. In Figure 3.10-C, <str<strong>on</strong>g>the</str<strong>on</strong>g> lens forms smaller image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

diffracti<strong>on</strong> pattern which would be formed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> screen extremely far without <str<strong>on</strong>g>the</str<strong>on</strong>g> lens [Young and<br />

Freedman, 2000].<br />

(A) (B) (C)<br />

Figure 3.10: Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Fresnel’ diffracti<strong>on</strong> (A) and Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ diffracti<strong>on</strong> (B and C).<br />

[Young and Freedman, 2000]<br />

- 69 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er’ diffracti<strong>on</strong> assumes that <str<strong>on</strong>g>the</str<strong>on</strong>g> measured particles are opaque and scatter light at narrow<br />

angles. <strong>The</strong>refore it is applied <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g> large particles and gives incorrect results with <str<strong>on</strong>g>the</str<strong>on</strong>g> fine particles<br />

[Kippax, 2005].<br />

4 Sorpti<strong>on</strong> Analysis<br />

Sorpti<strong>on</strong> analyses have been carried out in order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymers at different pressures. <strong>The</strong> method used, which is proposed by Berens and Huvard [1989a]<br />

involves <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer pellets, followed by very rapid venting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber and<br />

transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets to a precisi<strong>on</strong> balance for recording <str<strong>on</strong>g>the</str<strong>on</strong>g> weight variati<strong>on</strong> during desorpti<strong>on</strong>. Recording<br />

with a video camera gives kinetic data <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong>, and since <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong> are linear (cf.<br />

Figure 3.11 for example for P = 125 bars), it allows to extrapolate to t = 0 sec (which is <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> period). This extrapolati<strong>on</strong> gives <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer in <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> period. Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is <str<strong>on</strong>g>the</str<strong>on</strong>g>n calculated by:<br />

w w0<br />

s (3.9)<br />

w<br />

where s is <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> (g CO 2 /g polymer), w is <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolated weight <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer and w 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer weight before <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment.<br />

Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50<br />

Wt.(gm)<br />

0.178<br />

0.176<br />

0.174<br />

0.172<br />

0.170<br />

0.168<br />

0.166<br />

y = -0.002x + 0.1935<br />

Polymer Weight<br />

Extrapolated Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer with Time<br />

0 5 10 15 20 25 30<br />

(t) 1/2 (sec) 1/2<br />

Figure 3.11: Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 with time.<br />

By changing <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time, kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer samples can be<br />

calculated.<br />

5 Microscopic Methods to Analyze Porous Structures<br />

5.1 Methods to Determine Porosity<br />

5.1.1 Geometric Porosity<br />

<strong>The</strong> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> a porous medium describes <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> void space in <str<strong>on</strong>g>the</str<strong>on</strong>g> material, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

void may c<strong>on</strong>tain, for example, air or water. It is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship:<br />

V<br />

<br />

V<br />

v<br />

(3.10)<br />

T<br />

where V v is <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> void-space (such as fluids) and V T is <str<strong>on</strong>g>the</str<strong>on</strong>g> total or bulk volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

material, including <str<strong>on</strong>g>the</str<strong>on</strong>g> solid and void comp<strong>on</strong>ents.<br />

- 70 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

In our analyses, <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and foams have been measured using a<br />

standard engineering caliber. <strong>The</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers is evaluated by v = πr 2 h, where r is <str<strong>on</strong>g>the</str<strong>on</strong>g> radius and<br />

h is <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and scaffolds. <strong>The</strong> P(%) porosity is calculated by:<br />

foamed<br />

P(%) (1 ) 100<br />

unfoamed<br />

(3.11)<br />

where unfoamed and foamed are <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and foams respectively.<br />

5.1.2 Mercury Porosimetry<br />

<strong>The</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores that exist in a typical porous sample is usually <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> milli<strong>on</strong>s,<br />

billi<strong>on</strong>s or even trilli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> solid. <strong>The</strong>se pores are generally interc<strong>on</strong>nected to each<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r by way <str<strong>on</strong>g>of</str<strong>on</strong>g> a sinuous 3-D pathway. In lattice models Mayagoitia et al., [1994], <str<strong>on</strong>g>the</str<strong>on</strong>g> porous space is<br />

distributed between two types <str<strong>on</strong>g>of</str<strong>on</strong>g> elements: <str<strong>on</strong>g>the</str<strong>on</strong>g> sites (cavities) and <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>ds (necks).<br />

<strong>The</strong> technique involves <str<strong>on</strong>g>the</str<strong>on</strong>g> intrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-wetting liquid (mercury) at high pressure into a<br />

material through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a porosimeter (cf. Figure 3.12-A). Hg porosimetry experiments comprise two<br />

stages. <strong>The</strong> first stage (intrusi<strong>on</strong>) starts with <str<strong>on</strong>g>the</str<strong>on</strong>g> immersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a porous sample in Hg. As <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> Hg<br />

is increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore entities are penetrated sequentially, i.e. from <str<strong>on</strong>g>the</str<strong>on</strong>g> largest to <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller <strong>on</strong>es according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> current value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> external pressure. <strong>The</strong> sec<strong>on</strong>d stage (retracti<strong>on</strong>) c<strong>on</strong>sists in <str<strong>on</strong>g>the</str<strong>on</strong>g> withdrawal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hg<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> pores. Since this last process involves <str<strong>on</strong>g>the</str<strong>on</strong>g> gradual decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> external pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> successi<strong>on</strong><br />

by which pores are emptied goes from <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest to <str<strong>on</strong>g>the</str<strong>on</strong>g> largest <strong>on</strong>es.<br />

(A)<br />

(B)<br />

Figure 3.12: (A): Hg porosimeter apparatus and (B): Pore size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA samples.<br />

[Ho et al., 2004]<br />

<strong>The</strong> pore size can be determined based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> external pressure needed to force <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid into a<br />

pore against <str<strong>on</strong>g>the</str<strong>on</strong>g> opposing force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid’s surface tensi<strong>on</strong>. A force balance equati<strong>on</strong> known as<br />

Washburn’s relati<strong>on</strong>ship (equati<strong>on</strong> 3.12), for <str<strong>on</strong>g>the</str<strong>on</strong>g> above material having cylindrical pores is given as:<br />

4..Cos<br />

PL - PG<br />

(3.12)<br />

D P<br />

where P L = pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid, P G = pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> gas, σ = surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid, θ = c<strong>on</strong>tact angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intrusi<strong>on</strong> liquid (i.e. mercury) and D P = pore diameter.<br />

As pressure increases, so does <str<strong>on</strong>g>the</str<strong>on</strong>g> cummulative pore volume. From <str<strong>on</strong>g>the</str<strong>on</strong>g> cummulative pore volume,<br />

<strong>on</strong>e can find <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter where 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total volume has been added to give <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 71 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

median pore diameter. As example for P L LA, a Hg typical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores is presented in Figure 3.12-B<br />

[Ho et al., 2004].<br />

5.1.3 X-ray Microtomography<br />

Trater et al. [2005] have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-invasive 3-D X-ray microtomography (XMT)<br />

for microstructure characterizati<strong>on</strong>. Moreover, XMT generated images were more c<strong>on</strong>ducive to digital<br />

image processing than SEM images because <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘razorthin’ depth <str<strong>on</strong>g>of</str<strong>on</strong>g> focus and sharp c<strong>on</strong>trast between solid<br />

and void areas. This technique has been widely used for <str<strong>on</strong>g>the</str<strong>on</strong>g> in vivo imaging <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, insects, animals and<br />

humans. X-ray microtomography is a n<strong>on</strong> destructive technique that provides a reas<strong>on</strong>able level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resoluti<strong>on</strong> (~ 5 – 20 m). <strong>The</strong> X-ray microtomography approach is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> computer aided<br />

tomography (CT) medical imaging technique. X-rays are directed from a high-power source toward a<br />

sample, and a detector <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample measures <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transmitted X-rays<br />

(see Figure 3.13-A).<br />

(A)-Schematic reprensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CT. (B)-Example <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis with P L LA/Silica.<br />

Figure 3.13: CT principle and images <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA/Silica sample.<br />

[Collins et al., 2010; Hancock and Mullarney, 2005]<br />

A two-dimensi<strong>on</strong>al “shadow” image is produced by accurately rastering <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray beam across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample. <strong>The</strong> sample <str<strong>on</strong>g>the</str<strong>on</strong>g>n is carefully moved relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray beam, and <str<strong>on</strong>g>the</str<strong>on</strong>g> process is repeated to<br />

produce additi<strong>on</strong>al two-dimensi<strong>on</strong>al images from various view points. Using a Fourier transform algorithm,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two-dimensi<strong>on</strong>al images <str<strong>on</strong>g>the</str<strong>on</strong>g>n are combined to generate a complete three-dimensi<strong>on</strong>al map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample.<br />

<strong>The</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> X-rays reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> detector is c<strong>on</strong>trolled by <str<strong>on</strong>g>the</str<strong>on</strong>g> sample path length and <str<strong>on</strong>g>the</str<strong>on</strong>g> X-ray<br />

attenuati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material that it encounters <strong>on</strong> that path [Cao et al., 2003]. <strong>The</strong> varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

signal intensity provide a gray-scale in <str<strong>on</strong>g>the</str<strong>on</strong>g> images (see Figure 3.13-B) from which informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

thickness, and attenuati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample can be deduced.<br />

5.2 Scanning Electr<strong>on</strong> Microscopy Observati<strong>on</strong>s<br />

Electr<strong>on</strong> microscopy is a technique based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>-matter interacti<strong>on</strong>s, capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> producing high-resoluti<strong>on</strong> images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample. A focused electr<strong>on</strong> beam is deflected<br />

through electromagnetic lenses, scans <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample for analysis which, in resp<strong>on</strong>se, re-emits<br />

different types <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s (cf. Figure 3.14). <strong>The</strong> signals that derive from electr<strong>on</strong>-sample interacti<strong>on</strong>s<br />

reveal informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> sample including external morphology (texture), chemical compositi<strong>on</strong>, and<br />

pore size, pore structure and orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials making up <str<strong>on</strong>g>the</str<strong>on</strong>g> sample. In most applicati<strong>on</strong>s, data are<br />

collected over a selected area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample, and a 2-dimensi<strong>on</strong>al image is generated that<br />

displays spatial variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>se properties. magnificati<strong>on</strong> ranging from 20× to approximately 30,000×.<br />

- 72 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Figure 3.14: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s beam <strong>on</strong> specimen surface.<br />

5.2.1 Bases <str<strong>on</strong>g>of</str<strong>on</strong>g> Image Analysis<br />

SCION ® Image was originally developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Institutes <str<strong>on</strong>g>of</str<strong>on</strong>g> Health, a federal<br />

government agency. Basic image properties like c<strong>on</strong>trast, brightness and gamma can be optimized. For<br />

particle analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> most important property is <str<strong>on</strong>g>the</str<strong>on</strong>g> grey level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image which can be segmented to<br />

reduce different shades [Niemistö, 2006].<br />

Segmentati<strong>on</strong> means <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image; a foreground objects like<br />

particles from a background <str<strong>on</strong>g>of</str<strong>on</strong>g> image. In <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size and shape analysis segmentati<strong>on</strong> has to be d<strong>on</strong>e with<br />

very high accuracy because <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle is dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> segmentati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis have to be reliable [Niemistö, 2006]. Segmentati<strong>on</strong> can base <strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r disc<strong>on</strong>tinuity or<br />

similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity values. Disc<strong>on</strong>tinuity methods find abrupt changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity and separate<br />

various regi<strong>on</strong>s <strong>on</strong> that way. Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> similarity needs predefined criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity value and<br />

separate regi<strong>on</strong>s based <strong>on</strong> that.<br />

Thresholding, clustering, regi<strong>on</strong> growing, regi<strong>on</strong> merging and regi<strong>on</strong> splitting are methods which<br />

are included in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> similarity methods [Niemistö, 2006]. Thresholding is a central method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

segmentati<strong>on</strong> due to its simple and intuitive properties. It separates bright foreground objects <strong>on</strong> a dark<br />

background and can be defined as:<br />

(3.13)<br />

where f(x) = grey level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point x, f T (x) = <str<strong>on</strong>g>the</str<strong>on</strong>g> respective point in <str<strong>on</strong>g>the</str<strong>on</strong>g> thresholded image and T<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold.<br />

If a pixel in f T gets value 1, it is called a foreground (or object point) and if it gets value 0, it is<br />

called a background. Threshold T can be <str<strong>on</strong>g>the</str<strong>on</strong>g> same for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole image (global threshold) or <str<strong>on</strong>g>the</str<strong>on</strong>g>re can be<br />

different thresholds in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image (local threshold) [Niemistö, 2006]. <strong>The</strong> transiti<strong>on</strong> between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> object point and <str<strong>on</strong>g>the</str<strong>on</strong>g> background may be so unsteady that a human can’t decide where <str<strong>on</strong>g>the</str<strong>on</strong>g> borders<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> object and <str<strong>on</strong>g>the</str<strong>on</strong>g> background exactly go.<br />

Many papers are published <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold since 1960’s. <strong>The</strong> most<br />

comm<strong>on</strong>ly used method is created by Otsu [1979]. That method maximizes <str<strong>on</strong>g>the</str<strong>on</strong>g> class variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grey<br />

levels between <str<strong>on</strong>g>the</str<strong>on</strong>g> objects and <str<strong>on</strong>g>the</str<strong>on</strong>g> background and minimizes <str<strong>on</strong>g>the</str<strong>on</strong>g> intra-class variance. Usually threshold is<br />

selected from a histogram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> image. If <str<strong>on</strong>g>the</str<strong>on</strong>g> histogram is bimodal threshold should be selected between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

modes because supposedly a <strong>on</strong>e mode represents <str<strong>on</strong>g>the</str<strong>on</strong>g> foreground and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e represents <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 73 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

background. Otsu’s method can be used if <str<strong>on</strong>g>the</str<strong>on</strong>g> histogram has even <strong>on</strong>e or two modes. Figure 3.15 shows an<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> thresholding [Niemistö, 2006].<br />

14<br />

12<br />

2D Graph 4<br />

10<br />

Frequency<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

100<br />

200<br />

300<br />

400<br />

500<br />

1000<br />

1500<br />

2000<br />

2500<br />

3000<br />

3500<br />

4000<br />

More<br />

(A)-Original image (B)-Threshold image (C)- Histogram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore data obtained<br />

Figure 3.15: SCION ® Image processing and pore data retrieval.<br />

5.2.2 Morphological Filtering<br />

<strong>The</strong> two fundamental morphological operati<strong>on</strong>s are erosi<strong>on</strong> and dilati<strong>on</strong>. Erosi<strong>on</strong> is thus<br />

equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum filter having a sliding window that is equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element.<br />

Dilati<strong>on</strong> is thus equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum filter having a sliding window that is equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

structuring element. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> binary images, <str<strong>on</strong>g>the</str<strong>on</strong>g> output <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> is zero unless all <str<strong>on</strong>g>the</str<strong>on</strong>g> samples in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sliding window are <strong>on</strong>es, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> output <str<strong>on</strong>g>of</str<strong>on</strong>g> dilati<strong>on</strong> is <strong>on</strong>e unless all <str<strong>on</strong>g>the</str<strong>on</strong>g> samples are zeros. Erosi<strong>on</strong><br />

shrinks foreground objects and expands <str<strong>on</strong>g>the</str<strong>on</strong>g>ir background, whereas dilati<strong>on</strong> expands <str<strong>on</strong>g>the</str<strong>on</strong>g> foreground objects<br />

and shrinks <str<strong>on</strong>g>the</str<strong>on</strong>g>ir background.<br />

Figure 3.16 (A) depicts a binary image and a square-shaped structuring element (top left corner).<br />

Figure 3.16 (B) and (C) show <str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong> and dilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this image by <str<strong>on</strong>g>the</str<strong>on</strong>g> square-shaped structuring<br />

element. <strong>The</strong> morphological opening and closing are morphological operati<strong>on</strong>s that are very useful in image<br />

processing. Erosi<strong>on</strong> first removes all objects in <str<strong>on</strong>g>the</str<strong>on</strong>g> image that cannot c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element and<br />

shrinks all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects. When <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained image is dilated by <str<strong>on</strong>g>the</str<strong>on</strong>g> reflected structuring element, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

objects that have been removed are naturally not recovered. <strong>The</strong> objects that have not been removed by<br />

erosi<strong>on</strong> are restored in such a way that protrusi<strong>on</strong>s that cannot c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element remain<br />

removed. <strong>The</strong> morphological opening can thus be used to remove small objects and to smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tours <str<strong>on</strong>g>of</str<strong>on</strong>g> larger objects. An example is shown in Figure 3.16 (D).<br />

Bin<br />

(A) (B) (C) (D) (E)<br />

Figure 3.16: (A): A binary image and a structuring element (top left corner).(B): Erosi<strong>on</strong> (C): Dilati<strong>on</strong><br />

(D): Opening (E): Closing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original image.<br />

<strong>The</strong> morphological closing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> dilati<strong>on</strong> followed by<br />

erosi<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> reflected structuring element. Dilati<strong>on</strong> first fills all background structures that cannot c<strong>on</strong>tain<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element and expands all objects. When <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained image is eroded by <str<strong>on</strong>g>the</str<strong>on</strong>g> reflected<br />

structuring element, <str<strong>on</strong>g>the</str<strong>on</strong>g> filled background structures naturally remain filled. <strong>The</strong> expanded objects are<br />

restored in such a way that indentati<strong>on</strong>s that cannot c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> structuring element remain filled. <strong>The</strong><br />

- 74 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

morphological closing can thus be used to fill small holes in <str<strong>on</strong>g>the</str<strong>on</strong>g> objects and to smooth <str<strong>on</strong>g>the</str<strong>on</strong>g> object c<strong>on</strong>tours.<br />

An example is shown in Figure 3.16 (E) [Niemistö, 2006].<br />

<strong>The</strong> morphological opening completes first erosi<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> structural element and <str<strong>on</strong>g>the</str<strong>on</strong>g>n dilati<strong>on</strong> by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reflected structuring element. Erosi<strong>on</strong> shrinks objects which can c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> structural element and<br />

removes o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objects. If some object is removed in erosi<strong>on</strong>, it is not recovered in dilati<strong>on</strong>. Opening<br />

operati<strong>on</strong> can be used to remove small foreground objects and to smooth <str<strong>on</strong>g>the</str<strong>on</strong>g> larger objects. <strong>The</strong><br />

morphological closing completes first <str<strong>on</strong>g>the</str<strong>on</strong>g> dilati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong>. Dilati<strong>on</strong> expands all <str<strong>on</strong>g>the</str<strong>on</strong>g> foreground<br />

objects and fills <str<strong>on</strong>g>the</str<strong>on</strong>g> background structure, if it is smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> structural element. <strong>The</strong>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> closing<br />

operati<strong>on</strong> can be used to fill small holes and to smooth <str<strong>on</strong>g>the</str<strong>on</strong>g> objects [Niemistö, 2006].<br />

6 Macroscopic Methods<br />

6.1 Mechanical Brazilian Tests<br />

6.1.1 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Test<br />

<strong>The</strong> direct testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensile strength <str<strong>on</strong>g>of</str<strong>on</strong>g> brittle materials is very complex. <strong>The</strong>ir disadvantage is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> low part <str<strong>on</strong>g>of</str<strong>on</strong>g> volume that is actually charged with <str<strong>on</strong>g>the</str<strong>on</strong>g> load and <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples<br />

surface and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dimensi<strong>on</strong>s. Brazilian Test is an indirect measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensile strength and <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance<br />

to uniaxial tensile loads without yielding or fracture <str<strong>on</strong>g>of</str<strong>on</strong>g> brittle materials. <strong>The</strong> equipment comprises:<br />

<br />

A loading frame, 25 kN capacity, having a base and a cross head joined toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with two solid<br />

pillars with nuts. At <str<strong>on</strong>g>the</str<strong>on</strong>g> top, <str<strong>on</strong>g>the</str<strong>on</strong>g> pillars have l<strong>on</strong>g threads for height adjustment. On <str<strong>on</strong>g>the</str<strong>on</strong>g> base, a 25<br />

kN hydraulic jack is c<strong>on</strong>trolled by a computer. This jack has an integral pumping unit and oil<br />

reservoir. A 25 kN capacity pressure gauge is fixed to <str<strong>on</strong>g>the</str<strong>on</strong>g> jack for indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> load <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

specimen (cf. Figure 3.17).<br />

Figure 3.17: H25KS Brazilian testing equipment.<br />

<br />

A Brazilian specimen, cylinder with approximately thickness half <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter or at least 2 mm.<br />

<strong>The</strong> sample was clamped into two jaws <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> machine.<br />

Fairhurst [1964] and Wijk [1978] looked at <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method from a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

perspective and favoured this method to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> point-load test. Clarke [1992] found that <str<strong>on</strong>g>the</str<strong>on</strong>g> crack<br />

initiates in <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen and that stress c<strong>on</strong>centrati<strong>on</strong>s built up around <str<strong>on</strong>g>the</str<strong>on</strong>g> loading plates<br />

effectively hindering crack propagati<strong>on</strong> in that area. Yu et al. [2006] have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> method both<br />

practically and <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically and have c<strong>on</strong>cluded that results given by <str<strong>on</strong>g>the</str<strong>on</strong>g> two methods are comparable. <strong>The</strong><br />

method <str<strong>on</strong>g>of</str<strong>on</strong>g> breakage is well documented and has <str<strong>on</strong>g>the</str<strong>on</strong>g> term ‘hourglasses’ associated with it.<br />

<br />

This leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> special advantages, summarized as follows:<br />

Simple sample geometry low effort, cost reducti<strong>on</strong>.<br />

- 75 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<br />

<br />

<br />

<br />

Small influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface quality: cost reducti<strong>on</strong>, time reducti<strong>on</strong>.<br />

Small samples: more samples per volume; testing <str<strong>on</strong>g>of</str<strong>on</strong>g> fragments possible.<br />

Large effectively loaded volume.<br />

Low variati<strong>on</strong>: higher precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single values, required number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples is lower, higher<br />

reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measured values.<br />

<strong>The</strong> relati<strong>on</strong>ship between applied forces and yield loads is given by:<br />

σ t = - 2.F/.D.t (3.14)<br />

where σ t = splitting (brazilian) tensile strength (MPa), F = load at (splitting) failure (N),<br />

t = average specimen thickness (mm), and D = diameter (mm) [Yu et al., 2006].<br />

Figure 3.18 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Brazilian test (A) and <str<strong>on</strong>g>the</str<strong>on</strong>g> modelling by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite elements<br />

method (B). Figure 3.22 (C) is representative <str<strong>on</strong>g>of</str<strong>on</strong>g> stress c<strong>on</strong>centrati<strong>on</strong>s and (D) <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical fracture pattern.<br />

Figure 3.18: (A): Principle, (B): Load geometry, (C): Simulati<strong>on</strong> and (D): Cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> a Brazilian disk test.<br />

[Rasch et al., 2005]<br />

6.1.2 Compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Porous Materials<br />

In b<strong>on</strong>e and tissue engineering applicati<strong>on</strong>s, porous scaffolds depending up<strong>on</strong> applicati<strong>on</strong>s must<br />

have sufficient mechanical strength to restrain <str<strong>on</strong>g>the</str<strong>on</strong>g>ir initial structures after implantati<strong>on</strong> in vivo. <strong>The</strong> ASTM<br />

terminology for porous materials is classified into three groups: interc<strong>on</strong>necting pores (open pores), n<strong>on</strong>c<strong>on</strong>necting<br />

pores (closed pores) or a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both, <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold falling in each group has specific<br />

properties [Hutmacher et al., 2008]. When pores are open, <str<strong>on</strong>g>the</str<strong>on</strong>g> foam material is usually drawn into struts<br />

forming <str<strong>on</strong>g>the</str<strong>on</strong>g> pore edges through open faces forming a low density solid. When <str<strong>on</strong>g>the</str<strong>on</strong>g> pores are closed, a<br />

network <str<strong>on</strong>g>of</str<strong>on</strong>g> interc<strong>on</strong>nected plates produces a high density solid. <strong>The</strong> closed pores are sealed <str<strong>on</strong>g>of</str<strong>on</strong>g>f from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

neighbouring pores. <strong>The</strong> interc<strong>on</strong>necting pores are critical parameter in designing a tissue engineering<br />

scaffold. <strong>The</strong> interc<strong>on</strong>necting pores should be large enough to support cell migrati<strong>on</strong> and proliferati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

initial stages [Hutmacher et al., 2008]. A large interc<strong>on</strong>necti<strong>on</strong> means a low density solid, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore low<br />

mechanical structure.<br />

- 76 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<strong>The</strong>re is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a compromise between porosity and scaffold mechanical characteristics. <strong>The</strong>refore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> biomechanical challenge in designing a scaffold is to achieve sufficient stiffness and strength in a highly<br />

porous structure to provide mechanical integrity [Zhang and Ma, 1999a]. <strong>The</strong> biostability <str<strong>on</strong>g>of</str<strong>on</strong>g> many implants<br />

depends <strong>on</strong> factors such as strength, stiffness, absorpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> material interface and chemical degradati<strong>on</strong><br />

[Hutmacher et al., 2008]. <strong>The</strong> review by Gibs<strong>on</strong> and Ashby [1999], c<strong>on</strong>cluded <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a porous solid depended mainly <strong>on</strong> its relative density, <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material that made up <str<strong>on</strong>g>the</str<strong>on</strong>g> pore<br />

edges or walls and anisotropic nature cause <str<strong>on</strong>g>of</str<strong>on</strong>g> processing technique.<br />

<strong>The</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> and failure <str<strong>on</strong>g>of</str<strong>on</strong>g> foam depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and physical characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> used materials and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> macrostructure behaviour under compressi<strong>on</strong>. <strong>The</strong> macrostructure <str<strong>on</strong>g>of</str<strong>on</strong>g> glassy<br />

foam c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> closed cells. <strong>The</strong> main part <str<strong>on</strong>g>of</str<strong>on</strong>g> its mass is c<strong>on</strong>centrated at <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes and juncti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cells. <strong>The</strong> deformati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material under compressi<strong>on</strong> occur according to <str<strong>on</strong>g>the</str<strong>on</strong>g> stress-strain<br />

diagram. Three mechanical states are marked by points A, B, C <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph representing <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foam sample (cf. Figure 3.19). A corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> end point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic regi<strong>on</strong>; B marked <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plastic regi<strong>on</strong> and C <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam. <strong>The</strong> compressive elastic (plastic) modulus can be deduced from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding curve.<br />

Figure 3.19: Compressi<strong>on</strong> testing result output for foams<br />

[Gnip et al., 2004]<br />

Compressi<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main stressed states <str<strong>on</strong>g>of</str<strong>on</strong>g> foam used in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> medical applicati<strong>on</strong>s.<br />

<strong>The</strong> yielding point A describes compressive strength. For <str<strong>on</strong>g>the</str<strong>on</strong>g> foams with a stress peak, A is<br />

defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> peak value. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> no stress peak, at highly porous foams, A can be obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intersecti<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> two tangent lines besides <str<strong>on</strong>g>the</str<strong>on</strong>g> flexure regi<strong>on</strong>. Two alternative parameters were also used<br />

to characterize compressive strength. For instance, S is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stress–strain curve<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus slope at an <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% strain adopting <str<strong>on</strong>g>the</str<strong>on</strong>g> guidelines for compressi<strong>on</strong> testing <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e<br />

cement set in ASTM F451-99a, and 10 is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> stress at 10 % strain according to ISO 844-2004 for<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compressive properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid cellular foams. <strong>The</strong> compressi<strong>on</strong> stress B corresp<strong>on</strong>ds to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flexural deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cell walls when <str<strong>on</strong>g>the</str<strong>on</strong>g>ir stability is lost [Gnip et al., 2004]. It can<br />

also be denoted as stress corresp<strong>on</strong>ding to maximum possible compacti<strong>on</strong> σ comp. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> damaged elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foam macrostructure.<br />

6.2 Surface Energy Experiments<br />

Surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid is <str<strong>on</strong>g>the</str<strong>on</strong>g> force required per unit length to stretch a pre-existing surface<br />

(N/m) while <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid is <str<strong>on</strong>g>the</str<strong>on</strong>g> work required per unit area to create a new surface (J/m 2 ).<br />

<strong>The</strong> surface tensi<strong>on</strong> is an intensely sensitive indicator that provides a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

characteristics (e.g. wetting, foaming, emulsificati<strong>on</strong>…) <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid. It is obvious that a high liquid surface<br />

- 77 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

tensi<strong>on</strong> causes low wetting properties. A high solid surface energy (mostly hydrophilic), <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

means that <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces between <str<strong>on</strong>g>the</str<strong>on</strong>g> solid material and <str<strong>on</strong>g>the</str<strong>on</strong>g> air are not favourable in a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic sense.<br />

<strong>The</strong>refore, high surface energy solids are easily wetted by liquids (cf. Figure 3.20). Wetting <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid<br />

eliminates <str<strong>on</strong>g>the</str<strong>on</strong>g> solid-air interface in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid-liquid interface. Interacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> solid surface<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid are resulting in a lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> energy state, which is a more favourable state [Lazghab et al.,<br />

2005; Shaw, 1992].<br />

Figure 3.20: Wetting <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophilic and hydrophobic samples.<br />

6.2.1 Surface Tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Liquids<br />

Different liquids may be used in surface tensi<strong>on</strong> measurements but in general chosen liquids have<br />

relatively low viscosity and low volatility. Van der Waals forces result to <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

comp<strong>on</strong>ents: d dispersive and nd n<strong>on</strong> dispersive or attractive forces (polar forces and hydrogen b<strong>on</strong>ds). We<br />

can write: = d + nd .<br />

In some apolar molecules, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist important intermolecular forces but no permanent dipolar<br />

moment. When two molecules are in <str<strong>on</strong>g>the</str<strong>on</strong>g> proximity, instantaneous dipoles interact via L<strong>on</strong>d<strong>on</strong> forces. In<br />

polar molecules, permanent attractive forces create special arrangement increasing stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> couple<br />

(Debye and Keesom forces). Interacti<strong>on</strong>s between apolar molecules and polar surface are limited to <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

attractive interacti<strong>on</strong>s and nd L polar forces are c<strong>on</strong>stituted by <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two forces. A special attenti<strong>on</strong><br />

must be paid when a hydrogen atom is linked to an electr<strong>on</strong>egative atom. <strong>The</strong> electr<strong>on</strong>egative atom exerts an<br />

important attractive force <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unique hydrogen atom and forms hydrogen b<strong>on</strong>ds. Also, even if <str<strong>on</strong>g>the</str<strong>on</strong>g>se types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>ships fit for <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> forces, and possibly also for some polar (Debye and Keesom forces),<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are not so good for acid/base and hydrogen b<strong>on</strong>ding.<br />

For this, Oss [2006, 1994] have proposed o<str<strong>on</strong>g>the</str<strong>on</strong>g>r combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energies. <strong>The</strong> argument is<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, <str<strong>on</strong>g>the</str<strong>on</strong>g> polar (Keesom and Debye) forces are weak, and can be included in <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersive<br />

c<strong>on</strong>tributi<strong>on</strong>. <strong>The</strong> "combined" c<strong>on</strong>tributi<strong>on</strong> is denoted by LW (Lifschitz-van der Waals). In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

a short-range interacti<strong>on</strong> that is caused by acid-base interacti<strong>on</strong>s (hydrogen b<strong>on</strong>ding is a type <str<strong>on</strong>g>of</str<strong>on</strong>g> Acid-Base).<br />

In that case, we write: = LW + AB .<br />

<strong>The</strong>re are several comm<strong>on</strong> methods described in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature for measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

liquids. <strong>The</strong> surface tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids can be directly determined by measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> surface force with a Du<br />

Noüy ring or a Wilhelmy plate for example. <strong>The</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy is necessary indirect In<br />

literature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several methods to measure <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tact angle with a liquid [Petrie, 2000]. By using a<br />

given model, we <strong>on</strong>ly can estimate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surface energy.<br />

- 78 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

6.2.1.1 Du Noüy Ring Method<br />

In this method, a clean platinum ring (cf. Figure 3.21) is placed under <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test liquid,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid is slowly moved downward until <str<strong>on</strong>g>the</str<strong>on</strong>g> ring or plate breaks through <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface. <strong>The</strong> force<br />

is recorded, and by means <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate c<strong>on</strong>versi<strong>on</strong> factors, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid is calculated.<br />

6.2.1.2 Wilhelmy Plate Method<br />

Figure 3.21: <strong>The</strong> Du Noüy’ ring method.<br />

A sec<strong>on</strong>d method to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface tensi<strong>on</strong> involves <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a pre-weighed plate and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> wetting forces. <strong>The</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid is raised until c<strong>on</strong>tact between <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> plate is registered. C<strong>on</strong>tact between <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid and <str<strong>on</strong>g>the</str<strong>on</strong>g> plate induces a change <str<strong>on</strong>g>of</str<strong>on</strong>g> working forces <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plate, which is measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensiometer. <strong>The</strong>re are 3 forces acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate: <str<strong>on</strong>g>the</str<strong>on</strong>g> force due to (1)<br />

vertical gravity, (2) wetting and (3) buoyancy. By using a pre-weighed plate, <str<strong>on</strong>g>the</str<strong>on</strong>g> tensiometer can exclude <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gravity force and by extrapolating <str<strong>on</strong>g>the</str<strong>on</strong>g> measured forces back to zero depth <str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> buoyancy force<br />

can also be excluded. <strong>The</strong> <strong>on</strong>ly force left, <str<strong>on</strong>g>the</str<strong>on</strong>g> wetting force (F w ), is <str<strong>on</strong>g>the</str<strong>on</strong>g>n easily measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensiometer<br />

[Mykhaylyk et al., 2003; Ga<strong>on</strong>kar and Neuman, 1984].<br />

A high surface energy (platinum plate) is used in this approach, with <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tact angle (θ) liquid-platinum plate is 0° (Figure 3.22). As a c<strong>on</strong>sequence, <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid-vapour surface<br />

tensi<strong>on</strong> can be calculated as follows: F w = γ LV L cos θ, where γ LV is <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid-vapour surface tensi<strong>on</strong>, L <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wetted length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate (twice <str<strong>on</strong>g>the</str<strong>on</strong>g> width and length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate) and θ <str<strong>on</strong>g>the</str<strong>on</strong>g> plate-liquid c<strong>on</strong>tact angle<br />

[Mykhaylyk et al., 2003; Ga<strong>on</strong>kar and Neuman, 1984].<br />

Figure 3.22: <strong>The</strong> Wilhelmy’ plate method with a platinum plate.<br />

Its biggest advantage is that <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface tensi<strong>on</strong> is analyzed at a fixed point, resulting in a<br />

static determinati<strong>on</strong> method. After <str<strong>on</strong>g>the</str<strong>on</strong>g> plate is immersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid and equilibrium has settled, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate or liquid which results in a higher accuracy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g> Wilhelmy’ plate method<br />

allows determining <str<strong>on</strong>g>the</str<strong>on</strong>g> surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous liquids [Mykhaylyk et al., 2003; Ga<strong>on</strong>kar and Neuman,<br />

1984].<br />

- 79 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

6.2.1.3 Lucas-Washburn’ Method<br />

This approach is also known as <str<strong>on</strong>g>the</str<strong>on</strong>g> capillary rise method. It determines <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle by<br />

analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> capillary rise <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids into a porous powder. It is a very simple and universally applicable<br />

method and is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore comm<strong>on</strong>ly used. <strong>The</strong> set up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment is d<strong>on</strong>e by adding a porous powder to<br />

a glass tube with a filter <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom. <strong>The</strong> glass tube with powder is densified and attached to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tensiometer. <strong>The</strong> liquid with known density (ρ), viscosity (η), and surface tensi<strong>on</strong> (γ LV ) is placed at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensiometer and its level is subsequently raised until c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> filter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass tube is<br />

registered (cf. Figure 3.23). Via capillary forces, <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid rises through <str<strong>on</strong>g>the</str<strong>on</strong>g> porous powder and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase<br />

in weight is measured by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensiometer, resulting in a graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> square mass plotted against <str<strong>on</strong>g>the</str<strong>on</strong>g> time.<br />

<strong>The</strong> equati<strong>on</strong> that fits this graph is [Dang-Vu and Hupka, 2005; Kiesvaara and Yliruusi, 1993].<br />

l s /t = ( r.Cos (3.15)<br />

where l s is <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid; t is <str<strong>on</strong>g>the</str<strong>on</strong>g> time; l is <str<strong>on</strong>g>the</str<strong>on</strong>g> superficial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid, r is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

capillary radius; θ is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle and η is <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid viscosity.<br />

Figure 3.23: Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> Wasburn’ method.<br />

6.2.1.4 Surface Tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Classical Liquids<br />

<strong>The</strong> liquids used must be characterized such that <str<strong>on</strong>g>the</str<strong>on</strong>g> polar and dispersive comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

surface tensi<strong>on</strong>s are known. Classical liquids chosen in experiments are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r polar as pure water and<br />

ethylene glycol or apolar as -brom<strong>on</strong>aphtalene (cf. Table 3.1).<br />

Table 3.1: Surface tensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various liquids.<br />

Liquids γ L (mJ/m 2 ) γ d L (mJ/m 2 ) γ nd L (mJ/m 2 ) γ − L (mJ/m 2 ) γ + L (mJ/m 2 )<br />

Water 72.75 21.75 51.00 25.20 25.50<br />

Glycerol 64 34 30 3.92 57.4<br />

Formamide 58.00 39.00 19.00 2.28 39.60<br />

Ethylene Glycol 48.00 29.00 19.00 1.92 47.00<br />

Diiodomethane 50.80 50.80 0.00 0.00 0.00<br />

brom<strong>on</strong>aphtalene 44.40 44.40 0.00 0.00 0.00<br />

[Oss, 2006, 1994]<br />

6.2.2 Surface Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids<br />

6.2.2.1 Young-Dupré’ Equati<strong>on</strong><br />

<strong>The</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid sample (γ SV ) is difficult since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no direct<br />

method to measure it. <strong>The</strong> result will remain an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual value [Mykhaylyk et al., 2003]. In<br />

1805, Young described <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle and <str<strong>on</strong>g>the</str<strong>on</strong>g> different surface tensi<strong>on</strong>s (Figure 3.24<br />

and equati<strong>on</strong> 3.19):<br />

- 80 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Figure 3.24: Vectorial equilibrium for a drop <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid resting <strong>on</strong> a solid surface to balance three forces.<br />

SV<br />

SL LV Cos<br />

(3.16)<br />

<br />

<br />

SV SL<br />

cos <br />

(3.17)<br />

LV<br />

where γ LV denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid-gas surface, γ SL refers to <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial<br />

tensi<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> solid-liquid surface and γ SV indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid-gas surface.<br />

In Young-Dupré equati<strong>on</strong>, two parameters can be measured directly: <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface tensi<strong>on</strong><br />

(γ LV ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle (θ). <strong>The</strong> two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters (γ SV and γ SL ) have to be derived. <strong>The</strong> c<strong>on</strong>tact angle<br />

measurements give 3 informati<strong>on</strong>s:<br />

<br />

<br />

<br />

<strong>The</strong> affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid to a solid surface: if water is used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle, <strong>on</strong>e can<br />

deduce <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrophobic (great angle) or hydrophilic (small angle) character <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

If several reference liquids are used, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid can be calculated, discriminating<br />

between polar and dispersive comp<strong>on</strong>ents. <strong>The</strong> most comm<strong>on</strong> models used are <str<strong>on</strong>g>the</str<strong>on</strong>g> Good & Van Oss<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> Owens & Wendt models.<br />

<strong>The</strong> measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hysteresis between advancing angle and recessing angle give informati<strong>on</strong>s <strong>on</strong><br />

n<strong>on</strong> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface (roughness , c<strong>on</strong>taminati<strong>on</strong>, etc.).<br />

<strong>The</strong>oretically, <str<strong>on</strong>g>the</str<strong>on</strong>g> Young-Dupré’ equati<strong>on</strong> is correct, but as it is based <strong>on</strong> ideal surfaces<br />

(homogeneous, pure, smooth), it is experimentally difficult to obtain. C<strong>on</strong>sidering this, a range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact<br />

angles is obtained, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smoothness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and with a maximum and minimum possible<br />

value. <strong>The</strong> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum c<strong>on</strong>tact angle (θ A ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum or receding c<strong>on</strong>tact angle<br />

(θ R ) is referred as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle hysteresis (Δθ= θ A − θ R ) [Possart and Kamusewitz, 2003].<br />

6.2.2.2 Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Owens-Wendt : Two Comp<strong>on</strong>ents <strong>The</strong>ory<br />

Owens and Wendt [1969] c<strong>on</strong>sidered that <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy is expressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> form:<br />

S = γ S d + γ S<br />

p<br />

(3.18)<br />

with γ S d dispersive (or apolar) and γ S p polar (or n<strong>on</strong>-dispersive) comp<strong>on</strong>ents.<br />

Following <str<strong>on</strong>g>the</str<strong>on</strong>g> work that Fowkes pi<strong>on</strong>eered in 1962, [Fowkes, 1962] <str<strong>on</strong>g>the</str<strong>on</strong>g> different surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solid (γ SV , γ SL and γ LV ) can be split into two comp<strong>on</strong>ents: polar and dispersive fracti<strong>on</strong>s. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

assumpti<strong>on</strong> that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> same type <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> (polar and/or dispersive) can occur between both phases.<br />

Owens and Wendt [1969] proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>:<br />

d d 1/ 2 p p 1/ 2<br />

12<br />

1<br />

2 2[( 1<br />

. <br />

2<br />

) ( 1<br />

. <br />

2<br />

) ]<br />

(3.19)<br />

- 81 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

where γ 12 is <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact regi<strong>on</strong> between phase 1 and 2, γ 1 (γ 2 ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> surface<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase 1 (phase 2) and <str<strong>on</strong>g>the</str<strong>on</strong>g> exp<strong>on</strong>ents γ d (γ p ) corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersive fracti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> polar<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy.<br />

<strong>The</strong> force needed to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact regi<strong>on</strong> between two immiscible phases relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> force<br />

needed to extend each phase separately minus <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y have with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

<strong>The</strong>rmodynamically this equati<strong>on</strong> can be interpretated as follows: each substance is seeking for <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest<br />

energy possible. Since a surface has a higher energy state, each phase tries to reduce its surface area. When<br />

two immiscible liquids are combined, a c<strong>on</strong>tact regi<strong>on</strong> is formed between both. To extend this regi<strong>on</strong>, energy<br />

is needed. This energy depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy needed to break <str<strong>on</strong>g>the</str<strong>on</strong>g> bindings <str<strong>on</strong>g>of</str<strong>on</strong>g> each phase separately minus<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>y have with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. This negative sign is explained since, by creating two new<br />

surfaces, new interacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> different phases will occur, causing a lower energy and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore a<br />

more favourable state. C<strong>on</strong>sidering equati<strong>on</strong> 3.19, <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> can be set up in order to describe<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid sample with a liquid:<br />

<br />

SL<br />

d d 1/<br />

2 p p 1/ 2<br />

SV LV 2[( <br />

SV<br />

. <br />

LV ) ( <br />

SV<br />

. <br />

LV ) ]<br />

(3.20)<br />

where γ SL = solid-liquid surface energy, γ SV = solid-vapour surface energy, γ LV = liquid-vapour<br />

surface tensi<strong>on</strong>, γ d = dispersive fracti<strong>on</strong> and γ P = polar fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy.<br />

This equati<strong>on</strong> is, next to <str<strong>on</strong>g>the</str<strong>on</strong>g> Young-Dupré’ equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d equati<strong>on</strong> needed for calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> surface free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid sample [Rudawska and Jacniacka, 2008; Owens and Wendt, 1969; Fowkes,<br />

1962]. By combining equati<strong>on</strong>s 3.20 and 3.17, a final ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical statement can be made in order to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid sample (γ SV ).[Rudawska and Jacniacka, 2008; Mykhaylyk et al.,<br />

2003]:<br />

<br />

<br />

SV<br />

SV<br />

SL LV Cos<br />

SV LV SL LV ( Cos<br />

1)<br />

(3.21)<br />

d d 1/<br />

2 p p 1/ 2<br />

LV <br />

SL 2[( <br />

SV<br />

. <br />

LV ) ( <br />

SV<br />

. <br />

LV ) ]<br />

(3.22)<br />

By substituting value from equati<strong>on</strong> 3.21 into equati<strong>on</strong> 3.22, we get:<br />

d d 1/<br />

2 p p 1/ 2<br />

LV ( Cos<br />

1) 2[( <br />

SV<br />

. <br />

LV ) ( <br />

SV<br />

. <br />

LV ) ]<br />

(3.23)<br />

where γ LV = liquid-vapour surface energy, θ = c<strong>on</strong>tact angle, γ SV = solid-vapour surface energy, γ d =<br />

dispersive fracti<strong>on</strong> and γ p = polar fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy.<br />

By using a liquid that <strong>on</strong>ly interacts <strong>on</strong> a dispersive level (diiodomethane or -brom<strong>on</strong>aphtalene)<br />

with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r phases, equati<strong>on</strong> 3.23 can be simplified by excluding <str<strong>on</strong>g>the</str<strong>on</strong>g> polar interacti<strong>on</strong>s. <strong>The</strong> liquid vapor<br />

surface energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle can be directly measured. <strong>The</strong> dispersive tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid vapour<br />

surface energy (γ d LV) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diiodomethane is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> total liquid vapour surface energy (γ LV ) since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polar interacti<strong>on</strong>s are null (cf. Table 3.1). C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly unknown parameter (γ d SV) can be<br />

calculated.<br />

Extrapolating <str<strong>on</strong>g>the</str<strong>on</strong>g> γ d SV value and using a sec<strong>on</strong>d liquid having dispersive and polar interacti<strong>on</strong>s<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> solid sample, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly unknown parameter (γ p SV) can be determined. <strong>The</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> both calculated<br />

fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid material (γ p SV and γ d SV) gives <str<strong>on</strong>g>the</str<strong>on</strong>g> total surface free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid sample [Wu, 2001;<br />

- 82 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Andrade, 1985]. <strong>The</strong> Liquid-Vapour tensi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Solid-Vapour energy are generally approximated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

liquid tensi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy.<br />

Selected liquids need to have suitable properties in order to interact in <str<strong>on</strong>g>the</str<strong>on</strong>g> best possible way to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy. Firstly, <str<strong>on</strong>g>the</str<strong>on</strong>g> liquids have to carry a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> intermolecular interacti<strong>on</strong>s<br />

from polar to apolar. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid surface tensi<strong>on</strong> has to be higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> solid surface energy: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

working forces <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid sample are superior to <str<strong>on</strong>g>the</str<strong>on</strong>g> forces needed to create <str<strong>on</strong>g>the</str<strong>on</strong>g> drop,<br />

resulting in a high wettability. <strong>The</strong> latter makes it impossible to determine a c<strong>on</strong>tact angle [Mykhaylyk et al.,<br />

2003]. By drawing L (1+ cos)/( L d ) 1/2 versus ( L nd ) 1/2 /( L d ) 1/2 , <str<strong>on</strong>g>the</str<strong>on</strong>g> slope will be ( S nd ) 1/2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> origin intercept<br />

will be ( S d ) 1/2 (cf. Figure 3.25).<br />

L<br />

(1+cos)/2.( L<br />

d ) 1/2<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

y = 3.0332 x + 5.8084<br />

R 2 = 0.8369<br />

Water<br />

Ethylene Glycol<br />

rom<strong>on</strong>aphtalene<br />

5<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8<br />

( nd / d ) 1/2<br />

L L<br />

Figure 3.25: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface energy comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a blend PLGA + 5 % HA<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> Owens-Wendt’ method.<br />

In this model, <str<strong>on</strong>g>the</str<strong>on</strong>g> measure <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact angle between two different liquids and <str<strong>on</strong>g>the</str<strong>on</strong>g> solid is<br />

necessary to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy. However, it is an approximati<strong>on</strong> to c<strong>on</strong>sider that <str<strong>on</strong>g>the</str<strong>on</strong>g> solid surface<br />

energy is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple geometrical mean <str<strong>on</strong>g>of</str<strong>on</strong>g> p S and d S (equati<strong>on</strong> 3.15). This approximati<strong>on</strong> can not predict <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> polar polymer in aqueous envir<strong>on</strong>ment.<br />

6.2.2.3 Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Good-Van Oss : Three Comp<strong>on</strong>ents <strong>The</strong>ory<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> Good-Van Oss [Owens and Wendt, 1969], surface energy is written:<br />

d <br />

S <br />

S<br />

2 ( <br />

S<br />

. S )<br />

(3.24)<br />

where γ S d is <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersive comp<strong>on</strong>ent and γ S<br />

+<br />

and γ S - are <str<strong>on</strong>g>the</str<strong>on</strong>g> acid-base comp<strong>on</strong>ents respectively.<br />

Van Oss et al. [1988] proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called Lifshitz–Van der Waals approach in which <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

surface tensi<strong>on</strong> is divided in Lifshitz–Van der Waals ( LW ) and acid-base ( AB ) comp<strong>on</strong>ents. <strong>The</strong> last <strong>on</strong>e is<br />

decomposed in acid ( + ) and basic ( - ) comp<strong>on</strong>ents. Young-Dupré equati<strong>on</strong> can be expressed as:<br />

( 1 cos ) G<br />

G<br />

(3.25)<br />

L<br />

LW<br />

SL<br />

AB<br />

SL<br />

where<br />

LW<br />

LW LW 1 / 2<br />

G<br />

SL<br />

2 ( <br />

S<br />

. <br />

L<br />

)<br />

(3.26)<br />

We may define <str<strong>on</strong>g>the</str<strong>on</strong>g> AcidBase free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between two substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densed<br />

state [van Oss et al., 1987].<br />

- 83 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

G<br />

AB<br />

SL<br />

2(<br />

1/ 2 1/ 2<br />

<br />

S<br />

. <br />

L<br />

) 2( <br />

S<br />

. <br />

L<br />

)<br />

(3.27)<br />

<strong>The</strong> expressi<strong>on</strong> used in this model is thus:<br />

(1 <br />

cos<br />

LW LW<br />

<br />

<br />

) 2 . 2 ( )<br />

(3.28)<br />

L<br />

S<br />

L<br />

S<br />

LV<br />

S<br />

LV<br />

By drawing L .(1+cos)/2 - ( S LW . L LW )]( L + ) 1/2 versus ( L − / L + ) 1/2 <str<strong>on</strong>g>the</str<strong>on</strong>g> slope will be ( S + ) 1/2 and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

origin intercept will be ( S - ) 1/2 . An example <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is presented in Figure 3.26.<br />

L (1+ cos )/2( S<br />

LW . L<br />

LW )]( L<br />

+ )<br />

1/2<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 1 2 3 4 5 6<br />

_<br />

( L L )1/2<br />

Figure 3.26: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy comp<strong>on</strong>ents with Good-Van Oss’ method<br />

for pure P L LA.<br />

By depositing a drop <str<strong>on</strong>g>of</str<strong>on</strong>g> three different liquids, <strong>on</strong>e can obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid. This<br />

method thus requires <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 liquids <str<strong>on</strong>g>of</str<strong>on</strong>g> reference with given L LW (Lifshitz-van der Waals) and AB acidbase<br />

comp<strong>on</strong>ents. <strong>The</strong> L LW comp<strong>on</strong>ent is generally approximated with <str<strong>on</strong>g>the</str<strong>on</strong>g> L nd comp<strong>on</strong>ent [Zenkiewicz,<br />

2007a, 2007b; Wu, 2001; Van Oss et al., 1988; van Oss et al., 1987; Owens and Wendt, 1969; Neumann et<br />

al., 1974].<br />

7 Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<strong>The</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental designs is to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> possible cause-and-effect relati<strong>on</strong>ship by<br />

manipulating <strong>on</strong>e independent variable to influence <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r variable(s) in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental group, and by<br />

c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r relevant variables, and measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manipulati<strong>on</strong> by some statistical<br />

means. By manipulating <str<strong>on</strong>g>the</str<strong>on</strong>g> independent variable, <str<strong>on</strong>g>the</str<strong>on</strong>g> researcher can see if <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment makes a<br />

significative difference <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> factors.<br />

7.1 Modelizati<strong>on</strong> Plans: Doehlert’s Design<br />

Doehlert’s designs are quadratic plans with some interesting properties, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be built up<strong>on</strong><br />

and extended to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factor intervals. <strong>The</strong>se designs allow <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all main effects, all first-order<br />

interacti<strong>on</strong>s and all quadratic effects without any c<strong>on</strong>founding effects [Erikss<strong>on</strong>, 2008].<br />

Geometrically, <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert’ designs are polyhedr<strong>on</strong>s based <strong>on</strong> hyper-triangles with a hexag<strong>on</strong>al<br />

structure, in <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest case (cf. geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two factors presented in Figure 3.27). This means <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

have uniform space-filling properties with an equally spaced distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> points lying <strong>on</strong> c<strong>on</strong>centric<br />

spherical shells. With <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert’ plan <str<strong>on</strong>g>of</str<strong>on</strong>g> two variables; <str<strong>on</strong>g>the</str<strong>on</strong>g> model chosen a priori is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d degree. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> two variables, <str<strong>on</strong>g>the</str<strong>on</strong>g> Y resp<strong>on</strong>se depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced variables X 1 and X 2 according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

equati<strong>on</strong>:<br />

- 84 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

Y =a 0 + a 1 X 1 + a 2 X 2 + a 12 X 1 X 2 + a 11 X 1<br />

2<br />

+ a 22 X 2<br />

2<br />

(3.29)<br />

where a 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> average value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> domain, a 1 and a 2 are <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

factors, a 12 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> two factors and a 11 and a 22 are <str<strong>on</strong>g>the</str<strong>on</strong>g> quadratic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

variables. <strong>The</strong> five levels <str<strong>on</strong>g>of</str<strong>on</strong>g> factor 1 corresp<strong>on</strong>d to lines 2 to 8 in Table 3.2.<br />

Figure 3.27: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental points for a Doehlert’s design <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-variables.<br />

Table 3.2: Matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments X.<br />

I X 1 X 2 X 1 X 2<br />

2<br />

X 1<br />

2<br />

X 2<br />

1 1.000 0.000 0.000 0.000 0.000<br />

1 0.500 0.866 0.433 0.250 0.750<br />

1 -0.500 0.866 -0.433 0.250 0.750<br />

1 -1.000 0.000 0.000 1.000 0.000<br />

1 -0.500 -0.866 0.433 0.250 0.750<br />

1 0.500 -0.866 -0.433 0.250 0.750<br />

1 0.000 0.000 0.000 0.000 0.000<br />

<strong>The</strong> multi-linear regressi<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental points c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g>se five coefficients<br />

minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> error adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model. <strong>The</strong> relati<strong>on</strong>ship matrix that correlates <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

factors toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients â to <str<strong>on</strong>g>the</str<strong>on</strong>g> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se Y is given by<br />

â = (X t . X) -1 . X t .Y (3.30)<br />

where X is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments defined in Table 3.2.<br />

<strong>The</strong> numerical values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vector â, determine what factors and interacti<strong>on</strong>s<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> more influent. To clarify whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r coefficients are significant or not, we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental<br />

standard deviati<strong>on</strong> S from three tests at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental domain. <strong>The</strong> standard deviati<strong>on</strong> <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> various coefficients can be determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship:<br />

â= S (diag<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> matrix) 1/2 (3.31)<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> matrix (X t .X) -1 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transposed matrix<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X by X. Each coefficient a i can be c<strong>on</strong>sidered significant, if it has a numeric value greater than three times<br />

its uncertainty a i .<br />

7.2 Screening Plans: Taguchi’ Design<br />

<strong>The</strong> method, created by Taguchi [Roy, 1990], aims to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

designs. It <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tables and tools to help to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> most appropriate table. Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Taguchi’ tables are actually three types <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> related to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r:<br />

<br />

Taguchi’ Tables: <str<strong>on</strong>g>the</str<strong>on</strong>g>y specify <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> experience, and were chosen based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> terms, factors, interacti<strong>on</strong>s.<br />

- 85 -


Chapter 3.<br />

Analytical Methods and Designs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiments<br />

<br />

<br />

Linear Graph: <str<strong>on</strong>g>the</str<strong>on</strong>g>y are used to verify that <str<strong>on</strong>g>the</str<strong>on</strong>g> selected table is equipped to represent <str<strong>on</strong>g>the</str<strong>on</strong>g> problem<br />

(can you represent all factors and all interacti<strong>on</strong>s) and specify how to assign <str<strong>on</strong>g>the</str<strong>on</strong>g> columns <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Taguchi’ table.<br />

Interacti<strong>on</strong> Table: it allows to precise in which columns are <str<strong>on</strong>g>the</str<strong>on</strong>g> influent interacti<strong>on</strong>s.<br />

When a n<strong>on</strong> linearity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se is assumed, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are tables <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments c<strong>on</strong>figured<br />

according to a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen table L 9 (3 4 ) need to perform nine<br />

experiments to study 4 factors at 3 levels. In Taguchi’ notati<strong>on</strong>, it is important to note that <str<strong>on</strong>g>the</str<strong>on</strong>g> three levels do<br />

not corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> American notati<strong>on</strong> (-1, 0, 1) but an increasing variati<strong>on</strong> (1, 2, 3). By c<strong>on</strong>sulting tables<br />

which respect <str<strong>on</strong>g>the</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> orthog<strong>on</strong>allity, which means that all factors vary evenly <strong>on</strong> each level (cf.<br />

Table 3.3).<br />

Table 3.3: Table Taguchi L 9 .<br />

Experiment Nr 1 2 3 4<br />

1 1 1 1 1<br />

2 1 2 2 2<br />

3 1 3 3 3<br />

4 2 1 2 3<br />

5 2 2 3 1<br />

6 2 3 1 2<br />

7 3 1 3 2<br />

8 3 2 1 3<br />

9 3 3 2 1<br />

To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e factor, we calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> average resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> each factor in a given<br />

level (e.g. a 1 corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> demi-difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> average resp<strong>on</strong>ses when <str<strong>on</strong>g>the</str<strong>on</strong>g> A factor is at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

up and down levels) and plot <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this factor when it goes from low (1) to high (3). <strong>The</strong> variati<strong>on</strong><br />

factor between <str<strong>on</strong>g>the</str<strong>on</strong>g> extreme levels 1-3 will be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence factor (little variati<strong>on</strong> for a neglectable<br />

factor) and to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> each factor.<br />

Similarly, interacti<strong>on</strong>s between factors are obtained by calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> system resp<strong>on</strong>se when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

factors are in certain levels (for example a 1 b 1 it counts <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> values corresp<strong>on</strong>ding to low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

factors A and B). By c<strong>on</strong>venti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> effects are taken equal to half <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

two effects.<br />

8 C<strong>on</strong>clusi<strong>on</strong><br />

<strong>The</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter was to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical methods that are available for detecting,<br />

and/or measuring, and/or m<strong>on</strong>itoring surface, physical and mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers and foams.<br />

<strong>The</strong> main intenti<strong>on</strong> was to identify well-established methods that are used as standard methods <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis.<br />

<strong>The</strong> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials used is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> DSC principle, which fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

gives results about <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and chemical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymeric material. Granulometery gives particle<br />

morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer, fillers and modifier used. Brazilian test is a parameter to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> structural<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> raw material. Molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is determined by taking into account intrinsic<br />

viscosity. Scanning electr<strong>on</strong> microscopy, image analysis, mercury porosimetry, microtomography,<br />

compressi<strong>on</strong> test provides informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology and structural properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> end product.<br />

Experimental designs were used with <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> minimizing number <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments when we are c<strong>on</strong>fr<strong>on</strong>ted<br />

to a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> variables. <strong>The</strong> experiment, based <strong>on</strong> a statistic plan that was inferred from research,<br />

must be repeatable.<br />

- 86 -


Chapter 4<br />

Chapter<br />

4<br />

Experimental<br />

Procedures and<br />

Protocols for Analyses<br />

This chapter will be devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various experimental procedures and techniques<br />

applied for <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials and products used in <str<strong>on</strong>g>the</str<strong>on</strong>g> entire <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Procedures such as mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> materials,<br />

pre-grinding by knife mill, co-grinding by tumbling ball mill and preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets by wet and dry<br />

methods will be laid down step by step. <strong>The</strong> specific c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various analysis techniques used to<br />

characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials, intermediate products and final products will be presented.<br />

Procedures for laser granulometry to verify particle size, scanning electr<strong>on</strong> microscopy (SEM) for observing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pore morphology and SCION ® Image analysis for pore structure and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong> will be explained<br />

extensively. Finally, Brazilian test to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> raw materials and<br />

compressi<strong>on</strong> test will be revealed with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> schematic diagrams.<br />

1 Procedure for Size Reducti<strong>on</strong><br />

Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers and composites was realized in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory: "Laboratoire de<br />

Génie Chimique". Biopolymers, adjuvants and fillers mixtures were prepared by two different methods,<br />

called dry and wet method. Some initial steps were comm<strong>on</strong> for both methods, such as size reducti<strong>on</strong>, cogrinding<br />

and mixing.<br />

1.1 Size Reducti<strong>on</strong><br />

1.1.1 Size Reducti<strong>on</strong> by Knife Mill<br />

Since some polylactides were supplied in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> granules <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e to several millimeters or in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g fibres, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were first fragmented and reduced to powders or small fibres with a laboratory<br />

knife mill (Janke and Kunkel IKA A-10 (115 Volts), Labortechnik, Staufen, Germany).<br />

<strong>The</strong> mill in Figure 4.1 was used for rapid, high-speed grinding <str<strong>on</strong>g>of</str<strong>on</strong>g> small samples from 10 to 25<br />

gms. This apparatus can grind samples down to few hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> μm in sec<strong>on</strong>ds depending up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> material. Stainless steel or hard-faced blade rotates at speeds up to 20000 rpm. Temperature is maintained<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> built-in heat exchangers and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol panel has an overload protecti<strong>on</strong> reset butt<strong>on</strong> and a<br />

pilot light. Tubing c<strong>on</strong>necti<strong>on</strong>s 6.4 mm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cover and housing accept tubes for circulating water.


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

PLA<br />

B<br />

PLA<br />

Polymer<br />

granulates<br />

C<br />

Ground fine<br />

powder<br />

Screened<br />

powder<br />

PLGA<br />

A<br />

Granulates in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

Knife mill with<br />

water circulati<strong>on</strong><br />

Screening mesh:<br />

SS frame & Cloth<br />

Overall height = 1-3/4"<br />

Depth to cloth:<br />

1-1/4" (32 mm)<br />

PLGA<br />

Figure 4.1: Polylactide granulates size reducti<strong>on</strong> by knife mill.<br />

Few tens <str<strong>on</strong>g>of</str<strong>on</strong>g> grams <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen polymers were introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill which was <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

closed. Cold water was allowed to circulate in <str<strong>on</strong>g>the</str<strong>on</strong>g> mill double jacket. Copolymers such as PLGA 85:15 (PLG ,<br />

PLG 8531, LG 857 S, … ) are granules, that must be initially pre-ground in batches, in <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill for a<br />

specified time that more than 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground material is recovered. Each material was ground in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

knife mill for alternative time On/Off <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 s to avoid melting or degradati<strong>on</strong>. Times required to recover<br />

95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial polymer depends <strong>on</strong> its inherent viscosity. <strong>The</strong>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-ground product was recovered<br />

and sieved according to <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure presented.<br />

Waxes used were pre-ground in knife mill but <strong>on</strong>ly for 30 s. <strong>The</strong> wax obtained was very fine that<br />

100% <str<strong>on</strong>g>of</str<strong>on</strong>g> wax removed after pre-grinding passed through 500 mesh sieve. This wax will be utilized latter <strong>on</strong><br />

as porogen for preparing a mixture with polymer to obtain better scaffolds.<br />

1.1.2 Tumbling Ball Mill Grinding<br />

<strong>The</strong> pre-ground and sieved product was ground in a tumbling ball mill Prolabo ® (cf. Figure 4.2) to<br />

several tens <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometers, value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size that could not be reached with <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill. <strong>The</strong> tumbling<br />

ball mill has a grinding chamber with a capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 liters, a height <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 cm and a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 27 cm.<br />

Sieved polymer<br />

powder<br />

Balls <str<strong>on</strong>g>of</str<strong>on</strong>g> 9.6, 19.0 and<br />

34 mm diameter<br />

B<br />

Gloves<br />

Stop watch<br />

Ceramic lid<br />

Closing plate<br />

Crushing<br />

chamber<br />

Balance<br />

C<br />

D<br />

Tumbling ball mill with<br />

accessories<br />

Metallic<br />

rollers<br />

Joint seal<br />

Speed regulator<br />

Electric switch<br />

A<br />

E<br />

Tumbling Ball Mill Descripti<strong>on</strong><br />

Filler<br />

F<br />

Sieve<br />

Co-ground<br />

Material / Mixture<br />

Cleaning<br />

brush<br />

Spatula<br />

Ethanol<br />

Gloves<br />

Figure 4.2: Milling process in tumbling ball mill.<br />

- 88 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

<strong>The</strong> chamber, a cylindrical shape, is closed with a ceramic lid fixed by a stainless steel bar having<br />

two screws. A rubber gasket, placed underneath <str<strong>on</strong>g>the</str<strong>on</strong>g> ceramic jar lid to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> tightness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

High purity Alumina (Al 2 O 3 ) ceramic balls were used as grinding media. Three diameters (5.5, 9.3, and 17.5<br />

mm) were used to be suitable for all particle sizes. <strong>The</strong>ir respective proporti<strong>on</strong>s were respectively set at ¾,<br />

⅛, and ⅛ and in volume. We used a ball filling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. <strong>The</strong> product<br />

filling rate was set at 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> interstitial volume between <str<strong>on</strong>g>the</str<strong>on</strong>g> balls.<br />

<strong>The</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> dry grinding begins when <strong>on</strong>e places <str<strong>on</strong>g>the</str<strong>on</strong>g> filled jar <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rotating rolls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mill.<br />

Speed rotati<strong>on</strong> is set at 100 rpm -1 and represents 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> critical speed, to obtain a cataract movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grinding media (cf. Figure 4.3). <strong>The</strong> critical velocity is <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grinding chamber from<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> centrifugal force imposes a permanent veneer <str<strong>on</strong>g>of</str<strong>on</strong>g> balls against <str<strong>on</strong>g>the</str<strong>on</strong>g> wall.<br />

Figure 4.3: Cataract movement <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding media.<br />

Different milling times were applied as per requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> material and experiments. After<br />

grinding <str<strong>on</strong>g>the</str<strong>on</strong>g> material is highly electrostatic so ethanol was sprayed in milling chamber to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> fine<br />

particles stuck with <str<strong>on</strong>g>the</str<strong>on</strong>g> walls <str<strong>on</strong>g>of</str<strong>on</strong>g> chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> whole product was removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber and kept at<br />

cool temperature for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analyses and uses.<br />

1.2 Sieving <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Material<br />

<strong>The</strong> product obtained from knife mill or ball mill is powder with particles having a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diameter. To make pellets from <str<strong>on</strong>g>the</str<strong>on</strong>g> pre-ground fibres and ground powders, it is necessary to have<br />

homogeneous particles. Sieves with different mesh sizes were used (cf. Table 4.1and Figure 4.4). Manual<br />

vibrati<strong>on</strong> was d<strong>on</strong>e for 7 ~ 10 minutes to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> sieved powder.<br />

Table 4.1: Sieving mesh for different powder particles.<br />

Mesh Size<br />

Sieve<br />

125 μm AFNOR NF ISO 3310<br />

250 μm ASTM E11#<br />

400 μm AFNOR NF ISO 3310<br />

500 μm AFNOR NF ISO 3310<br />

600 μm ASTM E11#<br />

800 μm AFNOR NF ISO 3310<br />

<strong>The</strong> material left <strong>on</strong> 600 and 800 mesh due to large particle size were knife mill again to reduce<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> paricle size.This material was again sieved by using appropriate sieve. <strong>The</strong> sieved powder was fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

used for making pellets by using <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic press.<br />

- 89 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

Figure 4.4: AFNOR and ASTM 3 ½ in diameter sieves.<br />

1.3 Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Powder with Fillers<br />

1.3.1 Simple Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Powder with Fillers<br />

After obtaining polymer powder <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> desired particle size, it was mixed with <str<strong>on</strong>g>the</str<strong>on</strong>g> filler by using a<br />

magnetic stirrer. <strong>The</strong> polymer powder and filler were weighed and placed in a plastic jar al<strong>on</strong>g an<br />

appropriate size (1, 2, 3 cm) magnetic bar. <strong>The</strong> powder was mixed for 10 minutes for perfect mixing.<br />

Schematic flow sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure is shown in Figure 4.5.<br />

Sieved polymer<br />

powder<br />

Gloves<br />

Spatula<br />

B<br />

Polymer mixed<br />

matrix<br />

Balance<br />

C<br />

D<br />

E<br />

Filler<br />

A<br />

Mixing jar<br />

Magnet agitator<br />

Magnet bars<br />

Stop watch<br />

Figure 4.5: Magnetic stirrer mixing for composite materials.<br />

1.3.2 Co-grinding in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tumbling Ball Mill<br />

Multi step processing has been used for fibrous polymers. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer fibres were reduced<br />

into small fibres using knife mill. <strong>The</strong>n co-grinding process was applied when polymers were under a<br />

powder form. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer powder and <str<strong>on</strong>g>the</str<strong>on</strong>g> filler particles and/or adjuvants (wax, hyalur<strong>on</strong>ate acid)<br />

were introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tumbling ball mill in proporti<strong>on</strong> defined by chosen design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiment. <strong>The</strong> same procedure as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e presented in secti<strong>on</strong> 1.1.2 for a single product was <str<strong>on</strong>g>the</str<strong>on</strong>g>n applied.<br />

Finally, agglomerates may be found after drying and it was necessary to post-ground <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

composites and to crush <str<strong>on</strong>g>the</str<strong>on</strong>g> agglomerates. 30 sec knife mill grinding followed by 10 min in <str<strong>on</strong>g>the</str<strong>on</strong>g> mortar were<br />

- 90 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

applied. <strong>The</strong> schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> method is given in <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 4.6. Ethanol was used<br />

for reducing electrostatic charge at each grinding step during <str<strong>on</strong>g>the</str<strong>on</strong>g> process.<br />

Polylactide fibres<br />

Pre-grinding (30 sec)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill<br />

Mineral phase<br />

(TCP (Sr) , TCP (Sr) )<br />

Polymer<br />

fine fibres<br />

Adjuvant<br />

(Wax, HA)<br />

Organic + Mineral blends<br />

Co-grinding stage: (60 min)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> ball mill<br />

•Highly static flakes<br />

•Sprayed 2~3 ml Ethanol<br />

•Dried for 48 hrs<br />

Post-grinding stage (30 sec)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill<br />

•Polymer matrix powder<br />

•Highly electrostatic<br />

•Sprayed 2~3 ml ethanol<br />

•Dried for 96 hrs<br />

Fine matrix powder with agglomerates<br />

Post grinding stage (10 min)<br />

Crushing agglomerates with a mortar<br />

Matrix flakes<br />

Matrix powder<br />

Blend <str<strong>on</strong>g>of</str<strong>on</strong>g> flakes and powder to<br />

manufacture pellets<br />

Figure 4.6: Multistep size reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> composite.<br />

1.4 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets by Dry Method<br />

1.4.1 Evacuable Pellet Die<br />

Evacuable pellet dies were used to produce circular pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 mm in diameter as standard. All<br />

parts were manufactured from hardened stainless steel, and surfaces that come in c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

were highly polished. Each pellet die comprises an evacuable base (50.8 mm base diameter), body, plunger<br />

(34.8 mm height), set <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets, extractor ring, and O Ring Kit. As shown in Figure 4.7, polyimide film is<br />

- 91 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

also used during <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet forming process. Without using polyimide film some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactides stick <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> stainless steel plunger at elevated temperature. Moreover to make multiple pellets in <strong>on</strong>e batch <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets<br />

are separated by polyimide.<br />

Body<br />

Evacuable base<br />

Polyimide<br />

film<br />

Polyimide<br />

circular disk<br />

Metallic<br />

pellet<br />

Polymer<br />

powder<br />

Plunger<br />

Set <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets<br />

(a<br />

O Ring Kit<br />

Polyimide<br />

film<br />

Metallic<br />

pellet<br />

(b)<br />

(c)<br />

(a) Evacuable pellet die accessories (b) Assembled pellet die (c) Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> assembled<br />

mould (d) Cross secti<strong>on</strong>al view <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-pellets/batch.<br />

Figure 4.7: Schematic diagram to produce pellets in semi-industrial quantities.<br />

1.4.2 Procedure to Prepare Pellets<br />

<strong>The</strong> procedure to process pellets is described stepwise as under shown in Figure 4.8.<br />

A<br />

B<br />

C D E<br />

F<br />

Insert <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom<br />

pellet with <str<strong>on</strong>g>the</str<strong>on</strong>g> polished<br />

side facing UP.<br />

Pour your powder<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> bore <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> die barrel.<br />

Level <str<strong>on</strong>g>the</str<strong>on</strong>g> sample in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bore and wipe<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any spilled powder.<br />

Insert <str<strong>on</strong>g>the</str<strong>on</strong>g> top pellet into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> die barrel with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shiny side DOWN.<br />

Put <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> die barrel <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Center <str<strong>on</strong>g>the</str<strong>on</strong>g> assembled<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bottom pellet pellet die <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

platform in <str<strong>on</strong>g>the</str<strong>on</strong>g> press.<br />

J<br />

I<br />

H<br />

G<br />

K<br />

Disassemble <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pellet die.<br />

Invert die assembly, press down gently <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pist<strong>on</strong>, bottom pellet and <str<strong>on</strong>g>the</str<strong>on</strong>g> pressed<br />

sample disk should pop out.<br />

M<br />

Remove <str<strong>on</strong>g>the</str<strong>on</strong>g> die base.<br />

Pump <str<strong>on</strong>g>the</str<strong>on</strong>g> handle<br />

to raise <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lower platform<br />

Irregular disk<br />

L<br />

Carefully clean all <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> parts with cott<strong>on</strong><br />

tipped applicators<br />

Plane and<br />

cleaned disk<br />

Gloves<br />

Cleaning cutter<br />

Figure 4.8: Schematic representati<strong>on</strong> to process pellets by using hydraulic press.<br />

- 92 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

1.4.2.1 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Die<br />

<br />

<br />

<strong>The</strong> base must be placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bench top. It must be carefully checked that <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom O-Ring seal<br />

is properly positi<strong>on</strong>ed in its groove. <strong>The</strong> body is assembled <strong>on</strong> base.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic pellets was carefully placed, polished face up and a polyimide circular film was<br />

placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> bore <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> body. <strong>The</strong> evacuati<strong>on</strong> tube was c<strong>on</strong>nected to a vacuum pump capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

providing a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> less than two mm Hg. If vacuum setup is not available <str<strong>on</strong>g>the</str<strong>on</strong>g>n manual<br />

CARVER hydraulic press is used for compressi<strong>on</strong>.<br />

1.4.2.2 Loading <str<strong>on</strong>g>the</str<strong>on</strong>g> Die<br />

<br />

<br />

Using a funnel, <str<strong>on</strong>g>the</str<strong>on</strong>g> powder mixture is poured into <str<strong>on</strong>g>the</str<strong>on</strong>g> bore <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> body. <strong>The</strong> side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> die is tapped<br />

lightly to be sure that <str<strong>on</strong>g>the</str<strong>on</strong>g> powder is evenly distributed. Completely even powder distributi<strong>on</strong> is<br />

accomplished by inserting <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger into <str<strong>on</strong>g>the</str<strong>on</strong>g> bore and rotating it lightly a few times. <strong>The</strong> plunger<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g>n withdrawn slowly.<br />

A sec<strong>on</strong>d metallic pellet is inserted, polished face down, into <str<strong>on</strong>g>the</str<strong>on</strong>g> upper half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bore followed by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plunger. If more than <strong>on</strong>e pellet is required, a polyimide film is put <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic pellet and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n powder <strong>on</strong> it. <strong>The</strong> procedure is repeated till 3 sample pellets are required. One must be sure that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> top O-Ring seal is in place around <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger and properly seated in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber.<br />

1.4.2.3 Processing <str<strong>on</strong>g>the</str<strong>on</strong>g> Pellets<br />

<br />

<br />

<br />

<strong>The</strong> die assembly must be placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic press. Without applying pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> die must be<br />

evacuated for 2 - 5 minutes (depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dryness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample).<br />

With c<strong>on</strong>tinued evacuati<strong>on</strong>, 150 bars pressure is applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> die for 20 minutes and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature (45−60 o C) is maintained as per requirement.<br />

<strong>The</strong> pressure is released slowly and <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum removed.<br />

1.4.2.4 Removing <str<strong>on</strong>g>the</str<strong>on</strong>g> Pellets<br />

<br />

<br />

<strong>The</strong> base is removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> body leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger in positi<strong>on</strong>.<br />

<strong>The</strong> assembly is inverted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic press and <str<strong>on</strong>g>the</str<strong>on</strong>g> polycarb<strong>on</strong>ate ring is placed <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> body opposite <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger end. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic press, pressure is applied<br />

slowly until <str<strong>on</strong>g>the</str<strong>on</strong>g> plunger moves <str<strong>on</strong>g>the</str<strong>on</strong>g> lower pellet and disc clear <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bore.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> preliminary experiments polymer powders <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 0.150 g <str<strong>on</strong>g>of</str<strong>on</strong>g> weight have been moulded by<br />

compressi<strong>on</strong> at 150 bars and 60°C for 20 minutes. Our compressi<strong>on</strong> moulding setup has initially allowed 3<br />

pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer to be prepared simultaneously. Finally, pellets have a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 − 1.1 mm. In order<br />

to prepare pellets in bulk quantity, a modified procedure is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r adopted. We prepare 12, 15 or 18 pellets,<br />

by varying <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer powder taken into account, in <strong>on</strong>e batch by using polyimide film as shown<br />

in Figure 4.9-d.<br />

1.5 Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellets by Wet Method<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> wet method, pellets have been prepared by dissolving composite powder in a good solvent<br />

(acet<strong>on</strong>e or chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm). Polymer and filler powder have been ground by knife mill, tumbling ball mill and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n sieving as described earlier. <strong>The</strong> soluti<strong>on</strong> mixture is heated for minimum 10 minutes in a water bath at<br />

temperature 5 o C above <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer or composite T g . When <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> mixture becomes homogenous, it is<br />

- 93 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

poured into a petri dish. <strong>The</strong> petri dish is kept at room temperature for 48 hours, so that <str<strong>on</strong>g>the</str<strong>on</strong>g> solvent may<br />

evaporate completely. After complete drying, thick film <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer matrix is pealed <str<strong>on</strong>g>of</str<strong>on</strong>g>f from <str<strong>on</strong>g>the</str<strong>on</strong>g> petri dish.<br />

By using die cutter pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> required diameter (8, 10, 12 and 14 mm) are processed<br />

(cf. Figure 4.9).<br />

Polymer powder<br />

A<br />

Acet<strong>on</strong>e Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm<br />

Water bath with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmostat<br />

Pouring polymer +<br />

solvent in petri dish<br />

Die cutter<br />

Gloves<br />

Balance<br />

C<br />

D<br />

Polymer thick<br />

film 1.5~2.0 mm<br />

B<br />

Solvent and<br />

polymer<br />

E<br />

48 hr drying to<br />

evaporate solvent<br />

F<br />

Pellets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different<br />

diameters<br />

Filler<br />

Stop watch<br />

Figure 4.9: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processing pellets by wet method.<br />

2 ScCO 2 Foaming Process<br />

Foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers and composites was processed in two different laboratories: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

"Laboratoire de Génie Chimique" and <str<strong>on</strong>g>the</str<strong>on</strong>g> "Laboratoire d’Automatisme et d’Analyse des Systèmes" <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Toulouse.<br />

2.1 SEPAREX TM SF200 scCO 2 Pilot Plant<br />

2.1.1 Experimental Device<br />

Runs were first carried out in a SEPAREX SF200 pilot (Separex Company, Nancy, France)<br />

represented in Figure 4.10 and Figure 4.11. Briefly, this apparatus is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a 200 mL extractor<br />

chamber, which is used for foaming process in which CO 2 is being injected. Basically this is a setup for<br />

extracti<strong>on</strong> purpose. Indeed a metallic vessel was placed inside <str<strong>on</strong>g>the</str<strong>on</strong>g> extractor, in order to reduce its volume<br />

from 200 to 20 mL. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r a Tefl<strong>on</strong> roll is also inserted in <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic roll so that pellets may not fall<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process. A cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> three 15 mL cycl<strong>on</strong>ic separators is c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing<br />

chamber outlet. Pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing chamber is adjusted by a backpressure regulator and, in each<br />

separator, by depressurizati<strong>on</strong> valves. Sub-cooled liquid CO 2 is pumped by a volumetric membrane pump<br />

(Milt<strong>on</strong> Roy, maximum 5 kg/h), <str<strong>on</strong>g>the</str<strong>on</strong>g>n heated until <str<strong>on</strong>g>the</str<strong>on</strong>g> desired temperature and c<strong>on</strong>tinuously introduced<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing chamber. Experiments can be carried out in open-loop or closed-loop c<strong>on</strong>figurati<strong>on</strong>, in<br />

which case, after c<strong>on</strong>densati<strong>on</strong>, CO 2 is recycled to <str<strong>on</strong>g>the</str<strong>on</strong>g> pump. Temperatures and pressures are c<strong>on</strong>trolled in<br />

each unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pilot, pressure being limited to 300 bars and temperature around 333 K. Before starting an<br />

experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g> pilot is filled with CO 2 at bottle pressure (about 5.5 MPa) and air is flashed out.<br />

- 94 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

Figure 4.10: SEPAREX Pilot SF200 process flow diagram.<br />

Pressure and<br />

temperature<br />

memo-graph<br />

CO 2 Cylinder and flow meter<br />

scCO 2 chamber<br />

and separators<br />

Electr<strong>on</strong>ic panel<br />

ScCO 2 Equipment<br />

Foams<br />

Autoclave<br />

accessories<br />

Foam<br />

vessel<br />

Lid and cover Fixer Stopper<br />

Foams<br />

Pellets<br />

Figure 4.11: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> equipment (SEPAREX Pilot SF200).<br />

Polymer/composite pellets are placed inside <str<strong>on</strong>g>the</str<strong>on</strong>g> autoclave chamber. <strong>The</strong>n, CO 2 is pumped and<br />

heated into <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tactor. Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is adjusted by <str<strong>on</strong>g>the</str<strong>on</strong>g> heating fluid circulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> jacket <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mixing chamber. At <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 undergoes three successive depressurizati<strong>on</strong>s. Each depressurizati<strong>on</strong><br />

stage is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a valve and a cycl<strong>on</strong>ic separator with a heating jacket. Temperature and pressure<br />

sensors are placed at each vessel outlet and measured values are recorded by a digital recorder (Memograph,<br />

Endress plus Hauser). Finally CO 2 is depressurized, by back pressure regulating valves and<br />

- 95 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

depressurizing valves or by <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both types <str<strong>on</strong>g>of</str<strong>on</strong>g> valves. <strong>The</strong> dP/dt procedure is quite tricky and<br />

requires great skill. CO 2 is supplied by Air Liquid and is 99.5% pure.<br />

2.1.2 Setup One: Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> Chamber with Tefl<strong>on</strong> ®<br />

In this setup, three pellets are placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber <strong>on</strong> perforated metal stages which are<br />

encircled by a Tefl<strong>on</strong> ® isolati<strong>on</strong> material (cf. Figure 4.12-a). <strong>The</strong> pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> upper, centre and bottom<br />

compressi<strong>on</strong> moulding positi<strong>on</strong> (A, B and C) are placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper, centre and bottom positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure chamber (A, B and C), respectively. Tefl<strong>on</strong> ® material is placed into <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber in order<br />

to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g>ir volume which facilitates <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate.<br />

2.1.3 Setup Two: Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> Chamber with Glass Beads<br />

<strong>The</strong> sec<strong>on</strong>d procedure c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> filling <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber (until <str<strong>on</strong>g>the</str<strong>on</strong>g> ~ 1/3 or ~ 2/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber) with small glass balls (diameter 3 mm) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n a perforated grill (hole<br />

diameter 2 mm) is placed above <str<strong>on</strong>g>the</str<strong>on</strong>g>m. After that, <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet is placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> grill. This setting was adopted to<br />

study <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size difference at <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber as compared to three different points in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

(cf. Figure 4.12-b).<br />

Figure 4.12: Schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> supercritical CO 2 chamber with two<br />

different c<strong>on</strong>figurati<strong>on</strong>s.<br />

For both procedures, after placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and pressure have been raised<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> required value. <strong>The</strong>n, pellets have been saturated with supercritical CO 2 during a desired time. After<br />

that, <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber has been depressurized with a given depressurizati<strong>on</strong> rate.<br />

2.2 SEPAREX SFC6 scCO 2 Laboratory Plant<br />

2.2.1 Experimental Device<br />

<strong>The</strong> bigger volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber (6 L) allows increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples (up to 15) in<br />

<strong>on</strong>e batch (cf. Figure 4.13). <strong>The</strong> process flow diagram is given in Figure 4.14.<br />

2.2.2 Experimental Procedure<br />

To begin experimentati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system is started four hours before <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process so that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire system might attain an equilibrium temperature. Sub-cooled liquid CO 2 is pumped by a volumetric<br />

membrane pump (Milt<strong>on</strong> Roy, maximum 5 kg/h), <str<strong>on</strong>g>the</str<strong>on</strong>g>n heated until <str<strong>on</strong>g>the</str<strong>on</strong>g> desired temperature and<br />

c<strong>on</strong>tinuously introduced into <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing chamber. Experiments can be carried out in open-loop or closedloop<br />

c<strong>on</strong>figurati<strong>on</strong>, in which case, after c<strong>on</strong>densati<strong>on</strong>, CO 2 is recycled to <str<strong>on</strong>g>the</str<strong>on</strong>g> pump. Normally open loop<br />

experimentati<strong>on</strong> is carried out in this pilot plant. Temperatures and pressures are c<strong>on</strong>trolled, pressure being<br />

- 96 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

limited to 300 bars and temperature around 60°C. Before starting an experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g> pilot is filled with CO 2<br />

at bottle pressure (about 5.5 MPa) and air is flashed out.<br />

Autoclave with top<br />

Autoclave<br />

Temperature and<br />

pressure m<strong>on</strong>itor<br />

board<br />

scCO 2 heat<br />

exchanger<br />

Foam after process<br />

Perforated stage<br />

with pellets<br />

Digital vernier<br />

Caliper<br />

SEPAREX Pilot SFC 6<br />

Two plate<br />

stage<br />

Five plate<br />

stage<br />

Pressure regulating<br />

and venting valves<br />

CO 2 pump<br />

Foams after<br />

measurement<br />

Figure 4.13: Details <str<strong>on</strong>g>of</str<strong>on</strong>g> equipment (SEPAREX Pilot SFC-6).<br />

Figure 4.14: SEPAREX Pilot SFC-6 process flow diagram.<br />

2.2.2.1 Initial Filling <str<strong>on</strong>g>of</str<strong>on</strong>g> Chamber with CO 2<br />

Polymer/composite pellets are placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber up<strong>on</strong> a perforated plate. <strong>The</strong>n, CO 2 is<br />

pumped and heated into <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. Temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is adjusted by <str<strong>on</strong>g>the</str<strong>on</strong>g> heating fluid circulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

jacket <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing chamber. At t 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber is at <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric pressure. CO 2 pump is<br />

started and <str<strong>on</strong>g>the</str<strong>on</strong>g> flow rate is maintained at 0.5 bar/s. To equalize <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> chamber and line, it takes<br />

approximately 2.5 − 3 minutes and at that time <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole system is about 60 bars. <strong>The</strong>n flow<br />

- 97 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

rate is raised to 3 bar/s till <str<strong>on</strong>g>the</str<strong>on</strong>g> required saturati<strong>on</strong> pressure is attained. Once required pressure is attained CO 2<br />

pump is switched <str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

2.2.2.2 Variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Pressure and Temperature Holding For Time t<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> desired pressure in chamber is attained, stop watch is started to begin <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong><br />

time. During this time, fluctuati<strong>on</strong>s in pressure and temperature (cf. Figure 4.15) are observed. <strong>The</strong><br />

fluctuati<strong>on</strong> is adjusted by opening pressure regulating valve and varying temperature set point. Variati<strong>on</strong> in<br />

temperature is calculated by noting temperature after each minute and c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> average value for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire process. Normally after 5 minutes, <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure and temperature approximately attains stable value.<br />

Temperature ( o C)<br />

37.0<br />

36.5<br />

36.0<br />

35.5<br />

35.0<br />

34.5<br />

Chamber Temperature Variatoi<strong>on</strong><br />

A t1<br />

A t2<br />

A t3<br />

A t4<br />

A t5<br />

A t6<br />

A t7<br />

A t8<br />

A t9<br />

34.0<br />

0 5 10 15 20 25<br />

T sat (mins)<br />

Figure 4.15: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chamber temperature during 20 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 process for PLGA 50:50 foam.<br />

As example, PLGA 50:50 foam processing data collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> first 5 minutes, temperature<br />

fluctuati<strong>on</strong> was abrupt but after that it was quite normal and close to <str<strong>on</strong>g>the</str<strong>on</strong>g> process temperature.<br />

2.2.2.3 Depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> time, depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is d<strong>on</strong>e. Pressure regulating valve is closed<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> vent valve is opened gradually keeping in view <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong>. This step is manually<br />

handled with a great skill so that we get a linear line between time and pressure drop. During<br />

depressurizati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber decreases ~ 10 o C. It takes 40 sec<strong>on</strong>ds to release <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure, if <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate is 3 bar/s and <str<strong>on</strong>g>the</str<strong>on</strong>g> initial pressure is 120 bars (cf. Figure 4.16).<br />

Figure 4.16: Graph presenting <str<strong>on</strong>g>the</str<strong>on</strong>g> drop in pressure during 40 sec <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> step.<br />

- 98 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

3 Protocols for Analysis<br />

3.1 Granulometry<br />

Experiments have been performed at <str<strong>on</strong>g>the</str<strong>on</strong>g> "Laboratoire de Génie Chimique de Toulouse"<br />

<strong>The</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware proposed by Malvern with <str<strong>on</strong>g>the</str<strong>on</strong>g> granulometer Mastersizer 2000 uses <str<strong>on</strong>g>the</str<strong>on</strong>g> Mie<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory and permits to limit artefacts at small sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size distributi<strong>on</strong>s. Experimentally, <str<strong>on</strong>g>the</str<strong>on</strong>g> particles pass<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> Scirocco composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a vibrating hopper where particles are placed. A compressed air supply<br />

is out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper and creates depressi<strong>on</strong> causing <str<strong>on</strong>g>the</str<strong>on</strong>g> particles to <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor. Vacuum allows <str<strong>on</strong>g>the</str<strong>on</strong>g> recovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> circuit. <strong>The</strong> particles diffract light at an angle. A lens Fourier can be reduced<br />

into a single optical diffracting each source. Image result <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a light beam is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centric<br />

rings. <strong>The</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> angle and <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> light can be accessed respectively to particle size<br />

and quantity. <strong>The</strong> deflecti<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> all smaller particles is large. <strong>The</strong> light diffracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> sample is<br />

recorded which can be traced back to <str<strong>on</strong>g>the</str<strong>on</strong>g> size distributi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage volume in each size class. <strong>The</strong><br />

size range available is between 0.05 and 2000 micr<strong>on</strong>s.<br />

Approximately a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 to 300 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> powder material is placed inside <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet pan. It tracks<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total grain size during milling. <strong>The</strong> parameters that affect <str<strong>on</strong>g>the</str<strong>on</strong>g> measure are <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper that c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> particles introduced into <str<strong>on</strong>g>the</str<strong>on</strong>g> measuring cell and <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compressed air that plays <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> particles to <str<strong>on</strong>g>the</str<strong>on</strong>g> laser beam. After various trials for<br />

analysis, we found better reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements for 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hopper and a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 bars. Its measure range in dry dispersi<strong>on</strong> is 0.1 to 2 000 micr<strong>on</strong>s. Typical<br />

measurement time is 5 sec<strong>on</strong>ds.<br />

<strong>The</strong> size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer powders after pre-treatment (just sieving or grinding in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

knife mill and sieving) are presented in Figure 4.17. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particles <str<strong>on</strong>g>of</str<strong>on</strong>g> different materials used have<br />

mean diameter between 100 and 175m. <strong>The</strong> mean diameter (d 50 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a grinded polymer is 89.54 m.<br />

<strong>The</strong> median diameter (d 50 ) is a very important characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> this distributi<strong>on</strong> because it<br />

represents a cummulative frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 50%, which divides <str<strong>on</strong>g>the</str<strong>on</strong>g> size distributi<strong>on</strong> into two parts <str<strong>on</strong>g>of</str<strong>on</strong>g> equal area.<br />

This parameter permits to follow easily <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size during a treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> a powder. As an<br />

illustrati<strong>on</strong>, Figure 4.18 presents <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> median size <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA particles submitted to a grinding<br />

treatment in a tumbling ball mill.<br />

12<br />

10<br />

400<br />

Particle Diameter Variati<strong>on</strong> with Grinding time<br />

Volume (%)<br />

8<br />

6<br />

4<br />

2<br />

Poly (Lactide-co-glycolide) : Granulometry<br />

d 50 (m)<br />

300<br />

200<br />

100<br />

0<br />

0.01 0.1 1 10 100 1000 10000<br />

Particle Size(m)<br />

0<br />

0 1000 2000 3000 4000 5000<br />

Grinding Time (min)<br />

Figure 4.17: Size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,D LA particle<br />

after 30 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding.<br />

Figure 4.18: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle diameter with<br />

grinding time for P L,D LA<br />

- 99 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

3.2 Differential Scanning Calorimetry<br />

<strong>The</strong> transiti<strong>on</strong> temperature and change in specific heat capacity were measured by a NETZSCH<br />

DSC 204 Phoenix ® Set Up under a N 2 atmosphere. <strong>The</strong> DSC measuring cell c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a cylindrical highc<strong>on</strong>ductivity<br />

silver block with an embedded heating coil for broad <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal symmetry (3D symmetry) in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sample chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g> cooling ports for liquid nitrogen or compressed air cooling and a cooling ring for<br />

c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intra-cooler (also with simultaneous liquid nitrogen cooling).<br />

For all <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments, 3 – 10 mg were accurately weighed by a digital microbalance and sealed<br />

into an aluminium sample pan (pans are crimped close with sample press). An empty aluminium pan was<br />

used as <str<strong>on</strong>g>the</str<strong>on</strong>g> reference sample. <strong>The</strong> DSC heating and cooling rates were c<strong>on</strong>trolled at 10°C/min, and all<br />

experiments were carried out under a nitrogen purge.<br />

Following steps are made during <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis,<br />

‣ Calibrating <str<strong>on</strong>g>the</str<strong>on</strong>g> instrument with indium<br />

‣ Selecting <str<strong>on</strong>g>the</str<strong>on</strong>g> pan type and material and preparing <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

‣ Creating or choosing <str<strong>on</strong>g>the</str<strong>on</strong>g> test procedure and entering sample and instrument informati<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

TA instrument c<strong>on</strong>trol s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

‣ Setting <str<strong>on</strong>g>the</str<strong>on</strong>g> purge gas flow rate, <str<strong>on</strong>g>the</str<strong>on</strong>g>n loading <str<strong>on</strong>g>the</str<strong>on</strong>g> sample and closing <str<strong>on</strong>g>the</str<strong>on</strong>g> cell lid<br />

‣ Starting <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment and <str<strong>on</strong>g>the</str<strong>on</strong>g>n obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> data and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmograms.<br />

Schematic presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal analysis is presented in Figure 4.19<br />

B<br />

Compressed<br />

sample pan<br />

C<br />

Sample data<br />

Furnace program<br />

screen<br />

Aluminum<br />

pan press<br />

Aluminum<br />

top lid<br />

Tweezers<br />

Reference cup<br />

Liquid<br />

N 2 tank<br />

DSC sample chamber<br />

Test start<br />

window<br />

Experimental curve<br />

Aluminum<br />

base pan<br />

A<br />

DSC sample preparing<br />

accessories<br />

NETZSCH DSC 204 Phoenix® Set Up<br />

D<br />

Foam<br />

E<br />

Computer display and<br />

m<strong>on</strong>itoring unit<br />

Balance to weigh sample<br />

Polymer<br />

powder<br />

<strong>The</strong>rmogram with T g<br />

Figure 4.19: DSC analysis flow sheet <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer material and foam.<br />

- 100 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

3.3 C<strong>on</strong>tact Angle Measurement<br />

<strong>The</strong> used apparatus Digidrop C<strong>on</strong>tact Angle GBX (cf. Figure 4.20) makes it possible to carry out<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact angle per drop posed <strong>on</strong> substrate by recording image per image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sessile drop.<br />

<strong>The</strong> drop is allowed to flow and equilibrate with <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

(A)- Apparatus<br />

(B)- Syringe with<br />

specific liquids<br />

(C)- Liquid depositi<strong>on</strong> sequence<br />

Figure 4.20: G<strong>on</strong>iometer GBX used for c<strong>on</strong>tact angle measurement.<br />

This g<strong>on</strong>iometer is c<strong>on</strong>stituted by:<br />

<br />

<br />

<br />

<br />

A motorized movable plate <strong>on</strong> which a compressed powder pellet is deposited,<br />

A light source and a digital CCD camera that can acquire photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system drop / solid at<br />

equilibrium (24 frames/sec),<br />

A motorized syringe to deposit a liquid drop, volume c<strong>on</strong>trolled from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid sample<br />

to be analyzed,<br />

An acquisiti<strong>on</strong> system to record wetting angle and process photographs using <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware <strong>on</strong> digital<br />

images DIGIDROP.<br />

Two different fitting procedures have been used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> best shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drop and thus<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> correct c<strong>on</strong>tact angle (cf. Figure 4.21). <strong>The</strong> c<strong>on</strong>tour method toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> height-width approach, are<br />

appropriate for small c<strong>on</strong>tact angle measurements. <strong>The</strong> circle-method shapes <str<strong>on</strong>g>the</str<strong>on</strong>g> drop in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

circular arc, while <str<strong>on</strong>g>the</str<strong>on</strong>g> height-width-method determines <str<strong>on</strong>g>the</str<strong>on</strong>g> height and <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> a rectangle that surrounds<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> drop.<br />

A manual method, <str<strong>on</strong>g>the</str<strong>on</strong>g> tangent-method or <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ic secti<strong>on</strong> method, fits a c<strong>on</strong>ic secti<strong>on</strong> equati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> drop shape where θ acts as <str<strong>on</strong>g>the</str<strong>on</strong>g> angle at <str<strong>on</strong>g>the</str<strong>on</strong>g> three-phase c<strong>on</strong>tact point. A benefit here is that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact<br />

angle range is much wider (between 10 and 100°), and that <str<strong>on</strong>g>the</str<strong>on</strong>g> fitting procedure does not assume that<br />

c<strong>on</strong>tact angles <strong>on</strong> both sides are equal, resulting in two different c<strong>on</strong>tact angles (θ left and θ rigth ).<br />

(A)<br />

(B)<br />

Figure 4.21: (A): Schematic diagram and (B): Two methods for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact angle.<br />

- 101 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> Sessile drop technique, <str<strong>on</strong>g>the</str<strong>on</strong>g> solid surface is wetted by single drops <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> probe liquid. A<br />

high resoluti<strong>on</strong> camera captures <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drop and processes this by image analyzing s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. <strong>The</strong> <br />

c<strong>on</strong>tact angle is linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy and so, <strong>on</strong>e can estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> surface energy and discriminate<br />

between polar and apolar interacti<strong>on</strong>s. Organic liquids have surface tensi<strong>on</strong>s that are in a similar range as<br />

solid polymer.<br />

Advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this optical approach are <str<strong>on</strong>g>the</str<strong>on</strong>g> precisi<strong>on</strong> and quickness. In additi<strong>on</strong>, placing drops at<br />

different positi<strong>on</strong>s gives <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. <strong>The</strong> disadvantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

method are solid sample preparati<strong>on</strong>, camera resoluti<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly two c<strong>on</strong>tact<br />

points. Especially <str<strong>on</strong>g>the</str<strong>on</strong>g> camera angle to obtain a perfect baseline image is important. Baseline inaccuracy is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> primary c<strong>on</strong>tributor <str<strong>on</strong>g>of</str<strong>on</strong>g> a lower repeatability [Lander et al., 1993]. C<strong>on</strong>tact angle was measured, by using<br />

a c<strong>on</strong>tact angle meter (GBX Digidrop) apparatus, by a liquid at six different points <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <strong>on</strong> both<br />

sides <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactide or composite pellets. C<strong>on</strong>tact angles were measured <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface for 4 minutes as after<br />

3 minutes, it was observed that measured angle remained stable.<br />

C<strong>on</strong>tact angle measurements are influenced by several factors. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drop is an<br />

important influence. Measurement should take place immediately after <str<strong>on</strong>g>the</str<strong>on</strong>g> drop is placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid<br />

material. This should cover <str<strong>on</strong>g>the</str<strong>on</strong>g> errors made due to interacti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> material which must be chemically<br />

and physically homogeneous. It is assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid does not react with <str<strong>on</strong>g>the</str<strong>on</strong>g> solid and that <str<strong>on</strong>g>the</str<strong>on</strong>g> solid<br />

surface is perfectly smooth and rigid. Sec<strong>on</strong>dly, surface roughness and surface impurities are influential<br />

parameters. As a result <str<strong>on</strong>g>the</str<strong>on</strong>g> drop can have various metastable states, which automatically influence <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tact angle. Finally, relative humidity and temperature are factors that provide c<strong>on</strong>tact angle variance<br />

[Rudawska and Jacniacka, 2008].<br />

4 Protocols for Porosity and Pore Size Measurement<br />

4.1 Average Geometric Porosity<br />

<strong>The</strong> thickness and diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and scaffold dimensi<strong>on</strong>s were measured at eight different<br />

points with an electr<strong>on</strong>ic vernier caliper. Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets and foams was measured <strong>on</strong> an electr<strong>on</strong>ic<br />

digital balance to four decimal points. <strong>The</strong> observed dimensi<strong>on</strong>al data values were used to calculate radius<br />

and volume and <str<strong>on</strong>g>the</str<strong>on</strong>g>n utilize <str<strong>on</strong>g>the</str<strong>on</strong>g> mass obtained to calculate density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet or foam. <strong>The</strong>n finally relative<br />

density and geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam was calculated. As example, we present in Table 4.2 measured<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 pellets and foam before and after sc CO 2 foaming.<br />

Table 4.2: Dimensi<strong>on</strong>al data <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 pellets and foams for geometric porosity.<br />

Pellet Foam Geometric<br />

S/N Diameter Thickness Mass Density Diameter Thickness Mass Density Porosity<br />

d p (mm) Ø p (mm) (mg) d f (mm) Ø f (mm) (mg) P(%)<br />

1 12.9 0.6 85.0 1074.0 25.0 1.9 96.0 101.1 90.6<br />

2 13.0 0.6 91.6 1103.4 23.5 2.1 84.2 93.1 91.6<br />

3 12.9 0.6 96.0 1184.2 25.1 2.1 96.1 94.4 92.0<br />

4 12.9 0.6 94.0 1137.6 31.6 1.9 93.5 62.7 94.5<br />

5 12.9 0.6 83.8 1066.5 27.7 1.7 84.6 83.5 92.2<br />

6 12.9 0.7 100.0 1171.2 24.9 2.0 100.4 101.1 91.4<br />

7 12.9 0.6 95.8 1144.8 25.9 1.7 84.0 96.3 91.6<br />

8 12.9 0.6 101.0 1242.1 26.3 2.3 100.1 81.2 93.5<br />

9 13.0 0.6 84.2 1022.7 32.0 2.0 90.7 55.7 94.6<br />

- 102 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

<strong>The</strong> foams obtained after process are mostly in circular shape, <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter variati<strong>on</strong>s in not very<br />

high, however thick varies to some extent. Porosity obtained by geometric method compared with mercury<br />

intrusi<strong>on</strong> porosimetry produced results 5 to 7% higher.<br />

4.2 2D Image Analysis<br />

<strong>The</strong> scanning electr<strong>on</strong> microscope (SEM) used in our study was a, LEO 435 VP model. <strong>The</strong><br />

secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams were mounted <strong>on</strong> an aluminum stub with a carb<strong>on</strong> adhesive and <str<strong>on</strong>g>the</str<strong>on</strong>g>n coated with<br />

silver/gold (120 sec, Arg<strong>on</strong> atmosphere). <strong>The</strong> SEM micrographs were digitized <strong>on</strong> a matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> 10241024<br />

pixels with 256 gray levels. In order to study <str<strong>on</strong>g>the</str<strong>on</strong>g> foams porosity, image analysis was performed using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

SCION ® image s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. <strong>The</strong> first stage is to obtain c<strong>on</strong>ductive materials by using a device called a "sputter<br />

coater."<br />

4.2.1 Sputter Coater<br />

If powder particles were to be analyzed, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were dispersed <strong>on</strong> double-sided carb<strong>on</strong> c<strong>on</strong>ductive<br />

adhesive tape attached to <str<strong>on</strong>g>the</str<strong>on</strong>g> studs. Double sided adhesive tape permits quick mounting <str<strong>on</strong>g>of</str<strong>on</strong>g> samples without<br />

using liquid or colloidal adhesives. <strong>The</strong>se studs are fixed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample holder.<br />

For foams after being frozen in liquid nitrogen for 2 min, <str<strong>on</strong>g>the</str<strong>on</strong>g> specimens were fractured using a<br />

razor blade and tweezers in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong>s parallel and perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, <str<strong>on</strong>g>the</str<strong>on</strong>g>n placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> holder<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> isopropanol base graphite paint. <strong>The</strong> resulting transverse and l<strong>on</strong>gitudinal secti<strong>on</strong>s were<br />

sputter-coated with platinum/gold. <strong>The</strong> holder mounted with samples is placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. Sputter<br />

coater uses an electric field and arg<strong>on</strong> gas. <strong>The</strong> metalizing chamber is closed and placed under vacuum. A<br />

stream <str<strong>on</strong>g>of</str<strong>on</strong>g> arg<strong>on</strong> eliminates <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. Gold or gold-palladium is preferred if <str<strong>on</strong>g>the</str<strong>on</strong>g> sample has<br />

a very irregular surface.<br />

Carb<strong>on</strong> c<strong>on</strong>ductive<br />

adhesive tapes<br />

Particle image<br />

Particulate<br />

Sample<br />

Particle sample<br />

<strong>on</strong> holder<br />

Coated<br />

particle sample<br />

Polymer foams<br />

Sputter<br />

Coater<br />

SEM LEO 435 VP<br />

Foam<br />

Coated<br />

foam sample<br />

Dipping foam in<br />

liquid nitrogen<br />

Tweezers to<br />

break foam<br />

Sample<br />

Holders<br />

Isopropanol Base<br />

c<strong>on</strong>ductive adhesive<br />

(Graphite paint)<br />

Foam pore<br />

Image<br />

Figure 4.22: Sputter coating and SEM processing flow diagram.<br />

- 103 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> commissi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metalizing high voltage, low current passes through a gold foil,<br />

i<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are deposited <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample. <strong>The</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gold layer<br />

deposited depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> filing but does not exceed 10 Å. <strong>The</strong> gas pressure was less than 50 mTorr<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> current was about 40 mA. <strong>The</strong> coating time was 120 s. <strong>The</strong> metalizing chamber is <str<strong>on</strong>g>the</str<strong>on</strong>g>n reduced to<br />

atmospheric pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> samples are introduced into <str<strong>on</strong>g>the</str<strong>on</strong>g> microscope chamber. Complete schematic<br />

procedure is shown in Figure 4.22. A working distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> barrel and <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

between 30 and 37 mm is recommended. An accelerati<strong>on</strong> voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s between 10 and 15 kV is<br />

generally accepted, and a probe current <str<strong>on</strong>g>of</str<strong>on</strong>g> between 50 and 150 Å.<br />

4.2.2 SCION Image Analysis<br />

Image analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM micrographs was used for <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> internal pore morphology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> freeze-dried foams. Polymeric and composite foams images are taken <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, at <str<strong>on</strong>g>the</str<strong>on</strong>g> cross<br />

secti<strong>on</strong> and inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pores. Cross secti<strong>on</strong>al images are taken at five different points (<str<strong>on</strong>g>the</str<strong>on</strong>g> centre, top left,<br />

bottom left, top right and bottom right) to verify homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> pores and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong> (cf. Figure<br />

4.23). Normally magnificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> image are (25, 40, 100, 200, 300, 400, 500) depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size.<br />

Higher magnificati<strong>on</strong> up to 1K, 2K and 3K is recorded, if internal surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores walls is to be<br />

observed.<br />

<strong>The</strong> SEM micrographs were treated and statistically analyzed using <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware SCION ® Image<br />

analysis. <strong>The</strong> images were digitized <strong>on</strong> a matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> 1024 1024 pixels with 256 gray levels. <strong>The</strong> foams were<br />

duplicated and five images <str<strong>on</strong>g>of</str<strong>on</strong>g> different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same foam were analyzed. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> successive<br />

image transformati<strong>on</strong>s can be seen in Figure 4.24.<br />

Scaffold<br />

surface<br />

Top left-50×<br />

Top Right-100×<br />

Scaffold cross- secti<strong>on</strong>-20×<br />

Bottom left-100×<br />

Bottom right-100×<br />

Centre-100×<br />

Figure 4.23: SEM Images <str<strong>on</strong>g>of</str<strong>on</strong>g> cross secti<strong>on</strong>al foam.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data obtained after SCION ® image analysis is presented in Table 4.3. From <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data, it is possible to define three pores categories (cf. Table 4.4): Micro, meso and macro pores are pores<br />

with dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent diameter less than 25 m, 25−150 m and above 150 m respectively. <strong>The</strong><br />

micro pores are necessary for movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquids and nutrients in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold. Meso pores are for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accommodati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> human mesenchymal stem cells, as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size varies from 100−150 m. Macro pores<br />

- 104 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

are necessary for <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mesenchymal cells. Data <str<strong>on</strong>g>of</str<strong>on</strong>g> pores was extracted from SCION ®<br />

images s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware and calculati<strong>on</strong> was d<strong>on</strong>e by using MS Excel calculati<strong>on</strong> sheets. <strong>The</strong> retrieved data is<br />

presented in Table 4.3.<br />

01-SEM Image<br />

02-After threshold<br />

03-After Binary<br />

transformati<strong>on</strong><br />

04-Opening<br />

transformati<strong>on</strong><br />

08-Analyzing pores<br />

07-Opening + closing<br />

+ dilating + eroding<br />

+ manual transformati<strong>on</strong><br />

06-Opening + closing<br />

transformati<strong>on</strong><br />

05-Erodeing<br />

transformati<strong>on</strong><br />

Figure 4.24: Various steps <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM image by SCION ® .<br />

Table 4.3: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> data obtained from SCION® image analysis.<br />

<strong>The</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> pores and respective areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores obtained (cf. Table 4.3) thus helps in<br />

calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> pore equivalent circular diameter (d e ). Pore morphology and pore area ratios, pore volume<br />

ratios, minimum and maximum equivalent pore diameter.<br />

- 105 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

A graphs obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> SCION ® data is depicted in Figure 4.25-A. <strong>The</strong> average pore<br />

diameter, area and volume have been calculated by assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> pores are perfect circles. Average cell<br />

densities are investigated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>:<br />

6 1 foamed<br />

Nc<br />

(1 )<br />

2<br />

(4.1)<br />

de unfoamed<br />

where foamed is <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> foams, unfoamed is <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets, d e is <str<strong>on</strong>g>the</str<strong>on</strong>g> pore equivalent<br />

circular diameter, obtained by SCION ® image analysis. (cf. Figure 4.25-B).<strong>The</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> pores in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

foams are calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> following formula that gives <str<strong>on</strong>g>the</str<strong>on</strong>g> circularity.<br />

c = 4 A/P 2 (4.2)<br />

where A is <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores and P is <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeter.<br />

Solving equati<strong>on</strong> 4.2 if <str<strong>on</strong>g>the</str<strong>on</strong>g> results are in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> [0.0−0.2], [0.2−0.5] and [0.5−1.0] <str<strong>on</strong>g>the</str<strong>on</strong>g> pores<br />

are el<strong>on</strong>gated, irregular and regular in shape respectively.<br />

Table 4.4: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> pore distributi<strong>on</strong> data, pore morphology and final SCION ® image.<br />

Pore Frequency<br />

100<br />

10<br />

1<br />

0.1<br />

2D Graph 2<br />

d 50<br />

0 20 40 60 80 100 120 140 160<br />

Pore Diameter (m)<br />

100<br />

(A)-Pore frequency and cummulative pore area as<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter.<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Cumulative Pore Area (%)<br />

Pore Density-( Pores.cm -3 )<br />

1x10 9<br />

100x10 6<br />

10x10 6<br />

1x10 6<br />

100x10 3<br />

0<br />

30<br />

Pore Density : Taguchi Plan-I<br />

60<br />

Cogrinding Time (mins)<br />

180<br />

360<br />

480<br />

1800<br />

3630<br />

4570<br />

(B)-pore density as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer filler cogrinding<br />

time.<br />

Figure 4.25: Graphs obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial data <str<strong>on</strong>g>of</str<strong>on</strong>g> SCION ® image analysis.<br />

<strong>The</strong> pore numbers does not represent a realist image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogenous pores in foam, so we<br />

calculate percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore numbers, area and volume % <str<strong>on</strong>g>of</str<strong>on</strong>g> micro, meso and macro pores. Different types<br />

- 106 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pores in <str<strong>on</strong>g>the</str<strong>on</strong>g> foams are present in functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers (P L,D LA) under <str<strong>on</strong>g>the</str<strong>on</strong>g> same scCO 2<br />

c<strong>on</strong>diti<strong>on</strong>s T sat = 55°C, P sat = 80 bar, t sat = 30 min, dP/dt=4.5 bar/s (cf. Figure 4.26).<br />

Compairing all <str<strong>on</strong>g>the</str<strong>on</strong>g> graphs provide a clearer picture about <str<strong>on</strong>g>the</str<strong>on</strong>g> foam morphology SEM image is in<br />

2D and it is already supposed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter obtained from SCION ® image analysis is <str<strong>on</strong>g>of</str<strong>on</strong>g> a circular<br />

pore, so if we c<strong>on</strong>sider pore volume <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalent pore diameter, <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g> pores are sphere which is not possible. Hence to make <str<strong>on</strong>g>the</str<strong>on</strong>g> result more close to <str<strong>on</strong>g>the</str<strong>on</strong>g> real<br />

foam pore surface area is c<strong>on</strong>sidered for calculati<strong>on</strong>s. SCION ® image analysis also provide informati<strong>on</strong><br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y are el<strong>on</strong>gated, regular or irregular. Figure 4.26 (A) presents <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> micro, meso and macro pores in a scaffold while Figure 4.26 (B) presents <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pore surface area. <strong>The</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> macro pores are though in less percentage but <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> macro pores has<br />

highest value. Figure 4.26 (C) presents <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> each poreand we can see that macro pores almost<br />

c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> total scaffold volume. <strong>The</strong> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> pores is calculated by equati<strong>on</strong> 4.2 and for P L,D LA<br />

regular, irregular and el<strong>on</strong>gated pores are 68%, 23% and 9% as presented in Figure 4.26 (D).<br />

Micro<br />

Meso<br />

Macro<br />

Pie Graph 1<br />

Micro<br />

Meso<br />

Macro<br />

Pie Graph 1<br />

(A)-Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore quantitity.<br />

(B)-Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore surface area.<br />

Micro<br />

Meso<br />

Macro<br />

Pie Graph 1<br />

El<strong>on</strong>gated<br />

Irregular<br />

Regular<br />

Pie Graph 1<br />

(C)-Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore volume.<br />

(D)-Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pore types.<br />

Figure 4.26: Pore distributi<strong>on</strong> comparis<strong>on</strong> in a foam with different aspects.<br />

4.3 3D Hg Intrusi<strong>on</strong> Porosity<br />

Porosity and pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> randomly selected foams were determined by AutoPore IV 9500<br />

(cf. Figure 4.27) mercury porosimeter located at <str<strong>on</strong>g>the</str<strong>on</strong>g> CIRIMAT/UPS and analysis were performed by Sophie<br />

Cazalbou. Mercury intrusi<strong>on</strong> porosimeter (Pascal 140, <strong>The</strong>rmo- Quest) was used to study <str<strong>on</strong>g>the</str<strong>on</strong>g> pore structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA scaffolds. For each different pore diameter scaffolds, three measurements were performed.<br />

Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous scaffolds with mass approximately 0.1 g were first measured and placed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ultramacropore dilatometer for out-gassing. <strong>The</strong> dilatometer was <str<strong>on</strong>g>the</str<strong>on</strong>g>n filled with mercury up to 1800 mm 3<br />

- 107 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

for analysis. With increasing pressure up to 400 kPa, at a approximately rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.07 kPa/s, <str<strong>on</strong>g>the</str<strong>on</strong>g> mercury<br />

penetrated through <str<strong>on</strong>g>the</str<strong>on</strong>g> open pores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample scaffolds. By measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample pores<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium pressure at which intrusi<strong>on</strong> occurs, experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore volume distributi<strong>on</strong> as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir diameter were obtained using <str<strong>on</strong>g>the</str<strong>on</strong>g> Washburn equati<strong>on</strong> as described in chapter 3. It should<br />

be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameters obtained are assumed to be in cylindrical shape. Porosimetry data were <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

corrected for compressi<strong>on</strong> by subtracting <str<strong>on</strong>g>the</str<strong>on</strong>g> blank analysis curve <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury compressi<strong>on</strong>. <strong>The</strong> median pore<br />

diameter, <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to volume ratio and <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA/PLA scaffolds were available from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data. After 6 hrs <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g experimental procedure, median pore diameter, median pore diameter (Area),<br />

average pore diameter (4V/A), bulk density at 0.0034 MPa, apparent (skeletal) density, porosity and<br />

interstitial porosity was obtained. <strong>The</strong> result obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> graph for incremental intrusi<strong>on</strong> vs pore<br />

size is presented in Figure 4.28.<br />

Figure 4.27: Autopore analyzer for porosity.<br />

Figure 4.28: Incremental intrusi<strong>on</strong> vs pore size.<br />

4.4 3D Micro Computer Tomography<br />

Experiments <strong>on</strong> Micro-Computer Tomography (CT) have been performed at <str<strong>on</strong>g>the</str<strong>on</strong>g> CIRIMAT/UPS<br />

laboratory.<br />

CT has two distinct properties that set it apart from c<strong>on</strong>venti<strong>on</strong>al measurement techniques:<br />

1. As X-rays can “see through” material, computer tomography is able to reveal hidden features that<br />

touch probes can’t reach and laser and visi<strong>on</strong> systems can’t see.<br />

2. <strong>The</strong> magnificati<strong>on</strong> capability <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray imaging makes it possible to inspect comp<strong>on</strong>ents that <strong>on</strong>ly<br />

measure a few millimetres with micrometer resoluti<strong>on</strong>.<br />

As shown <strong>on</strong> Figure 4.29, computer tomography is <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> imaging an object from many<br />

different directi<strong>on</strong>s using penetrating radiati<strong>on</strong> and using a computer to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> interior structure <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

object from <str<strong>on</strong>g>the</str<strong>on</strong>g>se projected images. Computer tomography allows <str<strong>on</strong>g>the</str<strong>on</strong>g> complete structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an object to be<br />

stored and examined to give all internal dimensi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> precise size, shape and locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any internal<br />

feature or defect.<br />

- 108 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

Figure 4.29: Set up <str<strong>on</strong>g>of</str<strong>on</strong>g> CT and flow chart <str<strong>on</strong>g>of</str<strong>on</strong>g> CT measurement process.<br />

4.4.1 Acquisiti<strong>on</strong><br />

<strong>The</strong> sample is rotated through 360 degrees <strong>on</strong> a precisi<strong>on</strong> turntable and a set <str<strong>on</strong>g>of</str<strong>on</strong>g> high resoluti<strong>on</strong><br />

digital radiographs are acquired at regular (typically 0.5 degree) increments. <strong>The</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> this data set<br />

determines <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final 3D data.<br />

4.4.2 Correcti<strong>on</strong>s<br />

Each projected image from <str<strong>on</strong>g>the</str<strong>on</strong>g> data set undergoes geometric and shading correcti<strong>on</strong>, to remove<br />

spatial and intensity n<strong>on</strong> linearities introduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> imaging device.<br />

4.4.3 Rec<strong>on</strong>structi<strong>on</strong><br />

By combining all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> individually corrected images and using a c<strong>on</strong>e beam back projecti<strong>on</strong><br />

technique, a geometrically correct, three dimensi<strong>on</strong>al data cloud is computed. <strong>The</strong> patented s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware has a<br />

real-time viewer that shows <str<strong>on</strong>g>the</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> progressing in parallel with <str<strong>on</strong>g>the</str<strong>on</strong>g> x-ray images being captured.<br />

4.4.4 Viewing Results<br />

<strong>The</strong> CT data collecti<strong>on</strong>, rec<strong>on</strong>structi<strong>on</strong> and display are presented to <str<strong>on</strong>g>the</str<strong>on</strong>g> operator via <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Tek<br />

graphical user interface. This has been developed to provide ease <str<strong>on</strong>g>of</str<strong>on</strong>g> use with <str<strong>on</strong>g>the</str<strong>on</strong>g> highest performance for<br />

systems to fit users’ budgets without compromise. <strong>The</strong> data cloud can be sliced open in any directi<strong>on</strong> to<br />

reveal internal detail, surface rendering s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware similar to that used in 3D CAD systems is used to visualise<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exposed features.<br />

4.4.5 Wide Variety <str<strong>on</strong>g>of</str<strong>on</strong>g> Post Processing<br />

<strong>The</strong> data cloud can be output as a stereo lithography file, a format accepted by most CAD<br />

packages. Once imported into a CAD system, <str<strong>on</strong>g>the</str<strong>on</strong>g> radiographic informati<strong>on</strong> can be compared directly with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> original design file to highlight differences when checking first <str<strong>on</strong>g>of</str<strong>on</strong>g>f manufactured parts, or if <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

design is not available, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> radiographic data is used to create a new CAD file for rapid prototyping and<br />

reverse engineering.<br />

Micro CT <str<strong>on</strong>g>of</str<strong>on</strong>g> different scaffolds was taken from different angles and views. Slices were taken to<br />

observe <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nectivity and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold structure. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer skeletal<br />

structure al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> top, fr<strong>on</strong>t and right views are taken (cf. Figure 4.30). <strong>The</strong>se images can be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r used<br />

for porosity and pore size distributi<strong>on</strong> analysis. CT can directly provide <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity and interc<strong>on</strong>nectivity<br />

in tested foam. <strong>The</strong> results obtained from CT are real results compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained from<br />

calculati<strong>on</strong>s and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r derived analysis such as images analysis.<br />

- 109 -


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

(A)-Scaffold top slice view.<br />

(B)-Scaffold right slice view.<br />

(C)-Scaffold fr<strong>on</strong>t slice view.<br />

- 110 -<br />

(D)-Scaffold skeletal view.<br />

Scaffold 95%PLGA+2.5%ATCP+2.5%TCP processed at P sat =100 bars, T sat =48 o C,<br />

T sat =20 min, dP/dt= 3 bar/s<br />

Figure 4.30: CT slice view from different directi<strong>on</strong> for b<strong>on</strong>e scaffold showing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interc<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> pores<br />

5 Mechanical Tests <strong>on</strong> Foams<br />

5.1 Experimental C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Test<br />

Brazilian tests were c<strong>on</strong>ducted by Gerard Dechambre (CIRIMAT) <strong>on</strong> computerized universal<br />

testing machine (Hounsfield H25KS). <strong>The</strong> compressive modulus E c and <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive strength c are<br />

easy to measure for foams by uni-axial compressi<strong>on</strong> tests.<br />

A loading frame, 25kN capacity, having a base and a cross head joined toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with two solid<br />

pillars with nuts. At <str<strong>on</strong>g>the</str<strong>on</strong>g> top, <str<strong>on</strong>g>the</str<strong>on</strong>g> pillars have l<strong>on</strong>g threads for height adjustment. On <str<strong>on</strong>g>the</str<strong>on</strong>g> base, a 25 kN<br />

hydraulic jack is centrally fixed between <str<strong>on</strong>g>the</str<strong>on</strong>g> pillars. This jack has an integral pumping unit and oil reservoir.<br />

A 25 kN capacity pressure gauge is fixed to <str<strong>on</strong>g>the</str<strong>on</strong>g> jack for indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> load <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen.<br />

Samples used in this investigati<strong>on</strong> were discs <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mm diameter and 3 mm thickness. Tests were<br />

performed at room temperature. Each sample was tested three times and <str<strong>on</strong>g>the</str<strong>on</strong>g> average value was incorporated.<br />

<strong>The</strong> composite foams were cut into circular flat-bottom disks (10 mm in diameter) for mechanical testing.<br />

<strong>The</strong> top layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disk was removed to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> desired thickness (3 mm) and ensure a flat surface.<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> system calibrated/tared and <str<strong>on</strong>g>the</str<strong>on</strong>g> crosshead was in <str<strong>on</strong>g>the</str<strong>on</strong>g> correct positi<strong>on</strong>, samples were loaded and<br />

were compressed in z – directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffold fabricati<strong>on</strong> process at cross speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 mm/min between two<br />

steel platens up to a strain level <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 75%.<br />

5.2 Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Curve Analysis<br />

<strong>The</strong> data was c<strong>on</strong>verted to Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Excel format <str<strong>on</strong>g>the</str<strong>on</strong>g>n and <str<strong>on</strong>g>the</str<strong>on</strong>g> force-displacement data was<br />

c<strong>on</strong>verted to stress-strain curves. Strain was determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> values for displacement and <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds. Strain was determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> values for displacement and <str<strong>on</strong>g>the</str<strong>on</strong>g> original height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scaffolds. <strong>The</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial linear porti<strong>on</strong>, elastic regi<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stress-strain curve was <str<strong>on</strong>g>the</str<strong>on</strong>g>n used to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus. <strong>The</strong> compressive strength was estimated by determining <str<strong>on</strong>g>the</str<strong>on</strong>g> stress at an <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%


Chapter 4.<br />

Experimental Procedures and Protocols for Analyses<br />

just after <str<strong>on</strong>g>the</str<strong>on</strong>g> initial linear porti<strong>on</strong>, elastic regi<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stress-strain curve. (cf. Figure 4.31). <strong>The</strong><br />

compressive modulus was defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> initial linear modulus. <strong>The</strong> compressive strength ( ) was<br />

estimated by determining <str<strong>on</strong>g>the</str<strong>on</strong>g> stress at 10% deformati<strong>on</strong>.<br />

6 C<strong>on</strong>clusi<strong>on</strong><br />

Figure 4.31: Stress strain graph <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA foam obtained showing <str<strong>on</strong>g>the</str<strong>on</strong>g> three regi<strong>on</strong>s.<br />

In this chapter, all <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental procedures and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir limitati<strong>on</strong>s have been discussed in detail<br />

with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment used for <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentati<strong>on</strong>. For size reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymeric granulates or<br />

fibres we introduced knife mill, tumbling ball mill and mortar used in our studies. <strong>The</strong> procedures to make<br />

pellets by dry method using <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraullic press and wet method preparati<strong>on</strong> has been described. Two<br />

different types <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical fluid equipment were under utilizati<strong>on</strong> to produce biopolymer foams. One <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> equipment was bound for limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> foams per batch due to low chamber volume while o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

was used to process foams in semi-industrial quantities. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n presented <str<strong>on</strong>g>the</str<strong>on</strong>g> various protocols <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis<br />

techniques for characterizing <str<strong>on</strong>g>the</str<strong>on</strong>g> physicochemical and use properties <str<strong>on</strong>g>of</str<strong>on</strong>g> initial, ground and co-ground<br />

products such as granulometry for particle size and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong>.<br />

Analytical techniques such as differential scanning calorimetry for glass transiti<strong>on</strong> temperature<br />

and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal properties, sieving for powder gradati<strong>on</strong>, mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> materials for homogenizati<strong>on</strong>, SEM<br />

for size morphology, geometric and Hg intrusi<strong>on</strong> porosimetry for pore size and distributi<strong>on</strong> and c<strong>on</strong>tact<br />

angle for surface properties were discussed. SCION ® image analysis technique has been explained with an<br />

example to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> number or pores, pore distributi<strong>on</strong> and types <str<strong>on</strong>g>of</str<strong>on</strong>g> pores. <strong>The</strong>n micro-CT protocol for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> structural assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer foam and to elaborate <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nectivity has been presented. Finally,<br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer by using Brazilian testing and compressi<strong>on</strong> testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foamed<br />

product are elaborated.<br />

- 111 -


Chapter 5<br />

- 112 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Chapter 5<br />

Chapter<br />

5<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Scaffolds for<br />

C<strong>on</strong>nective Tissue<br />

Engineering<br />

In this chapter, we present characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different biopolymers such as P L LA, P L,DL LA,<br />

PLGA 50:50 and PLGA 85:15 for a comparative study. Particular attenti<strong>on</strong> has been focused <strong>on</strong> amorphous and<br />

semi-crystalline polymers. <strong>The</strong> modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> scCO 2 foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers by pressure quench method requires<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. Indeed, certain iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sorpti<strong>on</strong> data and its modelling are<br />

required for such study. In this chapter, after explaining <str<strong>on</strong>g>the</str<strong>on</strong>g> principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming phenomen<strong>on</strong><br />

precisely, we have focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> phase equilibrium,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T g as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 sorpti<strong>on</strong>. Finally, we have derived <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> equati<strong>on</strong>,<br />

which is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> classical nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory.<br />

<strong>The</strong>n characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams obtained by supercritical CO 2 process by varying <str<strong>on</strong>g>the</str<strong>on</strong>g> ratios <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

LA/GA c<strong>on</strong>tents were taken into account to correlate solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and equivalent pore<br />

size and porosity in scaffolds. A focus <strong>on</strong> pore morphology, structure anisotropy and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir characteristics<br />

will be emphasized as it plays an important role in cell seeding, differentiating and growth in <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold.<br />

1 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomaterials<br />

1.1 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Powders<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers in powder form were used directly by sieving through 500 m mesh to avoid any<br />

foreign particles or agglomerate. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs in granules and pellet form were ground in knife mill as described<br />

in chapter 4. <strong>The</strong> physical appearance and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each polymer is stated as under:<br />

P L,D LA (PABR L 68) is L,D polylactic acid c<strong>on</strong>taining approximately 12% <str<strong>on</strong>g>of</str<strong>on</strong>g> D-lactic acid. <strong>The</strong>y<br />

are available in brownish yellow granules form.<br />

P L,DL LA (LR 704) is a poly (L-lactide-co-D,L-lactide) with a L-lactide : D,L-lactide molar ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

67:33 to 73:27. It is white to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-white granules.<br />

- 113 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

PLGA 85:15 (RG 858 S) is a poly (D, L-lactide-co-glycolide) with a D,L-lactide : glycolide molar<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 83-87 : 13-17 and initially it was white to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-white solid fibres.<br />

PLGA 85:15 (DL-PLG) is a poly(D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 85:15. It is white to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-white solid.<br />

PLGA 50:50 (PLG 8523) is a poly(L-lactide-co-glycolide) with a L-lactide : glycolide molar ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

50:50. It is white to light tan granules.<br />

PLGA 85:15 (PLG 8531) is a poly (L-lactide-co-glycolide) with a L-lactide : glycolide molar ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

84:16. It is white to light tan granules.<br />

PLGA 85:15 (RG 857 S) is a poly (L-lactide-co-glycolide) with a L-lactide: glycolide molar ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

82-88 : 12-18 and initially it was white to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-white granules. L-lactide co glycolide were<br />

difficult to c<strong>on</strong>vert in powder form due to higher modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide c<strong>on</strong>tents, while<br />

copolymers c<strong>on</strong>taining D,L-Lactide were easily c<strong>on</strong>verted into powder.<br />

PLGA 50:50 (RG 504) is a poly (D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 48:52 to 52:48 and initially it was white to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-white solid.<br />

PLGA 50:50 (PDLG 5010) is a poly(D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 52:48, It is white to light tan granules.<br />

<strong>The</strong>y have been purchased from BOEHRINGER Ingelheim (Germany), LACTEL (USA),<br />

GALACTIC (Belgium) and PURAC (Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands) (cf. Table 5.1).<br />

Table 5.1: Polylactide origin and physical state.<br />

Origin Biopolymer Physical state<br />

GALACTIC P L,D LA (PABR L 68) Amorphous<br />

BOEHRINGER P L,DL LA (Resomer ® LR 704) Semi Crystalline<br />

BOEHRINGER PLGA 85:15 (Resomer ® RG 858S) Amorphous<br />

LACTEL PLGA 85:15 (DL-PLG) Amorphous<br />

PURAC PLGA 50:50 (PLG 8523) Semi Crystalline<br />

PURAC PLGA 85:15 (PLG 8531) Semi Crystalline<br />

BOEHRINGER PLGA 85:15 (LG 857 S) Amorphous<br />

BOEHRINGER PLGA 50:50 (Resomer ® RG 504) Amorphous<br />

PURAC PLGA 50:50 (PDLG 5010) Amorphous<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers were initially in powder form while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs were in granules by source.<br />

Amorphous polymers were easy to ground in <str<strong>on</strong>g>the</str<strong>on</strong>g> knife mill and <str<strong>on</strong>g>the</str<strong>on</strong>g>y had mean size distributi<strong>on</strong> ~150 m but<br />

those which were semi-crystalline took l<strong>on</strong>ger time and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mean particle size increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallinity<br />

increased (agglomerati<strong>on</strong>). Granulometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer powder analysis after different time <str<strong>on</strong>g>of</str<strong>on</strong>g> grinding is<br />

presented in Figure 5.1. <strong>The</strong> mean size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each polymer is presented in Table 5.2. To prevent<br />

degradati<strong>on</strong>, polymers have been stored at 4°C in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir powder-like form.<br />

- 114 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Table 5.2: Mean diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers after knife mill grinding by granulometry.<br />

Polymer d (50) (m) Polymer d (50) (m)<br />

P L,D LA (PABR L 68) 161.5 PLGA 85:15 (PLG 8531) 166.1<br />

P L,DL (LA LR 704) 389.5 PLGA 85:15 (LG 857 S) 506.4<br />

PLGA 85:15 (RG 858 S) 99.7 PLGA 50:50 (RG 504) 89.5<br />

PLGA 85:15 (DL-PLG) 167.7 PLGA 50:50 (PDLG 5010) 178.2<br />

PLGA 50:50 (PLG 8523) 207.7<br />

Volume (%)<br />

20<br />

P L,D LA PAB RL 68<br />

18<br />

P L,DL<br />

LA LR 704<br />

16<br />

PLGA 50:50 RG 504<br />

14<br />

PLGA 85:15 PDLG 5010<br />

12<br />

10<br />

8 Poly (Lactide-co-glycolide) : Granulometry<br />

6<br />

4<br />

2<br />

0<br />

0.01 0.1 1 10 100 1000 10000<br />

Particle Size(m)<br />

Volume (%)<br />

10<br />

Poly (Lactide-co-glycolide) PLGA 85:15 RG 858 S : Granulometry<br />

8<br />

6<br />

PLGA 85:15 PL PLG<br />

PLGA 85:15 PLG 8523<br />

PLGA 85:15 PDLG 8531<br />

PLGA 85:15 LG 857 S<br />

4<br />

2<br />

0<br />

0.01 0.1 1 10 100 1000 10000<br />

Particle Size(m)<br />

Figure 5.1: Size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various PLAs and PLGAs after knife mill grinding.<br />

1.1.1 Experiments <strong>on</strong> Polylactide Powders by Viscosimetry.<br />

As example, we present in detail results obtained with PLGA 50:50 (RG 504) in soluti<strong>on</strong> in CCl 4 at<br />

25°C. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> efflux times with <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer c<strong>on</strong>centrati<strong>on</strong> and corresp<strong>on</strong>ding viscosity values are<br />

reported <strong>on</strong> Table 5.3, where t o is <str<strong>on</strong>g>the</str<strong>on</strong>g> flow time <str<strong>on</strong>g>of</str<strong>on</strong>g> pure chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm and t is time for polymer soluti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ubbelohde apparatus type 3C.<br />

C<br />

(g/dl)<br />

Average<br />

Time<br />

t (sec)<br />

Table 5.3: Viscosity values <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50.<br />

Relative Specific Reduced<br />

Viscosity Viscosity Viscosity<br />

rel = t/t o sp =(t - t o )/t o red = sp /C<br />

Inherent<br />

Viscosity<br />

ln rel /C<br />

0.00 129.65 1.00 0.00 − −<br />

0.50 172.78 1.33 0.33 0.67 0.57<br />

1.00 226.65 1.75 0.75 0.75 0.56<br />

1.50 295.23 2.28 1.28 0.85 0.55<br />

2.00 359.98 2.78 1.78 0.89 0.51<br />

Variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> efflux times with polymer c<strong>on</strong>centrati<strong>on</strong> (C) and reduced specific viscosity ( sp ) and<br />

inherent viscosity (ln rel /C) were plotted and from <str<strong>on</strong>g>the</str<strong>on</strong>g> graph <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced viscosity<br />

and inherent viscosity at <str<strong>on</strong>g>the</str<strong>on</strong>g> Y-axis gives <str<strong>on</strong>g>the</str<strong>on</strong>g> intrinsic viscosity [] = 0.60. By using <str<strong>on</strong>g>the</str<strong>on</strong>g> Mark-Houwink<br />

Relati<strong>on</strong>ship (MHR) <br />

<br />

KM<br />

a<br />

with K = 5.43.10 -4 dl/g and a = 0.73, we obtain: M = 14 756 g/mol.<br />

Commercial Sodium hyalur<strong>on</strong>ate, or Hyalur<strong>on</strong>ic acid (HA) is comm<strong>on</strong>ly its sodium salt form. It<br />

was purchased from Javene, France. Viscosity given by <str<strong>on</strong>g>the</str<strong>on</strong>g> supplier in <str<strong>on</strong>g>the</str<strong>on</strong>g> data sheet is 2.4- 3.2 m 3 /kg,<br />

molecular weight 2.0-3.0×10 6 Dalt<strong>on</strong> and measured intrinsic viscosity as per procedure is [] = 2.92. By<br />

- 115 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> Mark-Houwink Relati<strong>on</strong>ship (MHR) with K = 2.2610 -5 dl/g and a = 0.796, <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight<br />

we obtain: M vis = 2 637 540 g/mol.<br />

1.1.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Molecular Mass<br />

Experimental results have been compared with values given in data sheets with <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

polylactides. All <str<strong>on</strong>g>the</str<strong>on</strong>g> values, reported <strong>on</strong> Table 5.4, are in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specificati<strong>on</strong>s. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

separati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> two main medical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactides seems to be governed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intrinsic viscosity range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers. Below a certain molecular mass (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> critical mass), oligomers<br />

are used as c<strong>on</strong>trolled release and above this critical mass polymers can be used as medical device. As<br />

shown <strong>on</strong> Table 5.4, differences between polylactides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same inherent viscosities range are not<br />

significant; <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be chosen whatever <str<strong>on</strong>g>the</str<strong>on</strong>g>ir origin (Lactel, Purac, Boehringer).<br />

Table 5.4: Comparis<strong>on</strong> between molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> various polylactides.<br />

Polylactides<br />

Data Sheet* Experiments M w Deduced<br />

inh (dL/g) inh (dL/g) from MHR<br />

Applicati<strong>on</strong>s<br />

P L,D LA (PABR L 68) 2.33 2.24 163 971 Packaging<br />

P L,DL LA (Resomer ® LR 704) 2.0 − 2.8 2.68 201 169 Medical device<br />

PLGA 85:15 (Resomer ® RG 858S) 1.3 − 1.7 1.62 57 529 C<strong>on</strong>trolled release<br />

PLGA 85:15 (DL-PLG) 0.55 − 0.75 0.72 18 943 C<strong>on</strong>trolled release<br />

PLGA 50:50 (PLG 8523) 2.27 2.21 88 033 Medical device<br />

PLGA 85:15 (PLG 8531) 3.11 2.96 131 366 Medical device<br />

PLGA 85:15 (LG 857 S) 5.0 − 7.0 6.63 396 495 Medical device<br />

PLGA 50:50 (Resomer ® RG 504) 0.45 − 0.60 0.59 14 756 C<strong>on</strong>trolled release<br />

PLGA 50:50 (PDLG 5010) 1.03 0.97 28 494 Medical device<br />

1.1.3 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Powders by DSC<br />

<strong>The</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different PLAs and PLGAs are presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 5.2, Figure 5.3 and<br />

Figure 5.4. <strong>The</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmograms are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d scan run.<br />

Figure 5.2: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> various PLAs.<br />

- 116 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Figure 5.3: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> different PLGA 50:50 .<br />

Figure 5.4: <strong>The</strong>rmograms <str<strong>on</strong>g>of</str<strong>on</strong>g> different PLGA 85:15 .<br />

- 117 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

1.1.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Transiti<strong>on</strong>s<br />

<strong>The</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> observed glass transiti<strong>on</strong> measured by DSC are reported <strong>on</strong> Table 5.5,<br />

determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> DSC technique.<br />

Table 5.5: Glass transiti<strong>on</strong>s parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various polylactides.<br />

T Onset<br />

(°C)<br />

T Midpoint<br />

(°C)<br />

Polylactide<br />

Cp<br />

(J/g.K)<br />

P L,D LA (PABR L 68) 54.2 55.6 0.421 54.9<br />

g (°C)<br />

(supplier)<br />

P L,DL LA (Resomer ® LR 704) 59.8 60.1 0.347 56−62<br />

PLGA 85:15 (Resomer ® RG 858S) 41.8 42.7 0.388 43<br />

PLGA 85:15 (DL-PLG) 52.2 53.1 0.451 50−55<br />

PLGA 50:50 (PLG 8523) 57.4 59.5 0.465 55−60<br />

PLGA 85:15 (PLG 8531) 56.1 57.4 0.462 55−60<br />

PLGA 85:15 (LG 857 S) 59.3 61.4 0.392 57−63<br />

PLGA 50:50 (Resomer ® RG 504) 47.1 49.2 0.499 46−50<br />

PLGA 50:50 (PDLG 5010) 47.7 49.1 0.524 46−50<br />

Polymer molecules are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten partially crystalline, with crystalline regi<strong>on</strong>s dispersed within<br />

amorphous material. Chain disorder or misalignment, which is comm<strong>on</strong>, leads to amorphous material since<br />

twisting, kinking and coiling prevent strict ordering required in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalline state. Thus, linear polymers<br />

with small side groups, which are not too l<strong>on</strong>g form crystalline regi<strong>on</strong>s easier than branched, network,<br />

atactic polymers, random copolymers, or polymers with bulky side groups. Crystalline polymers are denser<br />

than amorphous polymers, so <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity can be obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> density.<br />

Crystallinity is indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> crystalline regi<strong>on</strong> in polymer with respect to amorphous<br />

c<strong>on</strong>tent. Crystallinity influences many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer properties such as hardness, modulus, tensile,<br />

stiffness, and melting point. <strong>The</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolide to lactide at different compositi<strong>on</strong>s allows c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers [Park et al., 1995; Cohn et al., 1987]. When <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalline PGA is<br />

co-polymerized with PLA, <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity is reduced and, as a result, this leads to increase in<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrati<strong>on</strong> and hydrolysis. It can <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> copolymer is<br />

related to <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>omers used in syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> glycolide c<strong>on</strong>tent, <str<strong>on</strong>g>the</str<strong>on</strong>g> quicker<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> has been observed [Park, 1995].<br />

1.1.4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> L and DL Ratio <strong>on</strong> <strong>The</strong>rmal Property <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactide Acid<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal properties, it can be observed that P L , DL LA copolymers showed T g glass transiti<strong>on</strong><br />

temperature ranging 55−60°C. However, <strong>on</strong>ly P L,D LA copolymers c<strong>on</strong>taining 10 mol % D,LLA showed T g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 54°C; similarly <str<strong>on</strong>g>the</str<strong>on</strong>g> T m melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two polymers were also at 154 and 143°C, respectively.<br />

<strong>The</strong>se copolymers had lower degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity than that <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA homopolymer (~50%). Buchatip et al.<br />

[2008] also produced similar type <str<strong>on</strong>g>of</str<strong>on</strong>g> results explaining that T g glass transiti<strong>on</strong>, T m melting temperature as<br />

well as crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> copolymers decreased as mol% <str<strong>on</strong>g>of</str<strong>on</strong>g> D,LLA com<strong>on</strong>omer increased. Melting peak<br />

and crystallinity can not be observed in P D,L LA homopolymer and copolymers with more than 10 mol % <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D,LLA suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se polymers.<br />

Apart from this discussi<strong>on</strong>, it may be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> different processes used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

copolymerizati<strong>on</strong> (polyc<strong>on</strong>densati<strong>on</strong>/open ring polymerizati<strong>on</strong>/copolymerizati<strong>on</strong>) and <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> catalyst<br />

used also plays an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystallinity and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final copolymer.<br />

- 118 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

1.1.4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> LA/GA Ratio <strong>on</strong> T g <str<strong>on</strong>g>of</str<strong>on</strong>g> Polylactides<br />

<strong>The</strong> LA/GA ratio plays an important role <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> copolymer. GA c<strong>on</strong>tent has a great<br />

effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting PLGA copolymers. <strong>The</strong> M w <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> copolymer increases and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> M w /M n decreases with an increased GA c<strong>on</strong>tent. <strong>The</strong> PLA homopolymer has <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest M n and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest polymolecularity. Every polymer exhibits <strong>on</strong>ly <strong>on</strong>e T g glass transiti<strong>on</strong> temperature which indicate<br />

that all <str<strong>on</strong>g>the</str<strong>on</strong>g>se PLGA copolymers are amorphous. Literature survey revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity in<br />

cast polymer was c<strong>on</strong>trollable by <str<strong>on</strong>g>the</str<strong>on</strong>g> copolymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolide with lactide at different compositi<strong>on</strong>s,<br />

with those <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 – 66 wt % glycolide being fully amorphous [Gilding and Reed, 1979]. PLGA 85:15 and<br />

PLGA 50:50 with different LA/GA copolymers ratio show glass transiti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 52−60 o C and ~<br />

47.5 o C, respectively. <strong>The</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> T g may result from <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GA comp<strong>on</strong>ent in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA<br />

copolymers.<br />

1.2 Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomaterials Pellets<br />

1.2.1 Mechanical Experiments<br />

<strong>The</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer used were measured by performing <str<strong>on</strong>g>the</str<strong>on</strong>g> Brazilian test as<br />

per procedure described in chapter 4. <strong>The</strong> data obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> test is transformed into stress strain graph<br />

and from <str<strong>on</strong>g>the</str<strong>on</strong>g> graph we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus, stress at break and el<strong>on</strong>gati<strong>on</strong> (cf. Figure 5.5).<br />

10<br />

8<br />

T g<br />

Experimental and Stress Source at values<br />

Break Point<br />

Pa<br />

6<br />

4<br />

Slope to calculate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modulus<br />

2<br />

y = 3.8793x - 8.7617<br />

0<br />

0 1 2 3 4 5 6 7<br />

% (<br />

Figure 5.5: Stress strain curve obtained from Brazilian test for P L,D LA (PAB RL 68).<br />

Three pellets were tested for each polymer for <str<strong>on</strong>g>the</str<strong>on</strong>g> Brazilian test and mean value for <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

were taken into account.<br />

1.2.2 Discussi<strong>on</strong> <strong>on</strong> Mechanical Modulus<br />

<strong>The</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Brazilian test carried out <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers are tabulated in Table 5.6.<br />

Table 5.6: Mechanical <strong>Properties</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer used.<br />

Polylactide<br />

Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Stress at El<strong>on</strong>gati<strong>on</strong> Young<br />

Crystallinity c Break (MPa) (%) Modulus (GPa)<br />

P L,D LA (PAB RL 68) Amorphhous 9.6 8.7 3.80<br />

P L,DL LA (Resomer ® LR 704) 12.4% 4.3 2.8 2.93<br />

PLGA 85:15 (Resomer ® RG 858S) Amorphhous 4.1 1.67 2.10<br />

PLGA 85:15 (DL-PLG) Amorphhous 3.7 14.8 1.96<br />

PLGA 50:50 (PLG 8523) 18.4% 5.3 1.9 2.73<br />

PLGA 85:15 (PLG 8531) 26.8% 8.7 1.5 3.12<br />

PLGA 85:15 (LG 857 S) Amorphhous 6.8 2.7 3.91<br />

PLGA 50:50 (Resomer ® RG 504) Amorphhous 2.9 11. 2 1.41<br />

PLGA 50:50 (PDLG 5010) Amorphhous 4.3 9.16 1.86<br />

- 119 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Crystallizati<strong>on</strong>, crystallinity degree, and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

molecular weight, polymerizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal history, purity, and so <strong>on</strong>. As reported by Ikada et al.<br />

[1987], blending <str<strong>on</strong>g>of</str<strong>on</strong>g> P L LA and P D LA results in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a stereo-complex with a crystalline structure<br />

different from that <str<strong>on</strong>g>of</str<strong>on</strong>g> each homopolymer and melting temperatures that reach 230 o C. C<strong>on</strong>tradictory data are<br />

reported about P L LA melting enthalpy, ranging in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature from 40 to 203 J/g. To calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crystallinity, we have used <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> value adopted for <str<strong>on</strong>g>the</str<strong>on</strong>g> melting enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> totally<br />

crystallised P L LA, [Auras et al., 2010].<br />

c % = 100 (ΔH m - ΔH c )/93.6<br />

Poly(lactic acid) (PLA) is a glassy, high modulus <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoplastic polymer with properties<br />

comparable to polystyrene (PS). <strong>The</strong> mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactides depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacturing method, <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalinity factor, <str<strong>on</strong>g>the</str<strong>on</strong>g> T g and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> L-lactide, D-lactide or racemic D,L-lactide<br />

c<strong>on</strong>tents. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> poly(lactic -co-glycolic) acid <str<strong>on</strong>g>the</str<strong>on</strong>g> properties are intermediate between those <str<strong>on</strong>g>of</str<strong>on</strong>g> poly lactic<br />

acid and polyglycolic acid. <strong>The</strong>re is increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical properties but a decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> T g due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PGA structure.<br />

2 Kinematics and <strong>The</strong>rmodynamics Experiments<br />

<strong>The</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>-desorpti<strong>on</strong> studies was to be able to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming phenomen<strong>on</strong><br />

more precisely. Thus, in this part, we have realized experiments to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> kinetics by using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> data. As we have menti<strong>on</strong>ed earlier, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer determines<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei generated and it deserves a proper investigati<strong>on</strong>. We have also investigated <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> phenomen<strong>on</strong> which has influence both <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth and <str<strong>on</strong>g>the</str<strong>on</strong>g> final structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer.<br />

2.1 Sorpti<strong>on</strong>-Diffusi<strong>on</strong> Kinetics<br />

<strong>The</strong> aim to plot kinetic curves was to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer by CO 2 . To<br />

obtain kinetic curves, experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 20, 60, 120 and 240 minutes have been performed. As shown in<br />

Figure 5.6-(A), <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> curve is reaching to a plateau after 60 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> processing which means that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer can be c<strong>on</strong>sidered to be quiet saturated by CO 2 after 60 minutes at 125 bars and 36.5°C. In<br />

Figure 5.6-(B), M t denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer at time t, and M ∞ is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum sorbed<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . Here, all M t values are <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolated data (to t = 0) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial linear parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong> curves as presented in Chapter 3, secti<strong>on</strong> 4. Each M t value is analyzed after different experiments.<br />

M ∞ has been taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 240 minutes, where <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium is supposed to be completely reached.<br />

<strong>The</strong> sorpti<strong>on</strong> behaviour is modelled using <strong>on</strong>e dimensi<strong>on</strong>al diffusi<strong>on</strong> equati<strong>on</strong> from a plane sheet<br />

(Eq.2,2), chapter 2. <strong>The</strong> Minerr functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathcad has been used to optimize <str<strong>on</strong>g>the</str<strong>on</strong>g> modelling and to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> average sorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> diffusi<strong>on</strong> coefficient was found as<br />

3.64 × 10 -10 m 2 s -1 for P sat = 125 bars, T sat = 36.5°C and t sat = 120 min. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 , thus <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient must increase with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 solubilized in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer, but to simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, we have c<strong>on</strong>sidered an average sorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient all<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> time interval. Mathcad programs for diffusi<strong>on</strong> are presented in Annex A-2. <strong>The</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is in<br />

very good agreement with experimental data as show in Figure 5.6-(A).<br />

- 120 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

0,1800<br />

Weight variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA50:50 (g)<br />

0,1780<br />

0,1760<br />

0,1740<br />

0,1720<br />

0,1700<br />

0,1680<br />

0,1660<br />

(A)<br />

0,1640<br />

0,00 10,00 20,00 30,00<br />

√t (√s)<br />

(B)<br />

Figure 5.6: (A)-Kinetics and modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in PLGA 50:50 at 125 bar and 36.5°C, (B)<br />

Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in PLGA 50:50 at 125 bars and 36.5°C.<br />

2.2 Desorpti<strong>on</strong>-Diffusi<strong>on</strong> Kinetics<br />

Desorpti<strong>on</strong> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 have been studied in order to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 sorbed, but also to provide diffusi<strong>on</strong> data with different saturati<strong>on</strong> times and pressures. We must<br />

remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> M t values used in desorpti<strong>on</strong> studies are different from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in sorpti<strong>on</strong> kinetics. In<br />

desorpti<strong>on</strong> kinetics, during <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 weight, M t denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 present in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer at time t, and it has been analyzed by <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> method described previously. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> M ∞<br />

value is found by <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial parts <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong> curve. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>diffusi<strong>on</strong><br />

coefficients are calculated using Fickian diffusi<strong>on</strong> from a plane sheet.<br />

Figure 5.7 presents desorpti<strong>on</strong> data as M t /M ∞ which is plotted against <str<strong>on</strong>g>the</str<strong>on</strong>g> √t/a 2 after processed<br />

with different saturati<strong>on</strong> pressures, 100 and 200 bars. Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> factor “a” is corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> semithickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer pellet and t = 0 s is <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> period. It is obvious that <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong><br />

shows a linear behaviour until approximately 65% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. After that value, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental data diverges from <str<strong>on</strong>g>the</str<strong>on</strong>g> Fickian model. In <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour is generally<br />

attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer and <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-Fickian diffusi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 from glassy<br />

polymers. This divergence is greater for <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 bars than for <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 bars. Additi<strong>on</strong>ally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> M t /M ∞ value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> curve from 200 bars is smaller than <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 100 bars all across <str<strong>on</strong>g>the</str<strong>on</strong>g> time<br />

scale.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> Fickian model <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> has been applied for <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> divergence. <strong>The</strong> model<br />

plotted (cf. Figure 5.7) is in a very good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data. This behaviour can be<br />

explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> double Fickian diffusi<strong>on</strong>. When <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer changes its state from rubbery to glassy, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diffusi<strong>on</strong> coefficient changes but <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> is assumed Fickian. As <str<strong>on</strong>g>of</str<strong>on</strong>g> this moment, we<br />

c<strong>on</strong>sider that <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d curve with <str<strong>on</strong>g>the</str<strong>on</strong>g> initial curve gives <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vitrificati<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. This point reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

drop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . At 100 bars and 200 bars, we have 0.35 and 0.19<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> M t /M ∞ , respectively. <strong>The</strong>se data corresp<strong>on</strong>d, to <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in PLGA 50:50 <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.082 and<br />

0.057, respectively. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding vitrificati<strong>on</strong> time is 2.72 s and 2.64 s for 100 bars and 200<br />

bars, respectively. So, we have used <str<strong>on</strong>g>the</str<strong>on</strong>g> data and <str<strong>on</strong>g>the</str<strong>on</strong>g> model shown in Figure 5.7, to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

coefficients.<br />

- 121 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Figure 5.7: Desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 after 100 and<br />

200 bars, at T sat = 36.5°C and t sat = 120 min.<br />

Table 5.7 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is increasing, in <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

between 10 -11 and 10 -9 , with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time. <strong>The</strong> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient, D dp , has<br />

an increasing trend and finally reaches a plateau after 60 minutes for P sat = 125 bar and T sat = 36.5°C with a<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.10 -9 m 2 /s. <strong>The</strong>se data proves <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient with <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

sorpti<strong>on</strong> inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix. We can observe from Table 5.7 that <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

increases with increasing time until it reaches a plateau after 60 minutes. One can say that <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sorpti<strong>on</strong> increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer.<br />

Table 5.7: Desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients and sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 after different saturati<strong>on</strong> times at saturati<strong>on</strong><br />

pressure 125 bars and saturati<strong>on</strong> temperature 36.5°C.<br />

t sat (min) D dp (m 2 Sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO<br />

/ s)<br />

2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50<br />

(g CO 2 / g Polymer)<br />

10 7.29 x 10 -11 0.153<br />

20 1.62 x 10 -10 0.195<br />

60 2.01 x 10 -9 0.270<br />

120 2.05 x 10 -9 0.281<br />

240 2.06 x 10 -9 0.281<br />

Also, as shown in Table 5.8, <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient increases with increasing<br />

saturati<strong>on</strong> pressure. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, it is expected that <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong><br />

capacity increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing pressure. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients<br />

calculated for rubbery states, D dp , are always greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficients after vitrificati<strong>on</strong>, D dg .<br />

Table 5.8: Desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from PLGA 50:50 for plasticized and glassy states, after<br />

different saturati<strong>on</strong> pressures at 36.5°C for 120 min <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> time.<br />

P sat (bar) D dp (m 2 / s) D dg (m 2 / s)<br />

55 1.437 x 10 -10 -<br />

80 1.734 x 10 -10 -<br />

100 2.140 x 10 -9 2.321 x 10 -11<br />

125 2.050 x 10 -9 7.727 x 10 -11<br />

150 2.606 x 10 -9 1.753 x 10 -10<br />

200 3.321 x 10 -9 2.854 x 10 -10<br />

- 122 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

2.3 <strong>The</strong> Sorpti<strong>on</strong> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rm<br />

By using desorpti<strong>on</strong> kinetics, <str<strong>on</strong>g>the</str<strong>on</strong>g> initial points <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong> have been extrapolated to t = 0 s and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is analyzed. We underline that here, t = 0 s is <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> period. One can remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong><br />

period. Thus, we must know how much CO 2 is sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate. All<br />

experiments have been carried out at 36.5°C during 120 minutes with different pressure c<strong>on</strong>diti<strong>on</strong>s. <strong>The</strong><br />

pressure c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding sorpti<strong>on</strong> data is presented in Table 5.9. It has been observed that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> increases m<strong>on</strong>ot<strong>on</strong>ically with <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure.<br />

Table 5.9: Sorpti<strong>on</strong> data for PLGA 50:50 at 36.5°C.<br />

P (bar)<br />

Average Sorpti<strong>on</strong> Data<br />

(gCO 2 /g Polymer)<br />

55 0.112<br />

80 0.207<br />

100 0.258<br />

125 0.281<br />

150 0.296<br />

200 0.333<br />

Experimental results and model predicti<strong>on</strong>s are presented with <str<strong>on</strong>g>the</str<strong>on</strong>g> literature data in Figure 5.8. A<br />

significant change in slope is appeared within <str<strong>on</strong>g>the</str<strong>on</strong>g> interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 70-80 bars. <strong>The</strong> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> slope can be<br />

explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 rich phase from gas to <str<strong>on</strong>g>the</str<strong>on</strong>g> much denser supercritical state.<br />

Figure 5.8: Sorpti<strong>on</strong> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rm <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into PLGA 50:50.<br />

[Pini et al., 2008]<br />

Our sorpti<strong>on</strong> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rm and modelling with SL-EOS, is in agreement with those reported by Pini et<br />

al. [2008]. Our experimental points were always approximately 5% lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> literature data which can<br />

be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> small temperature difference. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , so <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> decreases with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> temperature. Additi<strong>on</strong>ally, under <str<strong>on</strong>g>the</str<strong>on</strong>g> critical point <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , SL-EOS diverges from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data.<br />

But, it has good estimati<strong>on</strong>s above critical point for <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, since we have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> kinetics earlier, we have also a sorpti<strong>on</strong><br />

kinetic data. This evaluati<strong>on</strong> was presented in Table 5.8 and found to increase with time until it reaches a<br />

plateau after 60 minutes. If we interpolate <str<strong>on</strong>g>the</str<strong>on</strong>g> iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal sorpti<strong>on</strong> data for 120 minutes (Figure 5.8 and Table<br />

5.9) between 55 and 80 bars, a sorpti<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.195 can be found for 76.2 bars. This value is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 123 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

sorpti<strong>on</strong> value at 125 bars and 20 minutes (cf. Table 5.8). Thus, we can state that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not any difference<br />

to process a PLGA 50:50 at 125 bars for 20 minutes or at 76.2 bars for 120 minutes.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important issues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming phenomena is <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass<br />

transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer by <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . As presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> Figure 5.9, as <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 is greater than 0.02 at ~36.5°C, <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> process is happening in plasticized state. We have<br />

observed that, when <str<strong>on</strong>g>the</str<strong>on</strong>g> same depressurizati<strong>on</strong> rate is applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> system (5 bar/s), <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gas output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber is dropping to approximately 17°C and ~26°C when 100 bars and 200<br />

bars <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> pressure are applied respectively. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> T g -w diagram and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> data,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer saturated at 200 bars is closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> point when <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> is finished.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer processed at 100 bars remains in plasticized state until <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depressurizati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we have experimented that <str<strong>on</strong>g>the</str<strong>on</strong>g> swelling c<strong>on</strong>tinues approximately 2-3<br />

minutes after finishing <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber which corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticized state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer.<br />

Figure 5.9: <strong>The</strong> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 T g as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed CO 2 : (♦) 100 bars; (●) 200 bars.<br />

3 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds<br />

3.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Blend Compositi<strong>on</strong>s<br />

3.1.1 Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 50:50<br />

First experiments <strong>on</strong> polylactides were carried out to understand which polymer is more suitable<br />

to use in tissue engineering. Foaming experiments are performed <strong>on</strong> blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA (LR-704) and<br />

PLGA 50:50 (RG-504), with different ratios, as given in <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.10.<br />

Table 5.10: Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 and P L,DL LA.<br />

Blend w/w w/w w/w w/w w/w<br />

PLGA 50:50 100% 75% 50% 25% 0%<br />

P L,DL LA 0% 25% 50% 75% 100%<br />

<strong>The</strong> following scCO 2 parameters are kept c<strong>on</strong>stant: saturati<strong>on</strong> pressure P sat = 150 bars, saturati<strong>on</strong><br />

time t sat = 60 minutes, saturati<strong>on</strong> temperature T sat = 36.5 o C and depressurizati<strong>on</strong> rate dP/dt = 25 bar/sec and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> SEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding scaffolds are presented in Figure 5.10.<br />

- 124 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Blend PLGA 50:50 /P L,DL LA: 100/0 Blend PLGA 50:50 /P L,DL LA: 75/25 Blend PLGA 50:50 /P L,DL LA: 50/50<br />

Blend PLGA 50:50 /P L,DL LA: 25/75 Blend PLGA 50:50 /P L,DL LA: 0/100<br />

Figure 5.10: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P L,DL LA and PLGA 50:50 blend scaffolds.<br />

Average Pore Diameter (m)<br />

40 Psat = 150 P bars L,DL<br />

LA and PLGA 50:50 Blend<br />

35 T sat = 36.5 °C<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

t sat = 60 min<br />

dP/dt = 25 bar/s<br />

0 20 40 60 80 100<br />

Fracti<strong>on</strong> (%)<br />

Figure 5.11: Average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer blends as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA ratio.<br />

3.1.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 50:50<br />

<strong>The</strong> results revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter is increasing linearly with increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> LA in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> blend (cf. Figure 5.11). This behaviour is c<strong>on</strong>forming to <str<strong>on</strong>g>the</str<strong>on</strong>g> literature [Liu and Tomasko, 2007b]. <strong>The</strong><br />

first reas<strong>on</strong>, for <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in pore size, can be explained by a better affinity to CO 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> LA than GA in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer blend. Sec<strong>on</strong>dly, low pores size can be due to high saturati<strong>on</strong> pressure and low saturati<strong>on</strong><br />

temperature with comparis<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> T g <str<strong>on</strong>g>of</str<strong>on</strong>g> both polymers (cf Table 5.5).<br />

3.1.3 P L,DL LA and PLGA 85:15 Blend<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous experiments pore sizes obtained were not very large for medical applicati<strong>on</strong>, so we<br />

replaced PLGA 50:50 with PLGA 85:15 in order to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> lactic acid c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> blend (cf. Table 5.11).<br />

Table 5.11: Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 and P L,DL LA.<br />

Blend w/w w/w w/w w/w w/w<br />

PLGA 85:15 100% 75% 50% 25% 0%<br />

P L,DL LA 0% 25% 50% 75% 100%<br />

- 125 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<strong>The</strong> processing parameters are: saturati<strong>on</strong> pressure P sat = 150 bars, saturati<strong>on</strong> time t sat = 20<br />

minutes, saturati<strong>on</strong> temperature T sat = 36.5 o C and rapid depressurizati<strong>on</strong> rate dP/dt (dP/dt time less than 3<br />

sec). <strong>The</strong> saturati<strong>on</strong> time for PLGA 85:15 has been reduced from 60 minutes to 20 minutes because we have<br />

increased <str<strong>on</strong>g>the</str<strong>on</strong>g> LA/GA ratio. Pini et al. [2008] have proved that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside PLGA 85:15 is<br />

greater than inside PLGA 50:50 during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process.<br />

3.1.4 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 85:15<br />

Foaming experiments <strong>on</strong> blends <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA and PLGA 85:15 revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter is first<br />

increased and <str<strong>on</strong>g>the</str<strong>on</strong>g>n decreased with increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 in <str<strong>on</strong>g>the</str<strong>on</strong>g> blend. As shown in Figure 5.12,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is <strong>on</strong>e compositi<strong>on</strong> (50% P L,DL LA + 50% PLGA 85:15 ), at which <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore size is maximum.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore size is lower than with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous blends with <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 .<br />

Average Pore Diameter (m)<br />

16 Psat = 150 P bars L,DL<br />

LA and PLGA 85:15 Blend<br />

14 T sat = 36.5 °C<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

t sat = 20 min<br />

dP/dt = Rapid<br />

0<br />

0 20 40 60 80 100<br />

Fracti<strong>on</strong> (%)<br />

Figure 5.12: Average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer blends as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P L,DL LA ratio.<br />

<strong>The</strong>se preliminary experiments <strong>on</strong> (PLGA 50:50 + P L,DL LA) blends and (PLGA 85:15 + P L,DL LA)<br />

blends c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> literature works [Goel and Beckman, 1994b] c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2<br />

parameters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size. Various process parameters (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong>, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong>) have an influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> final pore size. <strong>The</strong> drop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature acts differently <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers foaming behaviours. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se reas<strong>on</strong>s, we have carried <strong>on</strong><br />

different experimental designs.<br />

Our experimental study showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer increases while <str<strong>on</strong>g>the</str<strong>on</strong>g> LA<br />

c<strong>on</strong>tent increases in a PLGA co-polymer. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into P D,L LA is higher than in PLGA,<br />

whatever its compositi<strong>on</strong>. This behaviour has been explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an extra apolar CH 3 methyl<br />

group in LA than GA [Liu and Tomasko, 2007b], which, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> authors, can drive to two opposites<br />

phenomena: firstly, it decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 ’s interacti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>yl group <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

and sec<strong>on</strong>dly, it creates more available free volume for CO 2 to solubilise. Besides, Kazarian et al. [1996b]<br />

have found that <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 with polymers can also be explained by chemical interacti<strong>on</strong>s and<br />

CO 2 can behave like a Lewis acid.<br />

3.2 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scCO 2 Process<br />

3.2.1 Model with a 2 4 Complete Design<br />

We have started with <str<strong>on</strong>g>the</str<strong>on</strong>g> most basic experimental design, a complete plan with 4 parameters and 2<br />

levels. As listed in Table 5.12, PLGA 100/0 or 0/100 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> pure PLGA 50:50 or PLGA 85:15<br />

respectively and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.13. 25/75, 50/50 and 75/25 denominati<strong>on</strong>s are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> blends.<br />

- 126 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Table 5.12: Variati<strong>on</strong> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various factors.<br />

Level T sat (°C)<br />

P sat dP/dt<br />

(bars) (bar/s)<br />

t sat (min) PLGA 50:50 /PLGA 85:15<br />

- 1 36.5 100 1 20 100/0<br />

+ 1 60 250 20 20 0/100<br />

Table 5.13: 2 4 design <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments: levels <str<strong>on</strong>g>of</str<strong>on</strong>g> factors and average size <str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

Experiment X 1 X 2 X 3 X 4<br />

T<br />

(°C)<br />

P<br />

(bar)<br />

dP/dt<br />

(bar/s)<br />

PLGA<br />

50:50/85:15<br />

Pore<br />

Diameter<br />

(μm)<br />

1 -1 -1 -1 -1 36.5 100 1 100/0 153<br />

2 -1 -1 -1 1 36.5 100 1 0/100 264<br />

3 1 -1 -1 -1 60 100 1 100/0 130<br />

4 1 -1 -1 1 60 100 1 0/100 187.5<br />

5 -1 1 -1 -1 36.5 250 1 100/0 30.3<br />

6 -1 1 -1 1 36.5 250 1 0/100 72.5<br />

7 1 1 -1 -1 60 250 1 100/0 27<br />

8 1 1 -1 1 60 250 1 0/100 59<br />

9 -1 -1 1 -1 36.5 100 20 100/0 367.5<br />

10 -1 -1 1 1 36.5 100 20 0/100 71<br />

11 1 -1 1 -1 60 100 20 100/0 151.5<br />

12 1 -1 1 1 60 100 20 0/100 108<br />

13 -1 1 1 -1 36.5 250 20 100/0 4<br />

14 -1 1 1 1 36.5 250 20 0/100 25<br />

15 1 1 -1 -1 60 250 1 100/0 23<br />

16 1 1 -1 1 60 250 1 0/100 36<br />

17 -1 1 -1 -1 36.5 250 1 100/0 47<br />

18 1 1 -1 1 60 250 1 0/100 61<br />

19 -1 -1 -1 0 36.5 100 1 50/50 258<br />

20 1 -1 -1 0 60 100 1 50/50 60<br />

21 -1 -1 1 0.5 36.5 100 20 25/75 93.5<br />

22 1 -1 1 0.5 60 100 20 25/75 110<br />

23 -1 1 1 -0.5 36.5 250 20 75/25 3<br />

24 1 1 -1 -0.5 60 250 1 75/25 23<br />

25 -1 1 -1 0.5 36.5 250 1 25/75 30<br />

26 -1 1 -1 0 36.5 250 1 50/50 36<br />

27 -1 1 -1 -0.5 36.5 250 1 75/25 22.5<br />

28 -1 -1 1 0 36.5 100 20 50/50 222<br />

29 -1 -1 1 -0.5 36.5 100 20 75/25 275<br />

<strong>The</strong> first 2 4 = 16 values allow us to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two first order models reported<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.14, <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r values play a role to valid <str<strong>on</strong>g>the</str<strong>on</strong>g> first order model:<br />

y = a 0 + a 1 X 1 + a 2 X 2 + a 3 X 3 + a 4 X 4 + a 12 X 1 X 2 + a 13 X 1 X 3 + a 23 X 2 X 3<br />

For both blends, it is important to note that <str<strong>on</strong>g>the</str<strong>on</strong>g> most influent factor is <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure (a 2 ). For<br />

PLGA 50:50 <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> temperature (a 1 ) is also an influent effect while it is n<strong>on</strong> influent for <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 85:15 .<br />

It is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary for factor 3, as <str<strong>on</strong>g>the</str<strong>on</strong>g> detail given in Table 5.14.<br />

<strong>The</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average pore diameter as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 fracti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> blends (cf.<br />

Figure 5.13), for experiments performed in <str<strong>on</strong>g>the</str<strong>on</strong>g> same operating c<strong>on</strong>diti<strong>on</strong>s, shows that with increasing<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 , <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore size increases when high depressurizati<strong>on</strong> rate (20 bar/s) is applied.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores presented in Table 5.13, showed us that to have a trend for bigger<br />

- 127 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

pore size, PLGA 50:50 must be used instead <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 . <strong>The</strong>se results are in c<strong>on</strong>formati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tai et al. [2007b]. <strong>The</strong>se authors found that when greater depressurizati<strong>on</strong> times are applied<br />

(actually very low, approximately 1 to 2 hours), <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size is increasing with increasing LA compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA co-polymer.<br />

Table 5.14: Coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 4 model for <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 85:15 and <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50.<br />

â 50-50 â 85-15<br />

a 0 83.4 111.1<br />

a 1 -55.3 3.0<br />

a 2 -117.1 -46.5<br />

a 3 -1.2 -31.8<br />

a 12 4.4 12.9<br />

a 13 -48.3 28.4<br />

a 23 -60.2 36.4<br />

Average Pore Diameter (m)<br />

500 Psat = 100 PLGA bars 50:50 + PLGA 85:15 Blend<br />

T<br />

400 sat = 36.5 °C<br />

t sat = 20 min<br />

dP/dt = 25 bar/s<br />

300<br />

200<br />

100<br />

0<br />

0 20 40 60 80 100<br />

PLGA50:50 Fracti<strong>on</strong> (%)<br />

Figure 5.13: Average pore diameter as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 ratio in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 /PLGA 85:15 blends.<br />

<strong>The</strong> comparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> first order model <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and experimental data has been realized and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Fisher-Snedecor test has been applied. <strong>The</strong> critical value with <str<strong>on</strong>g>the</str<strong>on</strong>g> error probability alpha <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% and <strong>on</strong>e<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> liberty at both <str<strong>on</strong>g>the</str<strong>on</strong>g> numerator and <str<strong>on</strong>g>the</str<strong>on</strong>g> denominator variance give F c = 161.4. <strong>The</strong> average pore<br />

value is equal, in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 model to 222.4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 85: 15 model to 1.1. This first order model is not<br />

statistically well suited in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 model. As various process parameters are correlated, it is necessary<br />

to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>ir effects by using a multifactor design.<br />

3.2.2 Model with a Taguchi’ Design for PLGA 50:50 Foaming<br />

Taguchi’ design is a screening plan which helps at <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> more influent<br />

parameters for <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental plan. We have chosen a L 9 table and decided to c<strong>on</strong>tinue <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PLGA 50:50 . Thus, it has left us 4 process parameters to optimize: <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saturati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong>. <strong>The</strong> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this Taguchi design is presented in<br />

Table 5.15.<br />

Table 5.15: Domain <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi’ design.<br />

Factors T sat (°C) P sat (bar) t sat (min) dP/dt (bar/s)<br />

Level 1 36.5 120 20 3<br />

Level 2 45 150 45 5<br />

Level 3 60 200 90 10<br />

Figure 5.15 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four process factors <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

pore diameter. <strong>The</strong> pore diameter at a given level is estimated by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore<br />

- 128 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

diameters. Except for <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment P9, all produced foams have porosity higher than 75%, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum<br />

being reached for c<strong>on</strong>diti<strong>on</strong>s P4 and P6. (cf. Figure 5.14).<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.16, A, B and C represent <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer pellet in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber, top, centre<br />

and bottom positi<strong>on</strong> respectively (cf. Figure 4.12-a, Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber with Tefl<strong>on</strong>). <strong>The</strong> effects shown in<br />

Table 5.17 have global meanings in two ways. <strong>The</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> a level are calculated by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> difference<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> global average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> all experiments. Firstly, if <str<strong>on</strong>g>the</str<strong>on</strong>g> effect is negative<br />

(positive respectively), that means that this factor has a negative (positive) effect and resulting pore diameter<br />

will be smaller (bigger). Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> value is indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect.<br />

Table 5.16: Experiments with <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi design and <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores for PLGA 50:50 .<br />

Experiment T sat P sat t sat dP/dt Average Pore Diameter Average*<br />

Nr. (°C) (bar) (min) (bar/s) A B C (μm)<br />

P1 36.5 120 20 3 549.88 535.02 268.32* 542.45<br />

P2 36.5 150 45 5 9.66 12.54* 9.19 9.42<br />

P3 36.5 200 90 10 4.31 3.66* 4.29 4.30<br />

P4 45 120 45 10 18.82 152.68* 18.25 18.53<br />

P5 45 150 90 3 19.08 11.96* 21.66 20.37<br />

P6 45 200 20 5 9.98 13.19 7.62 10.26<br />

P7 60 120 90 5 127.83 87.50* 101.56 114.70<br />

P8 60 150 20 10 113.23 105.81 80.66* 109.52<br />

P9 60 200 45 3 10.72* 14.15 13.94 14.05<br />

* values eliminated in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average because varying more than 10%<br />

Table 5.17: Average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores for all factors and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir effects.<br />

Factor Variati<strong>on</strong>


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Porosity ( %)<br />

110<br />

PLGA 50:50<br />

Foam Porosity<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

1 2 3 4 5 6 7 8 9<br />

PLGA50:50 Foams<br />

Pore Diameter (m)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Tsat (°C)<br />

36.5<br />

45<br />

60<br />

Psat (bar)<br />

Optimum <str<strong>on</strong>g>Parameters</str<strong>on</strong>g><br />

120<br />

150<br />

200<br />

tsat (min)<br />

20'<br />

45'<br />

90'<br />

dP/dt (bar/s)<br />

Process C<strong>on</strong>diti<strong>on</strong> [T sat -P sat -t sat -dP/dt]<br />

3<br />

5<br />

10<br />

Figure 5.14: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foam porosity.<br />

Figure 5.15: Average pore diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50<br />

scaffolds as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> process parameters.<br />

It is possible to obtain a distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large pores with PLGA 50:50 ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> temperature, or <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> pressure, or <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time, or <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>s between factors are not c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi plan. <strong>The</strong> effects calculated can<br />

<strong>on</strong>ly give general ideas <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> influences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors. Thus, we have decided to fix <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

c<strong>on</strong>diti<strong>on</strong>s T sat = 36.5°C and t sat = 60 min for <str<strong>on</strong>g>the</str<strong>on</strong>g> following experiments.<br />

3.2.3 Model with a Doehlert’ Design for PLGA 50:50 Foaming<br />

3.2.3.1 Experiments with a Doehlert’ Design<br />

We have decided to fix two parameters (T sat at 36.5°C and t sat at 60 minutes) as <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

c<strong>on</strong>diti<strong>on</strong>s to be fixed for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics experimentati<strong>on</strong>s and to c<strong>on</strong>tinue experiments with a sec<strong>on</strong>d<br />

order model and to use a Doehlert’ design: y = a 0 + a 1 X 1 + a 2 X 2 + a 12 X 1 X 2 + a 11 X 1 2 + a 22 X 2<br />

2<br />

<strong>The</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> X 1 (depressurizing rate) and X 2 (saturati<strong>on</strong> pressure) are reported in Table 5.18. <strong>The</strong><br />

pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA have been placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber <strong>on</strong> metal stages with holes which are encircled by<br />

a Tefl<strong>on</strong> isolati<strong>on</strong> material (cf. Figure 4.12-a: Filling <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber with Tefl<strong>on</strong>).<br />

Table 5.18: Doehlert’ design and <str<strong>on</strong>g>the</str<strong>on</strong>g> results for <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

Experiment dP/dt P sat Average Pore Diameter Average*<br />

Nr X 1 X 2 (bar/s) (bars) A B C (μm)<br />

1 0 0 2.5 125 19.00* 27.03 20.88 23.96<br />

2 1 0 10 125 11.46 16.55 10.89* 13.85<br />

3 0.5 0.866 5 150 4.24* 11.75 12.25 12.00<br />

4 -0.5 0.866 1.25 150 - 13.13 16.91 15.02<br />

5 -1 0 0.625 125 25.71 30.44 498.45* 28.08<br />

6 -0.5 -0.866 1.25 100 120.04 304.77 31.13 151.98<br />

7 0.5 -0.866 5 100 128.14* 223.44 180.87 202.16<br />

*values eliminated in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average because varying more than 10%<br />

We have observed that, after depressurizati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

chamber is always colder than at <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part. This behaviour is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results for <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds placed at different stages. As shown in Table 5.18, for <str<strong>on</strong>g>the</str<strong>on</strong>g> same experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

always an important variati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds which were placed at different stages (A,<br />

B and C).<br />

It has been observed that when low dP/dt is applied, <str<strong>on</strong>g>the</str<strong>on</strong>g> pores which are close to <str<strong>on</strong>g>the</str<strong>on</strong>g> borders <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

samples are bigger than <str<strong>on</strong>g>the</str<strong>on</strong>g> pores which are in <str<strong>on</strong>g>the</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold. An example to this phenomen<strong>on</strong> is<br />

shown in Figure 5.16. We believe that this phenomen<strong>on</strong> is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> volume c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

- 130 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

chamber. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer swells during desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 , when <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer has swelled approximately<br />

by 50%, <str<strong>on</strong>g>the</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer c<strong>on</strong>tact <str<strong>on</strong>g>the</str<strong>on</strong>g> wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is very s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber walls block desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from <str<strong>on</strong>g>the</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer,<br />

which results in <str<strong>on</strong>g>the</str<strong>on</strong>g> expanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores in that regi<strong>on</strong>. Indeed, this expansi<strong>on</strong> corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular volume <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 molecules which are no l<strong>on</strong>ger in supercritical state.<br />

(A) Sample 1-C (dP/dt = 2.5 bar/s).<br />

(B) Sample 5-B (dP/dt = 0.625 bar/s).<br />

Figure 5.16: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams processed at P = 125 bars.<br />

One can say that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a significant difference <str<strong>on</strong>g>of</str<strong>on</strong>g> pore size depending <strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet is<br />

positi<strong>on</strong>ed. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same Doehlert’ experiment (Nr 7), we have obtained a pore diameter ranging between 128<br />

and 223 μm. If <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet is positi<strong>on</strong>ed in <str<strong>on</strong>g>the</str<strong>on</strong>g> low positi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore diameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity are<br />

found smaller than in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper positi<strong>on</strong>. It can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> faster vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

low positi<strong>on</strong> which stops <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores. As explained earlier, <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

chamber is always colder than <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part after depressurizati<strong>on</strong>.<br />

Since, we have noticed that two supplementary factors affect <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size (<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber), we have decided to remove<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> circle <str<strong>on</strong>g>of</str<strong>on</strong>g> Tefl<strong>on</strong> which was placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber. After that, we have filled <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure<br />

chamber with small glass marbles as described in chaptet 4, Figure 4.12, setup-02. <strong>The</strong>n, a pellet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PLGA 50:50 has been placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. <strong>The</strong> carried out repetiti<strong>on</strong>s experiments and corresp<strong>on</strong>ding results<br />

are reported in Table 5.19. For <str<strong>on</strong>g>the</str<strong>on</strong>g> repetiti<strong>on</strong>s, we have obtained 52.4 and 26.5 μm, as <str<strong>on</strong>g>the</str<strong>on</strong>g> average diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

Table 5.19: Repetiti<strong>on</strong>s experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Doehlert’ design (P sat = 100 bars and dP/dt = 5 bar/s).<br />

Height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Glass<br />

Balls in <str<strong>on</strong>g>the</str<strong>on</strong>g> Chamber<br />

Pore Diameter<br />

(µm)<br />

Average Diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

(µm)<br />

~ 1/3<br />

24.3<br />

28.7<br />

26.5<br />

~ 2/3<br />

50.7<br />

54.0<br />

52.4<br />

<strong>The</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter with dP/dt is reported in Table 5.20 and illustrated by <str<strong>on</strong>g>the</str<strong>on</strong>g> series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

micrographs given in Figure 5.18. We have found that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size is decreasing with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

depressurizati<strong>on</strong>.<br />

<strong>The</strong> variati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size estimated by image analysis, is ranging from 18.9 µm, for dP/dt = 10<br />

bar/s to 255.7 µm, for dP/dt = 0.625 bar/s. <strong>The</strong>se experiments were carried out at high depressurizati<strong>on</strong> rate<br />

(10 bar/s). Thus, we expect to find smaller pores. However, we have observed small (10−20 µm) and big<br />

pores [~ 150 − 200 µm] toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. So that, we can state that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a coalescence phenomen<strong>on</strong> occurring<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth.<br />

- 131 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Table 5.20: Variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> average size <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with different dP/dt values at P sat = 100 bars.<br />

Height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass<br />

balls in <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

dP/dt (bar/s)<br />

Pore Diameter<br />

(µm)<br />

Average Diameter<br />

Pore (µm)<br />

~2/3 10<br />

19.0<br />

18.9<br />

18.9<br />

~2/3 5<br />

50.7<br />

54.0<br />

52.4<br />

~2/3 1,25<br />

138.0<br />

127.9<br />

133.0<br />

~2/3 0,625 255.7 255.7<br />

3.2.3.2 Discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Various CO 2 Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g><br />

As shown in Figure 5.17, for dP/dt = 5 bar/s, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated geometrical porosity (equati<strong>on</strong> 3.11) is<br />

decreasing when <str<strong>on</strong>g>the</str<strong>on</strong>g> dP/dt is increasing and it reaches a plateau at 92%, and 89.3% for saturati<strong>on</strong> pressures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 100 and 125 bars. <strong>The</strong> very close porosity values at 5 bar/s and 10 bar/s can also be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores during CO 2 desorpti<strong>on</strong>. Our observati<strong>on</strong>s <strong>on</strong> pore size and <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity (<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

swelling) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer has shown us that with great pore sizes comes great porosity and with small pore<br />

size comes small porosity. This behaviour is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> literature [Beckman, 2004]. To our<br />

knowledge, it is impossible to create big pores with small polymer volume or small pores with important<br />

polymer swelling.<br />

Porosity[1-( f<br />

/ p<br />

)] ( %)<br />

98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

PLGA 50:50<br />

Porosity Variati<strong>on</strong><br />

P sat<br />

100 bar<br />

P sat<br />

125 bar<br />

0 2 4 6 8 10 12<br />

dP/dt (Bar/s)<br />

Figure 5.17: Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> rate.<br />

<strong>The</strong> physical shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds prepared without volume c<strong>on</strong>straint were perfectly circled<br />

and visually homogenous. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds processed with volume c<strong>on</strong>straint<br />

was corrupted. We have also observed homogeneity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM images. As shown in Figure 5.18, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore<br />

size is smaller in high rates <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> and it increases with dP/dt increases. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

according to micrographs <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nectivity and homogeneity are observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong><br />

micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> SEM images are not sufficient to have a real characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interc<strong>on</strong>nectivity.<br />

As menti<strong>on</strong>ed previously, we have observed that both <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet are important factors, which affect <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size. For this reas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> 5 remaining<br />

experiments are carried out in order to re-complete <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert’ plan according to <str<strong>on</strong>g>the</str<strong>on</strong>g> new experimental<br />

setup with glass balls. <strong>The</strong> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass balls was at ~2/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber for all<br />

- 132 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert’ plan. All repeated results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new Doehlert plan with <str<strong>on</strong>g>the</str<strong>on</strong>g> volume<br />

c<strong>on</strong>straint are presented in Table 5.21.<br />

Table 5.21: Complementary Doehlert’ design experiments.<br />

Exp. X 1 X 2 dP/dt (bar/s) P sat (bar) Pore Diameter (μm)<br />

1 0 0 2.5 125 8.4<br />

2 1 0 10 125 3.6<br />

3 0.5 0.866 5 150 5.0<br />

4 -0.5 0.866 1.25 150 26.9<br />

5 -1 0 0.625 125 187.25<br />

6 -0.5 -0.866 1.25 100 133.0 ; 127.9 ; 135.0<br />

7 0.5 -0.866 5 100 52.35 ; 51.0 ; 54.0<br />

In all cases, we have observed significant changes from <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial Doehlert<br />

experiments. <strong>The</strong>se differences can be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

general observed behaviour for P sat and dP/dt is <str<strong>on</strong>g>the</str<strong>on</strong>g> same for initial and repetiti<strong>on</strong> experiments. <strong>The</strong><br />

maximum pore size is calculated according to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert plan, and it has been found<br />

255.7μm. P sat = 100 bar and dP/dt = 0.625 bar/s have been taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters which give <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum.<br />

This result is c<strong>on</strong>firmed by <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment that we had been carried out and presented in Table 5.20 for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

last sample. As shown in Table 5.22, we have found that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> all factors is statically significant but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> predominant factor is <str<strong>on</strong>g>the</str<strong>on</strong>g> factor 1 (dP/dt). <strong>The</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams, reported<br />

in Figure 5.18, is an example.<br />

Table 5.22: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert design: coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model.<br />

â â<br />

a 0 8.4 5.3<br />

a 1 - 74.4 2.8 Significant<br />

a 2 - 44.3 2.5 Significant<br />

a 12 20.5 4.6 Significant<br />

a 11 87.0 6.5 Significant<br />

a 22 32.3 6.2 Significant<br />

<strong>The</strong> modelling study was also carried out and <str<strong>on</strong>g>the</str<strong>on</strong>g> homogenous nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory presented in<br />

chapter 2 has been used. As explained earlier, <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei generated can be calculated as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> pressure. Once we have calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei, we can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

average pore diameter by using Equati<strong>on</strong> (4.1). We have used <str<strong>on</strong>g>the</str<strong>on</strong>g> measured porosity data to c<strong>on</strong>vert <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei to <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore diameter.<br />

<strong>The</strong>se results are plotted in Figure 5.19-(A), toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> average pore<br />

diameter. Figure 5.18 depicted as example for t sat = 60 min, T sat = 36.5°C and dP/dt = 5 bar/s, <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>s<br />

with saturati<strong>on</strong> pressure toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r experimental results and model <str<strong>on</strong>g>of</str<strong>on</strong>g> average pore diameter.<br />

(a) 10 bar/s (b) 5 bar/s (c) 1.25 bar/s (d) 0.625 bar/s<br />

Figure 5.18: <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dP/dt <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams processed at scCO 2 c<strong>on</strong>diti<strong>on</strong> P sat = 100 bars,<br />

T sat = 36.5°C and t sat = 60 min.<br />

- 133 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<strong>The</strong> primary approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this model is that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> two sides <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bubble interface is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure initial and final pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber before and after<br />

depressurizati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier to create nuclei decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing pressure<br />

difference and it is represented in Figure 5.19-B. <strong>The</strong> exp<strong>on</strong>entially decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pressure means that more nuclei can be generated at high pressures. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> interfacial tensi<strong>on</strong> is an<br />

affecting parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ΔG, it has a great influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nuclei density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer. <strong>The</strong> plateau after<br />

150 bars can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller pore size (great number <str<strong>on</strong>g>of</str<strong>on</strong>g> pore) at higher pressure.<br />

As shown in Figure 5.19, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental data for <str<strong>on</strong>g>the</str<strong>on</strong>g> pressures<br />

greater than 100 bars and diverges significantly for 80 bars where <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei is smaller than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> greater pressures. One must remember that this model is c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> homogenous nucleati<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Thus, this divergence for low pressures can be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneous nucleati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing pores at lower pressures. Indeed, at low pressures, <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PLGA 50:50 is also lower and CO 2 is not completely distributed across <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet by <str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>-diffusi<strong>on</strong>.<br />

(A)<br />

(B)<br />

Figure 5.19: (A) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 scaffolds as <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat ;<br />

(B) Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier for PLGA 50:50 -CO 2 system.<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix formula: X s = - 0.5 A -1 a k where a k is <str<strong>on</strong>g>the</str<strong>on</strong>g> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first order coefficients and<br />

A <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d order coefficients, reported <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Table 5.23, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following values: As<br />

both coefficients a 11 and a 22 are positive, <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>ary point is a minimum. <strong>The</strong> pressure P sat = 100 bars and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate dP/dt = 0.625 bar/s have been chosen as <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters which give <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum.<br />

<strong>The</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> pores, at this point, is equal to 250 m.<br />

Table 5.23: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Doehlert design: research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore dimensi<strong>on</strong>.<br />

Reduced<br />

natural<br />

a k = - 74.4 A = 87.0 10.25 X 1 - 1 0.625 dP/dt<br />

- 44.3 10.25 32.3 X 2 - 0.87 100 P sat<br />

Results obtained from our experimentati<strong>on</strong>s has shown that when pore size is large higher porosity<br />

is observed while pores with small pore diameter reflects small porosity. Beckman, 2004 have also shown<br />

similar behaviours in his experimentati<strong>on</strong>s . As per our understanding , it is impossible to create pores <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large diameter with small polymer volume or small pores with important polymer swelling.<br />

- 134 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

4 Factors Affecting <strong>on</strong> Pores Size and Porosity<br />

4.1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Polymer Compositi<strong>on</strong><br />

<strong>The</strong> Hildebrand’s solubility parameters can be separated into three Hansen’ comp<strong>on</strong>ents by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship given in following equati<strong>on</strong> 5.1.<br />

δ t 2 = δ d 2 +δ p 2 +δ H<br />

2<br />

(5. 1)<br />

where δ t is <str<strong>on</strong>g>the</str<strong>on</strong>g> Hildebrand’s parameter (cf.Table 5.24), δ d is <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersive comp<strong>on</strong>ent, δ p is <str<strong>on</strong>g>the</str<strong>on</strong>g> polar<br />

comp<strong>on</strong>ent and δ H is <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogen b<strong>on</strong>d comp<strong>on</strong>ent [Risanen, 2010; Schenderlein et al., 2004].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> supercritical fluids <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship linking <str<strong>on</strong>g>the</str<strong>on</strong>g> Hildebrand’ parameter to <str<strong>on</strong>g>the</str<strong>on</strong>g> P c<br />

critical pressure is <str<strong>on</strong>g>the</str<strong>on</strong>g> following [Li. and Perrut, 1991].<br />

= 1,25 Pc / l (5.2)<br />

where and l are corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> density to <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir supercritical and liquid state<br />

respectively. ScCO 2 is a apolar fluid (14,3 < < 18,4).<br />

Table 5.24: Hidebrand’ and Hansen’ parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLA and <str<strong>on</strong>g>the</str<strong>on</strong>g> PGA in (MPa) 1/2 .<br />

d p H t t *<br />

PLA 18.5 9.7 6.0 21.7 20.2<br />

PGA 11.7 6.21 12.5 18.2 24.8<br />

*Calculati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> Small’ group c<strong>on</strong>tributi<strong>on</strong> method.<br />

Normally both amorphous PLAs and PLGAs produce scaffolds <str<strong>on</strong>g>of</str<strong>on</strong>g> higher porosity and large pore<br />

diameters. Increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> LA c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA co-polymer increases <str<strong>on</strong>g>the</str<strong>on</strong>g> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymers. <strong>The</strong> solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is always higher in all poly D,L-lactides than poly(lactides co-glycolide).<br />

<strong>The</strong> extra apolar group in polylactide acid is resp<strong>on</strong>sible for higher solubility in <str<strong>on</strong>g>the</str<strong>on</strong>g> polylactide which<br />

eventually generates highly porous foams depending up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> process c<strong>on</strong>diti<strong>on</strong>s. According to Liu and<br />

Tomasko [2007b] <str<strong>on</strong>g>the</str<strong>on</strong>g> extra apolar group which is not present in glycolic acid, leades to two opposite and<br />

different phenomen<strong>on</strong>. <strong>The</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 interacti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>yl group <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is decreased<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> apolar group first and sec<strong>on</strong>dly, more available free volume for CO 2 to solubilise is created.<br />

Kazarian et al. [1996b] has also found that <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 with polymers can also be explained by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 behaviour as a Lewis acid, an electr<strong>on</strong> pair acceptor.<br />

LA/GA ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> a PLGA co-polymer is an important parameter to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter in a<br />

foaming process. Foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA with different LA and GA c<strong>on</strong>tents, has given different results. In our<br />

study, with <str<strong>on</strong>g>the</str<strong>on</strong>g> same foaming c<strong>on</strong>diti<strong>on</strong>s (P sat , T sat , t sat , dT/dt), we have experienced different pore size<br />

behaviours when processed with rapid or slow depressurizati<strong>on</strong>s. Sec<strong>on</strong>dly, low pores size can be due to<br />

high saturati<strong>on</strong> pressure and low saturati<strong>on</strong> temperature with comparis<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> T g <str<strong>on</strong>g>of</str<strong>on</strong>g> both polymers (cf.<br />

Table 5.5).<br />

4.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Depressurizati<strong>on</strong> Rates<br />

For low depressurizati<strong>on</strong> rates (0.625 to 1.25 bar/s), when <str<strong>on</strong>g>the</str<strong>on</strong>g> lactic acid c<strong>on</strong>tent increases in<br />

PLGA, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size increases as well. This behaviour can be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> greater capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> solubilized<br />

CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing amount <str<strong>on</strong>g>of</str<strong>on</strong>g> LA. Actually, <strong>on</strong>e can expect that since <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2<br />

c<strong>on</strong>centrati<strong>on</strong> is greater in a high lactic acid c<strong>on</strong>taining PLGA, <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate must be greater (which<br />

means lower pore size). However, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores is determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> period and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

- 135 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, <str<strong>on</strong>g>the</str<strong>on</strong>g> final pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold is mostly related to desorpti<strong>on</strong><br />

period. During desorpti<strong>on</strong>, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> phenomena occurs; <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer due to <str<strong>on</strong>g>the</str<strong>on</strong>g> growing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores, <str<strong>on</strong>g>the</str<strong>on</strong>g> coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> growing pores, <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer which is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 .<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, during <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> period, when more CO 2 is sorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, <str<strong>on</strong>g>the</str<strong>on</strong>g> more depressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T g occurs. <strong>The</strong> more plasticized polymer, which carries more CO 2 , will take more time to desorb and will<br />

vitrify later than a polymer which sorbed less CO 2 . Indeed, <strong>on</strong>e must c<strong>on</strong>sider that <str<strong>on</strong>g>the</str<strong>on</strong>g> T g -w diagram <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different polymers is different as shown in Figure 5.20. <strong>The</strong> T g curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer with low LA c<strong>on</strong>tent<br />

(PLGA 50:50 in our case) is closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 in this polymer. On <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, since <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in P D,L LA is higher, <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> weight fracti<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> point (<strong>on</strong> T g curve) at ambient temperature is supposed to be greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PLGA 50:50 .<br />

C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer which tends to sorb less CO 2 will vitrify so<strong>on</strong>er, which will stop <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we must underline that, different co-polymers like PLGA 50:50 ,<br />

PLGA 85:15 or <str<strong>on</strong>g>the</str<strong>on</strong>g> P D,L LA have different glass transiti<strong>on</strong> temperatures and also different ΔC p at <str<strong>on</strong>g>the</str<strong>on</strong>g> glass<br />

transiti<strong>on</strong>, which affects <str<strong>on</strong>g>the</str<strong>on</strong>g> depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T g during <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> T g during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

desorpti<strong>on</strong>. <strong>The</strong>se values are presented in Table 2.4. <strong>The</strong>se differences in T g and ΔC p(Tg) must have been<br />

c<strong>on</strong>sidered in order to achieve a proper analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomena. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO 2 into polymers is c<strong>on</strong>centrati<strong>on</strong> dependent and increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 .<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> period, <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed CO 2 into a polymer and <str<strong>on</strong>g>the</str<strong>on</strong>g> more important effect<br />

(swelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer) is observed into <str<strong>on</strong>g>the</str<strong>on</strong>g> (co)polymer c<strong>on</strong>taining a higher LA proporti<strong>on</strong>.<br />

<strong>The</strong> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Pini et al. [2008] revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> swelling behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA is linear with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed CO 2 , and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside PLGA 85:15 must be greater than inside PLGA 50:50 .<br />

In this case, we expect that <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficient increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing lactic acid<br />

c<strong>on</strong>tent. However, when a slow depressurizati<strong>on</strong> occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> is limited due to <str<strong>on</strong>g>the</str<strong>on</strong>g> small<br />

driving force (ΔP), and <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 is blocked inside polymer. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> is delayed, and <strong>on</strong>e must<br />

point out that this is <str<strong>on</strong>g>the</str<strong>on</strong>g> primer effect which restricts <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores.<br />

Figure 5.20: T g -w diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P D,L LA (---) and PLGA 50 : 50 (—); (●) and (♦), are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in P D,L LA and PLGA 50:50 at 100 bars, respectively. <strong>The</strong> value for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weight fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P D,L LA at 100 bars and 35°C is taken from Pini et al. [2008].<br />

For rapid depressurizati<strong>on</strong> rates, <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomen<strong>on</strong> is different. We have experienced that for<br />

higher depressurizati<strong>on</strong> rates, (5 – 20 bar/s), <str<strong>on</strong>g>the</str<strong>on</strong>g> final average pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds is increasing with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increasing c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> GA in <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA copolymers and it has <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest value for P L,D LA. We have<br />

assumed that when a rapid depressurizati<strong>on</strong> occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is quickly vitrified due to a high desorpti<strong>on</strong>diffusi<strong>on</strong><br />

which is caused by a great driving force (ΔP). However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong>s presented in Figure<br />

- 136 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

5.21, we have observed an opposite behaviour for a high saturati<strong>on</strong> pressure value <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 bars. This can be<br />

attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> high CO 2 sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 85:15 at high pressure, which leads to high glass transiti<strong>on</strong><br />

depressi<strong>on</strong>.<br />

(A)- PLGA 50:50 (B)- PLGA 85:15<br />

Figure 5.21: Micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> scaffolds processed at P sat = 200 bars;<br />

T sat = 36.5°C, t sat = 20 min. and dP/dt = 20 bar /s.<br />

4.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Pressure (P sat )<br />

We have observed that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> is an important parameter to understand <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

foaming phenomena. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> pressure determines <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

matrix. At low pressure range, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is inferior to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high<br />

pressure ranges. It must have been noticed that <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticizati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 for <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer (and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> point) increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 sorbed. As explained previously,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> point is found to be earlier with a P sat <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 bars than 100 bar (cf. Figure 5.9). Since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vitrificati<strong>on</strong> point determines <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth, a polymer saturated at 100 bars has greater time for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth during depressurizati<strong>on</strong> and desorpti<strong>on</strong>. This behaviour can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 which increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 (<str<strong>on</strong>g>the</str<strong>on</strong>g> sorpti<strong>on</strong>) in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

matrix. So, <strong>on</strong>e can say that since <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> coefficient and <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticizati<strong>on</strong> is greater at higher<br />

pressures, during depressurizati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> following desorpti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 will desorb faster than for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lower saturati<strong>on</strong> pressures. At lower saturati<strong>on</strong> pressures, <str<strong>on</strong>g>the</str<strong>on</strong>g> time for CO 2 to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> induced growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores is greater and yields to greater pores. <strong>The</strong> results<br />

presented in Table 5.8 and Figure 5.9, are c<strong>on</strong>firming our hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that we have used to model <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> pressure, must not have been forgotten. Nucleati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory includes <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier for a<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new nuclei. This energy barrier is given by Eq. 2.23 in Chapter 2 and according to that when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pressure increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores that can be generated by unit<br />

volume, increases. We can look to <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomena from <str<strong>on</strong>g>the</str<strong>on</strong>g> window <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs free energy. According to<br />

which ΔG = ΔH - TΔS, ΔG decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> change in entropy ΔS, which is true for all<br />

systems available in <str<strong>on</strong>g>the</str<strong>on</strong>g> universe. In our case, when we increase <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure, we increase <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system (we increase greater than that we could increase with lower pressures), and<br />

c<strong>on</strong>sequently decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> ΔG greater than that we could decrease with lower pressures. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy barrier that determines <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity to generate new nuclei decreases, which means that we can create<br />

more pores per unit volume at elevated pressures.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference found between <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> times were not significantly<br />

different (2.64 and 2.72 s. for 100 and 200 bars, respectively). Thus, we can c<strong>on</strong>clude that generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nuclei is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant factor which affects <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pores with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing saturati<strong>on</strong><br />

pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> coalescence phenomen<strong>on</strong> may be effective at lower saturati<strong>on</strong> pressures. We finally have to<br />

- 137 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

menti<strong>on</strong> that when <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pore increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size will absolutely<br />

decrease (cf. Figure 5.22).<br />

(A)-P sat = 100 bar/s<br />

(B)-P sat = 300 bar/s<br />

PLGA 85:15 , d e = 264 μm<br />

PLGA 85:15 ,. d e = 89μm<br />

Scaffold Manufactured at, T sat = 35°C ; t sat = 60 min ; dP/dt= 1 bar/s<br />

Figure 5.22: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat <strong>on</strong> pore size.<br />

<strong>The</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> P sat as at higher pressure more<br />

scCO 2 is saturated in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer thus size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores decreases.<br />

4.4 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Temperature (T sat )<br />

In first experiments c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> complete 2 4 design, we observed a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> pore diameter<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature is increasing from 36.5 to 60°C. This trend was unexpected because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> decreasing<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 at higher temperatures which must have lead to lower nucleati<strong>on</strong> rates, c<strong>on</strong>sequently greater<br />

pore diameter. It is also not in agreement with experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> literature [Tsivintzelis et al., 2007b].<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g>se authors, <str<strong>on</strong>g>the</str<strong>on</strong>g> pore sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds increase with increasing saturati<strong>on</strong> temperature.<br />

<strong>The</strong>y relate it to <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we have observed<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r behaviour in Taguchi design experiments. Pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 scaffolds decreased from<br />

36.5 to 45°C, where it reached a minimum and increased until 60°C. We believe that, since <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong><br />

coefficient is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature, <str<strong>on</strong>g>the</str<strong>on</strong>g>re must be a competiti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> decreasing solubility and<br />

increasing diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 with temperature to yield <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate.<br />

As menti<strong>on</strong>ed by Krause et al. [2001], it exists an optimal foaming regi<strong>on</strong> which describes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei which starts with a T lower and exp<strong>on</strong>entially increases with T, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, reaches a maximum in<br />

T max and shows a decreasing behaviour until T upper . Between T lower and T max <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong>diffusi<strong>on</strong><br />

is dominant <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> decreasing solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 . Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei is increasing as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

temperature increased. Once T max is reached, temperature is so high that <str<strong>on</strong>g>the</str<strong>on</strong>g> decreasing solubility effect is<br />

becoming high enough to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleati<strong>on</strong> rate and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> generated number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei<br />

decreases which means that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size decreases. An experimental result is presented in Figure 5.23.<br />

(A)-T sat = 35 o C<br />

(B)-T sat = 60 o C<br />

PLGA 85:15 , d e = 264μm<br />

PLGA 85:15 , d e = 187 μm<br />

Scaffold processed at, P sat = 100 bar ; t sat = 60 min ; dP/dt = 1 bar/s<br />

Figure 5.23: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> T sat <strong>on</strong> pore size.<br />

- 138 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

<strong>The</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores increases with T sat as at elevated temperature more scCO 2 is saturated in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> polymer and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size decreases. Since our experiments with different T sat values were carried<br />

out with <str<strong>on</strong>g>the</str<strong>on</strong>g> volume c<strong>on</strong>straint, <str<strong>on</strong>g>the</str<strong>on</strong>g> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results is not easy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> is needed<br />

in order to present proper c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> temperature.<br />

4.5 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Saturati<strong>on</strong> Time (t sat )<br />

<strong>The</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> saturati<strong>on</strong> time <strong>on</strong> foaming is related by <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sorbed CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer<br />

during that time. When <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> time increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is<br />

increased until <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium is reached, this c<strong>on</strong>sequently increased <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei created. For 125<br />

bars and 36.5°C, <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> is investigated in order to know how much time is needed to reach<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium. It has been found that after approximately <strong>on</strong>e hour, <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 – CO 2 system reaches<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium and <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> is determined (cf. Figure 5.6-A). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, our<br />

experiments show (cf. Figure 5.24) that smaller saturati<strong>on</strong> time increases <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneity within <str<strong>on</strong>g>the</str<strong>on</strong>g> pore<br />

size distributi<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold, so it is important to work at equilibrium c<strong>on</strong>diti<strong>on</strong>s to achieve<br />

homogeneity by providing a good diffusi<strong>on</strong> and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 into <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix.<br />

(A)-t sat = 20 min (B)-t sat = 40 min (C)-t sat = 60 min<br />

d e = 15μm, Heterogeneous pores. d e = 30μm, Less heterogeneous pores. d e = 50μm, Homogeneous pores.<br />

PLGA 50:50 scaffold processed at, P sat = 250 bar ; T sat = 60 o C ; dP/dt = 1 bar/s<br />

Figure 5.24: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> t sat <strong>on</strong> pore size.<br />

<strong>The</strong> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> t sat as by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> time,<br />

more scCO 2 is diffused and distributi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, approaching <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium and increasing thus<br />

homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores.<br />

4.6 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dP/dt and dT/dt<br />

As we have menti<strong>on</strong>ed before <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds decreases with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

depressurizati<strong>on</strong> rate when all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters are c<strong>on</strong>stant. This is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> literature [Arora<br />

et al., 1998b]. This behaviour can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing driving force change which leads <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2<br />

to desorb from <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix. When a rapid depressurizati<strong>on</strong> occurs, it creates greater pressure<br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> inside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore and <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment which results in a rapid desorpti<strong>on</strong>-diffusi<strong>on</strong>.<br />

When <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer is smaller, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not enough CO 2 for <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth which<br />

results in smaller pores (cf. Figure 5.25).<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, a rapid depressurizati<strong>on</strong> always causes a rapid temperature drop, dT/dt. For<br />

example, in our experimental setup, when a dP/dt <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 bar/s is applied from P sat = 100 bars, <str<strong>on</strong>g>the</str<strong>on</strong>g> dT/dt is<br />

approximately 1°C/s, while dT/dt ≈ 0.01°C/s when a dP/dt <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.056 bar/s is applied. Hence, a rapid<br />

temperature drop provides faster vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer which stops <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth.<br />

- 139 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

(A)-dP/dt = 1 bar/s<br />

d e = 264μm<br />

(B)-dP/dt = 20 bar/s<br />

d e = 100μm<br />

PLGA 85:15 scaffold manufactured at, T sat = 35°C ; t sat = 60 min ; P sat = 100 bar<br />

Figure 5.25: Micrographs revealing <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dP/dt and dT/dt <strong>on</strong> pore size.<br />

Pore size decreases with increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> dP/dt. A rapid drop in temperature implies faster<br />

vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer that blocks <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> pores and <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore diameter decreases. It remains<br />

<strong>on</strong>e important phenomen<strong>on</strong> which deserves a proper c<strong>on</strong>siderati<strong>on</strong>. As menti<strong>on</strong>ed previously in secti<strong>on</strong> 2.3,<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> same dP/dt is applied from two different saturati<strong>on</strong> pressures, a difference occurs between <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

temperatures measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> gas output. This can be explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing heating effect. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same rate <str<strong>on</strong>g>of</str<strong>on</strong>g> depressurizati<strong>on</strong> from different saturati<strong>on</strong> pressures, does not give <str<strong>on</strong>g>the</str<strong>on</strong>g> same depressurizati<strong>on</strong><br />

time. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> time from a high saturati<strong>on</strong> pressure is greater and it causes an increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heating time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffolds is encouraged by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sudden temperature drop from smaller saturati<strong>on</strong> pressures. This can be <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

saturati<strong>on</strong> pressure is found to be smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Doehlert’ design. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, since <str<strong>on</strong>g>the</str<strong>on</strong>g> desorpti<strong>on</strong>-diffusi<strong>on</strong> coefficients are lower with lower<br />

saturati<strong>on</strong> pressures than higher saturati<strong>on</strong> pressures (cf. Table 5.8), <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer processed with lower<br />

saturati<strong>on</strong> pressures vitrifies later.<br />

4.7 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pressure Chamber<br />

We have to remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> PLGA 50:50 exposed to high pressurized CO 2 , changes its state from<br />

glassy to rubbery. When <str<strong>on</strong>g>the</str<strong>on</strong>g> depressurizati<strong>on</strong> occurs from high pressurized saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer swells as <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 desorbs and expands as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase separati<strong>on</strong>.<br />

Figure 5.26: Representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> porous structure.<br />

- 140 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Actually, this swelling is <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore growth. When a slow depressurizati<strong>on</strong> happens, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

polymer swells slowly and since <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature drop is also slow, <str<strong>on</strong>g>the</str<strong>on</strong>g> vitrificati<strong>on</strong> happens later. Thus,<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer swells enough to touch <str<strong>on</strong>g>the</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure chamber, <str<strong>on</strong>g>the</str<strong>on</strong>g> edges are behaving like a<br />

volume c<strong>on</strong>straint and <str<strong>on</strong>g>the</str<strong>on</strong>g> pores which are closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> edges is growing more than <str<strong>on</strong>g>the</str<strong>on</strong>g> pore which are in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scaffold, indeed, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> blocking <str<strong>on</strong>g>of</str<strong>on</strong>g> desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 by <str<strong>on</strong>g>the</str<strong>on</strong>g> wall edges (cf. Figure<br />

5.26). <strong>The</strong> CO 2 inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pores expands as <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature decreases which results in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se pores. This behaviour is mostly related to <str<strong>on</strong>g>the</str<strong>on</strong>g> much plasticized state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer.<br />

For this reas<strong>on</strong>, we have changed our experimental setup. We have removed <str<strong>on</strong>g>the</str<strong>on</strong>g> Tefl<strong>on</strong> isolati<strong>on</strong><br />

which was restricting <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> working area inside <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber. We have replaced <str<strong>on</strong>g>the</str<strong>on</strong>g> volume by<br />

small glass balls with 3 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter, and we have placed a metal grill with holes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se glass balls. As<br />

a result, we have gained approximately 50% more area which was sufficiently enough to prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> volume<br />

c<strong>on</strong>straint.<br />

4.8 Interc<strong>on</strong>nectivity and Coalescence Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Scaffolds<br />

Our image analysis <strong>on</strong> micrographs and calculati<strong>on</strong>s shows <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore<br />

density per unit volume, with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing pore size. This trend is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> literature work<br />

[Barry et al., 2006]. <strong>The</strong> coalescence phenomen<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> master b<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pores.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> growth, two pores join to create <strong>on</strong>e, and reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> pore density. This decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore<br />

density c<strong>on</strong>firms <str<strong>on</strong>g>the</str<strong>on</strong>g> bubble coalescence <str<strong>on</strong>g>the</str<strong>on</strong>g>ory proposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature [Rodeheaver and Colt<strong>on</strong>, 2001].<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> pore density is decreasing with <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing depressurizati<strong>on</strong> time (foaming time), l<strong>on</strong>ger<br />

foaming times results in more pores to coalesce. An example to this phenomen<strong>on</strong> is presented in Figure<br />

5.27-(A). A dP/dt <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.056 bar/s has been applied to create this scaffold and it has been observed that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

<strong>on</strong>ly <strong>on</strong>e giant pore. An o<str<strong>on</strong>g>the</str<strong>on</strong>g>r example in Figure 5.27-(B), dP/dt <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 bar/s was applied to create scaffold but<br />

a collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> large pores was observed in SEM micrograph. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we must admit, it is not easy<br />

to interpret <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nectivity behaviour <strong>on</strong>ly by SEM micrographs. Thus, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong> is<br />

necessary in order to quantify <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> interc<strong>on</strong>nectivity. Procedures like mercury porosimetry or µ-<br />

tomography can be c<strong>on</strong>sidered for such analysis.<br />

(A)- PLGA 50:50 (B)- PLGA 85:15<br />

P sat = 100 bar, T sat = 36.5°C,<br />

t sat = 60 min. and dP/dt = 0.056 bar /s.<br />

P sat = 200 bar, T sat = 45°C,<br />

t sat = 20 min. and dP/dt = 1 bar /s.<br />

Figure 5.27: Micrographs depicting coalescence and collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

- 141 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

4.9 <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellet Thickness <strong>on</strong> Foaming<br />

To study <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer mass and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> different thickness ranging<br />

between (0.2 − 1.8 mm) were made (cf. Table 5.25).<br />

Table 5.25: Pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> variable thickness and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir foam data.<br />

Pellet Dimensi<strong>on</strong>s Foam Dimensi<strong>on</strong>s Porosity<br />

Diameter Thickness Mass Diameter Thickness Mass<br />

d p (mm) ø p (mm) m p (mg) d f (mm) ø f (mm) m (mg)<br />

(%)<br />

12.93 0.25 28.60 23.63 0.92 28.90 91.8<br />

12.85 0.43 63.30 25.05 1.49 63.10 92.4<br />

12.90 0.62 96.00 25.08 2.06 96.10 92.0<br />

12.94 0.83 126.70 32.13 2.12 126.10 93.7<br />

12.92 1.10 165.00 24.59 4.72 164.90 93.6<br />

13.00 1.23 203.00 23.00 5.52 202.80 92.9<br />

12.94 1.37 230.70 20.81 5.76 230.70 90.8<br />

12.90 1.62 273.10 20.23 6.14 272.20 89.3<br />

12.95 1.82 298.60 20.79 6.33 297.60 88.9<br />

<strong>The</strong> pellets were prepared at P = 150 bars, T = 60 o C and t = 20 min as per procedure described in<br />

secti<strong>on</strong> 4.3 and illustrated in Figure 4.9-(B). Before and after scCO 2 treatment, <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets and foams<br />

diameter and thickness was measured by using a digital vernier caliper at eight different points (cf. Table<br />

5.25). <strong>The</strong> mean values were c<strong>on</strong>sidered during <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> and analysis. Pellets were treated at<br />

following supercritical CO 2 c<strong>on</strong>diti<strong>on</strong>s: P sat = 120 bars, t sat = 20 min, T sat = 35°C and dP/dt = 3 bar/s.<br />

Experiments were carried out in <str<strong>on</strong>g>the</str<strong>on</strong>g> SEPAREX ® SF200 pilot plant by adopting <str<strong>on</strong>g>the</str<strong>on</strong>g> setup-02 as described in<br />

(cf. chapter 4, Figure 4.12-B).<br />

4.9.1 Porosity and Cell Density<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and foams, geometric porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam was calculated. It<br />

was above 88% for all <str<strong>on</strong>g>the</str<strong>on</strong>g> samples. Average porosity was calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter, thickness and mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pellets and foams, <str<strong>on</strong>g>the</str<strong>on</strong>g>n data was c<strong>on</strong>sidered for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell density. (cf. Table 5.25 and Figure<br />

5.28). Cell densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams are presented in Figure 5.29 and corresp<strong>on</strong>ding images <str<strong>on</strong>g>of</str<strong>on</strong>g> obtained foams<br />

are represented in Figure 5.30.<br />

Foam Porosity ( %)<br />

100<br />

95<br />

90<br />

85<br />

Foams Porosity Variati<strong>on</strong><br />

Pore Density--Pores /(cm) 3<br />

10 6 Cell Density <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

Micro Pores<br />

Meso Pores<br />

Macro Pores<br />

10 5<br />

10 4<br />

10 3<br />

80<br />

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8<br />

PLGA 50:50 Pellets Thicknesses (mm)<br />

10 2<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Pellet Thickness (mm)<br />

Figure 5.28: Porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams for<br />

pellets with different initial thickness.<br />

Figure 5.29: Pore density <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 foams with<br />

different initial pellet thickness.<br />

- 142 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

Figure 5.30: PLGA 50:50 foams obtained with different initial pellet thicknesses.<br />

Best foams have thickness ranging between 0.6 and 1.2 mm. <strong>The</strong>y are characterized by:<br />

Porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> foam greater than 90%.<br />

<br />

Cell density around 25 ×10 3 and 12 ×10 6 pores /cm 3 for macro and micro pores.<br />

Macro pores surface area ranging between 80 and 96%.<br />

Pellet <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 mm thickness seems to be <str<strong>on</strong>g>the</str<strong>on</strong>g> best trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between quality and price <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam.<br />

4.9.2 Pores Size Distributi<strong>on</strong><br />

We have used <str<strong>on</strong>g>the</str<strong>on</strong>g> measured porosity data to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei to <str<strong>on</strong>g>the</str<strong>on</strong>g> average pore<br />

diameter. Average pore diameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> 9 samples was calculated by using <str<strong>on</strong>g>the</str<strong>on</strong>g> SCION ® image analysis.<br />

Figure 5.31-(A) depicts <str<strong>on</strong>g>the</str<strong>on</strong>g> micro, meso and macro pores diameter for <str<strong>on</strong>g>the</str<strong>on</strong>g> 9 previous different pellets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PLGA 50:50 foamed at P sat = 120 bars, t sat = 20 min, T sat = 35°C and dP/dt = 3 bar/s.<br />

Average Pore Diameter ( d e ) m<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Pore Variati<strong>on</strong> in Foam<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Pellet Thickness (mm)<br />

(A)-Pore variati<strong>on</strong> diameter.<br />

Micro Pores<br />

Meso Pores<br />

Macro Pores<br />

% Pore Surface Area<br />

100<br />

Micro Pores<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Area Distributi<strong>on</strong> Meso Pores<str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

Macro Pores<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

Pellet Thickness (mm)<br />

(B)-Area distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

Figure 5.31: Different distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores in PLGA 50:50 foams.<br />

As shown <strong>on</strong> Figure 5.31-(B), in <str<strong>on</strong>g>the</str<strong>on</strong>g>se experimental foaming c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> pores<br />

surface area seems to be stable: around 0.2 to 0.3% for <str<strong>on</strong>g>the</str<strong>on</strong>g> micro-pores, between 4 and 20 % for <str<strong>on</strong>g>the</str<strong>on</strong>g> mesopores<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> complement for <str<strong>on</strong>g>the</str<strong>on</strong>g> macro-pores.<br />

4.9.3 Correlati<strong>on</strong> Between Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Pellet Thickness and Process <str<strong>on</strong>g>Parameters</str<strong>on</strong>g><br />

Earlier, we c<strong>on</strong>cluded that pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 mm produced foams with porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> 93%<br />

and maximum surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> macro pores al<strong>on</strong>g micro and meso pores, thus a foam <str<strong>on</strong>g>of</str<strong>on</strong>g> better quality as it<br />

- 143 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

fulfills <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement for tissue engineering applicati<strong>on</strong>s. A Taguchi’ plan will be applied to see <str<strong>on</strong>g>the</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam.<br />

To study <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different parameters, we opted to make complementary pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 mm<br />

diameter by weighing ~100 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50 . <strong>The</strong> pellets were prepared at P = 150 bars, T = 60 o C and t = 20<br />

min as per procedure described in chapter 4. Before and after scCO 2 treatment, <str<strong>on</strong>g>the</str<strong>on</strong>g> pellets and foams<br />

diameter and thickness was measured and mean dimensi<strong>on</strong>al values were c<strong>on</strong>sidered during <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

and analysis.<br />

Twelve pellets <str<strong>on</strong>g>of</str<strong>on</strong>g> same diameter were manufactured. Experiments were carried out in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

SEPAREX SF200 pilot. Pressure chamber without Tefl<strong>on</strong> isolati<strong>on</strong> material was filled with small glass<br />

marbles to <str<strong>on</strong>g>the</str<strong>on</strong>g> ~2/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> height as described in setup-02 and presented in Figure 4.12-B. <strong>The</strong> four process<br />

parameters P sat , t sat ,T sat dP/dt were varied (cf. Table 5.26) and geometric porosity was determined. <strong>The</strong> ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> micro, meso and macro pores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding foams was obtained by SCION ® image analysis. In<br />

this chapter, for <str<strong>on</strong>g>the</str<strong>on</strong>g> Taguchi plan for PLGA 50:50 (RG 504) best process c<strong>on</strong>diti<strong>on</strong>s was P sat = 120 bars, t sat =<br />

20 min, T sat = 35°C and dP/dt = 3 bar/s. A special experimental plan was not applied; however values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

four parameters were changed slightly to see <str<strong>on</strong>g>the</str<strong>on</strong>g>ir effects fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam porosity and pore size.During<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experimentati<strong>on</strong> variati<strong>on</strong> in temperature a,pressure and dP/dt was observed which can slightly affect <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

final results obtained.<br />

Table 5.26: ScCO 2 process c<strong>on</strong>diti<strong>on</strong>s for foaming <str<strong>on</strong>g>of</str<strong>on</strong>g> PLGA 50:50.<br />

<str<strong>on</strong>g>Parameters</str<strong>on</strong>g> A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12<br />

P sat (bar) 120 120 120 120 120 120 110 120 130 120 120 120<br />

t sat (min) 20 20 20 20 20 20 20 20 20 15 20 25<br />

T sat ( o C) 35 35 35 32.5 35 37.5 35 35 35 35 35 35<br />

dP/dt (bar/s) 4 3 2 3 3 3 3 3 3 3 3 3<br />

4.10 Discussi<strong>on</strong> <strong>on</strong> Foam Morphology<br />

Porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foams obtained under <str<strong>on</strong>g>the</str<strong>on</strong>g> different c<strong>on</strong>diti<strong>on</strong>s has been calculated and is presented.<br />

Three foams were made for each c<strong>on</strong>diti<strong>on</strong>, average values were taken into account and is presented in<br />

Figure 5.32. Geometric porosity was above 90% except in <strong>on</strong>e case where <str<strong>on</strong>g>the</str<strong>on</strong>g> P sat was 130 bar, it was 84%.<br />

We can see that as dP/dt decreases from A1-A3 <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity increases gradually. While from A4-A6 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

porosity increases gradually as saturati<strong>on</strong> temperature increases. From A7-A9, by increasing saturati<strong>on</strong><br />

pressure, porosity drop trend is visible. In <str<strong>on</strong>g>the</str<strong>on</strong>g> last three samples <str<strong>on</strong>g>the</str<strong>on</strong>g>re is again a slight increase in porosity<br />

due to an increase in saturati<strong>on</strong> time.<br />

100<br />

Foams Porosity Variati<strong>on</strong><br />

Foam Porosity ( %)<br />

95<br />

90<br />

85<br />

80<br />

A1<br />

A2<br />

A3<br />

A4<br />

A5<br />

A6<br />

A7<br />

A8<br />

A9<br />

A10<br />

A11<br />

A12<br />

Pellets Thickness (0.6mm)<br />

Figure 5.32: Variati<strong>on</strong> in PLGA 50:50 foams geometric porosity for different process parameters.<br />

- 144 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

SCION ® image analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> SEM micrograph was d<strong>on</strong>e for each c<strong>on</strong>diti<strong>on</strong>. No macro pores were<br />

observed for sample A1 due to high dP/dt, A4 due to low T sat . For <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r samples in A2, A5, A6, A8,<br />

A10, A11 and A12 macro pores had average diameter above 275m. A13 had maximum macro pores <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diameter 298 m al<strong>on</strong>g micro and meso pores. It was quite difficult to maintain 35 o C <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experimentati<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature variati<strong>on</strong>s, we had to repeat <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments thrice to attain T sat ,<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> samples were recorded for calculati<strong>on</strong>s and analysis.<br />

Figure 5.33 and Figure 5.34 reveal that samples A3 and A9 produce pores <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter ~200μm<br />

while samples with higher macro pore diameter produced cell density above 1×10 3 , while cell densities for<br />

micro and meso pores are also satisfactory.<br />

Figure 5.35 compares <str<strong>on</strong>g>the</str<strong>on</strong>g> % <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> three types <str<strong>on</strong>g>of</str<strong>on</strong>g> pores. We can see that samples A2,<br />

A5, A6, A7, A8, A10, A11 and A12 c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> macro pores produced. In<br />

A2,A11 and A12 <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage is above 95%. <strong>The</strong>se three foams are quite close to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs<br />

cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> three types <str<strong>on</strong>g>of</str<strong>on</strong>g> pore distributi<strong>on</strong>.<br />

Figure 5.36 reveals <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum values <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters at which pores <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum<br />

diameters can be produced. In our finding with PLGA 50:50 , we have found that a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>, T sat =<br />

37.5°C, P sat = 120 bars, t sat = 25 min, and dP/dt = 3 bar/s, produce scaffold <str<strong>on</strong>g>of</str<strong>on</strong>g> optimum porosity, cell density<br />

and pore distributi<strong>on</strong>.<br />

Pore Diameter ( d e ) m<br />

400<br />

300<br />

200<br />

100<br />

Micro Pores Pore Variati<strong>on</strong> in Foam<br />

Meso Pores<br />

Macro Pores<br />

Cell Density-Pores / (cm) 3<br />

10 7 Micro Pores<br />

Meso Pores<br />

Macro Pores<br />

10 6<br />

10 5<br />

10 4<br />

Cell Density <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

0<br />

A1<br />

A2<br />

A3<br />

A4<br />

A5<br />

A6<br />

A7<br />

A8<br />

A9<br />

PLGA 50:50<br />

Foams<br />

A10<br />

A11<br />

A12<br />

10 3<br />

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12<br />

PLGA 50:50<br />

Foams<br />

Figure 5.33: Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores at different<br />

process c<strong>on</strong>diti<strong>on</strong>.<br />

Figure 5.34: Cell densities <str<strong>on</strong>g>of</str<strong>on</strong>g> pores produced at<br />

different process c<strong>on</strong>diti<strong>on</strong>.<br />

Pore Surface Area (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Micro Pores<br />

Area Distributi<strong>on</strong> Meso Pores <str<strong>on</strong>g>of</str<strong>on</strong>g> Pores<br />

Macro Pores<br />

A1<br />

A2<br />

A3<br />

A4<br />

A5<br />

A6<br />

A7<br />

A8<br />

A9<br />

A10<br />

A11<br />

A12<br />

PLGA 50:50 Foams<br />

Pore Diameter ( d e ) m<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

35<br />

Tsat (°C)<br />

32.5<br />

PLGA 50:50<br />

Optimum <str<strong>on</strong>g>Parameters</str<strong>on</strong>g><br />

37.5<br />

Psat (bar)<br />

110<br />

120<br />

130<br />

tsat (min)<br />

15'<br />

20'<br />

25'<br />

dP/dt (bar/s)<br />

Process C<strong>on</strong>diti<strong>on</strong> [T sat -P sat -t sat -dP/dt]<br />

2<br />

3<br />

4<br />

Figure 5.35: Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> surface area for<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pores.<br />

Figure 5.36: Effective pore diameter for each<br />

process parameter.<br />

- 145 -


Chapter 5.<br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scaffolds for C<strong>on</strong>nective Tissue Engineering<br />

One can see <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> process parameters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size. Increasing T sat ultimately<br />

improves <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter, and pore diameter is decreased by increment <str<strong>on</strong>g>of</str<strong>on</strong>g> P sat and dP/dt. <strong>The</strong>re was a<br />

slight increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> foam by increment <str<strong>on</strong>g>of</str<strong>on</strong>g> t sat . So <str<strong>on</strong>g>the</str<strong>on</strong>g> process parameters have been<br />

improvised by performing <str<strong>on</strong>g>the</str<strong>on</strong>g>se experiments. A foam was <str<strong>on</strong>g>the</str<strong>on</strong>g>n produced at this optimized c<strong>on</strong>diti<strong>on</strong> and<br />

from analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> porosity obtained was 93% and diameters for micro, meso and macro pore was 14m,<br />

97m and 276 m respectively.<br />

5 C<strong>on</strong>clusi<strong>on</strong><br />

Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactides including polylactic acid and poly(lactic co-glycolic acid) have<br />

been characterized in details. <strong>The</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each polymer was also discussed as it has a pivotal role <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final porous scaffolds produced. Foams were made with pure polylactic acid and with<br />

blends <str<strong>on</strong>g>of</str<strong>on</strong>g> polylactic acid and polylactic co-glycolic acid in order to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> LA/GA<br />

compositi<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> foaming process and porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foam. Different experimental designs were used<br />

to attain optimized porosity and pore size distributi<strong>on</strong>.<br />

Firstly, we must admit that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 4 , Taguchi and initial Doehlert<br />

plan is difficult. During <str<strong>on</strong>g>the</str<strong>on</strong>g>se experiments, we have not noticed <str<strong>on</strong>g>the</str<strong>on</strong>g> important effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> volume c<strong>on</strong>straint<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet. Indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g>se two parameters affect <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size. We have encountered<br />

important heterogeneities within <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong>s micrographs and very different pore sizes for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scaffolds which were processed in <str<strong>on</strong>g>the</str<strong>on</strong>g> same chamber. For this reas<strong>on</strong>, we have decided to change <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental setup. We have removed <str<strong>on</strong>g>the</str<strong>on</strong>g> Tefl<strong>on</strong> isolati<strong>on</strong> to gain volume and we have filled <str<strong>on</strong>g>the</str<strong>on</strong>g> chamber<br />

with small glass balls. After that, <strong>on</strong>ly <strong>on</strong>e pellet has been placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> holed grill which has been<br />

positi<strong>on</strong>ed above <str<strong>on</strong>g>the</str<strong>on</strong>g> glass balls. For <str<strong>on</strong>g>the</str<strong>on</strong>g> following experiments, we have found that <str<strong>on</strong>g>the</str<strong>on</strong>g> pore size increases<br />

with decreasing saturati<strong>on</strong> pressure and depressurizati<strong>on</strong> rate. Best results have been achieved within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 128 and 138μm for P sat = 100 bar, T sat = 36.5°C, t sat = 60 min. and dP/dt = 1.25 bar /s.<br />

Finally, detailed emphasis was laid down <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> process parameters such as saturati<strong>on</strong><br />

pressure, saturati<strong>on</strong> temperature and saturati<strong>on</strong> time and depressurizati<strong>on</strong> rate during foaming process.<br />

Optimum thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pellet was finalized for <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentati<strong>on</strong> process.<br />

- 146 -


Lire<br />

la sec<strong>on</strong>de partie<br />

de la thèse

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!