15.05.2015 Views

C&T4; — Body Fluids Body fluids — importance

C&T4; — Body Fluids Body fluids — importance

C&T4; — Body Fluids Body fluids — importance

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AHS C&<strong>T4</strong> 11/2/12<br />

C&<strong>T4</strong> — <strong>Body</strong> <strong>Fluids</strong><br />

Themes<br />

Importance of body <strong>fluids</strong><br />

(homeostasis)<br />

Fluid compartments<br />

(volumes)<br />

Boundaries and movement of<br />

materials<br />

Pathophysiology<br />

Learning Outcomes<br />

To be able to:<br />

1. describe the composition of the<br />

three principal fluid<br />

compartments in the body<br />

2. explain their respective<br />

compositions in terms of the<br />

nature of the compartments’<br />

boundaries<br />

3. explain the <strong>importance</strong> of the<br />

movement of material between<br />

compartments.<br />

4. explain the effects of tonicity on<br />

cell volume.<br />

<strong>Body</strong> <strong>fluids</strong> — <strong>importance</strong><br />

Primary transport system<br />

between cells<br />

Nutrition<br />

Waste<br />

Signals<br />

<strong>Body</strong> systems <br />

Maintain <br />

Homeostasis <br />

A large part of the<br />

Internal environment<br />

Fluid composition critical<br />

for cell function.<br />

Make<br />

up <br />

Is essential<br />

for<br />

survival<br />

of <br />

Cells <br />

Sherwood Fig. 1-5<br />

1


AHS C&<strong>T4</strong> 11/2/12<br />

Fluid Compartments<br />

42 L<br />

(60% of body mass)<br />

28 L 14 L<br />

3 L 11 L<br />

Volumes in L are those<br />

of average 70kg male<br />

NB 1 litre H 2 O weighs 1 kg<br />

Water can move between compartments<br />

Differences between Compartments?<br />

Boundaries<br />

Intracellular Fluid/Interstitial Fluid<br />

Boundary is cell membrane<br />

selectively permeable<br />

ion pumps*<br />

Interstitial Fluid/Plasma<br />

Boundary is capillary wall<br />

Permeable to small molecules<br />

Composition<br />

Interstitial Fluid (IF) Intracellular (ICF)<br />

Na + high Na + low (pump)<br />

Cl - high<br />

Cl - low<br />

K + low<br />

K + high (pump)<br />

Principal Anions<br />

PO 4<br />

3-<br />

, Proteins (Pr - )<br />

2


AHS C&<strong>T4</strong> 11/2/12<br />

Osmosis<br />

Water moves…<br />

From lower to higher solute<br />

concentration<br />

Cell membrane is<br />

semipermeable:<br />

permeable to water but<br />

not solute<br />

Movement is passive.<br />

Tonicity<br />

Effect of solute concentration on cell volume<br />

Solute cannot cross<br />

membrane<br />

Hence H 2 O moves<br />

(a) hypotonic solution<br />

Cell gains water — swells<br />

(b) hypertonic solution<br />

Cells loses water — shrinks.<br />

Important consideration in fluid replacement:<br />

Haemorrhage: Replace blood with isotonic saline (NaCl)<br />

No change in cell volume<br />

Rehydration salts (diarrhoea): Replace water and ions<br />

3


AHS C&<strong>T4</strong> 11/2/12<br />

Lymphatic system<br />

Fluid leaks out of<br />

cardiovascular system.<br />

Lymphatic system returns<br />

lymph to the cardiovascular<br />

system<br />

Systemic capillaries: allow<br />

exchange of materials<br />

between blood and body<br />

tissues – nutrients, gases (eg.<br />

O 2 , CO 2 ), water<br />

Concept: Fluid Compartments (inputs and outputs)<br />

Lymphatic drainage<br />

Sherwood Fig 10-25"<br />

3 litres per day not reabsorbed in capillaries/venules<br />

Enters lymph vessels<br />

Pumped to lymph nodes<br />

Re-enters circulation near right atrium.<br />

4


AHS C&<strong>T4</strong> 11/2/12<br />

Arrows indicate direction of force<br />

Arteriole<br />

Fig 14.19<br />

———————————————————————————————<br />

———————————————————————————————<br />

Capillary BP<br />

Colloid OP*<br />

37 mmHg 25 mmHg<br />

Capillary BP<br />

17 mmHg<br />

———————————————————————————————<br />

———————————————————————————————<br />

NET OUTWARD PRESSURE ~12mmHg NET INWARD PRESSURE~8 mmHg<br />

OUTWARD PRESSURE > INWARD PRESSURE:<br />

Fluid leaves the capillary and enters the interstitial fluid<br />

Venule<br />

*Colloid OP — osmotic pressure of plasma proteins<br />

Clue: Liver synthesises<br />

most plasma proteins<br />

Pathophysiology<br />

Liver Failure<br />

Arteriole<br />

———————————————————————————————<br />

———————————————————————————————<br />

Capillary BP<br />

37 mmHg 25 mmHg<br />

17 mmHg<br />

———————————————————————————————<br />

———————————————————————————————<br />

Fall in plasma proteins<br />

Colloid OP falls<br />

Reduced inward flow<br />

Colloid OP<br />

Accumulation of fluid in tissues (oedema).<br />

Capillary BP<br />

Venule<br />

5


AHS C&<strong>T4</strong> 11/2/12<br />

Starling’s Law — Importance<br />

Capillary wall is very permeable<br />

Bulk flow of water and solutes<br />

Rapid Plasma and Interstitial Fluid<br />

interchange<br />

Interstitial Fluid (IF)"<br />

BUT plasma is carefully regulated (kidney)<br />

Hence Interstitial Fluid composition is<br />

carefully regulated<br />

Interstitial Fluid is the environment for all<br />

cells.<br />

Normal Daily Input and Output<br />

Inputs<br />

Ingestion<br />

Fluid (1.25 litres)<br />

Food (1 litre)<br />

Metabolism (350 ml)<br />

Total 2.6 litres<br />

Outputs<br />

Gut (Faeces 100 ml)<br />

Urine (1.5 litres)<br />

Breathing/Skin (900 ml)<br />

Sweating (100 ml)<br />

Total 2.6 litres<br />

Which ones are used to regulate fluid volume?<br />

6


AHS C&<strong>T4</strong> 11/2/12<br />

Normal Daily Input and Output<br />

Inputs<br />

Ingestion<br />

Fluid * (1.25 litres)<br />

Food (1 litre)<br />

Metabolism (350 ml)<br />

* Regulated<br />

[for water balance.]<br />

Outputs<br />

Gut (Faeces 100 ml)<br />

Urine *(1.5 litres)<br />

Breathing/Skin (900 ml)<br />

Sweating (100 ml)<br />

[Only regulated for heat balance,<br />

NOT water]<br />

Abnormal Inputs and Outputs<br />

Inputs<br />

Clinical<br />

– Injection/infusion<br />

Excessive drinking<br />

(‘polydipsia) *<br />

Outputs<br />

Gut (vomiting, diarrhoea)<br />

Urine (diabetes insipidus *)<br />

Breathing/Skin (burns)<br />

Sweating (‘hyperhydria’ *)<br />

Haemorrhage.<br />

* Failure of regulation<br />

7


AHS C&<strong>T4</strong> 11/2/12<br />

Learning Outcomes !<br />

1. describe the composition of the three principal fluid compartments in the body<br />

Intracellular (ICF) — high [K + ], low [Na + ]; Pr -<br />

Interstitial (IF) — high [Na + ], low [K + ]<br />

Plasma — as IF, plus Proteins<br />

2. explain their respective compositions wrt the nature of the compartments’<br />

boundaries<br />

ICF/IF — cell membrane: semipermeable, Na + /K + pump<br />

Plasma/IF — capillary wall: bulk flow (not proteins).<br />

3. explain the <strong>importance</strong> of the movement of material between compartments<br />

Plasma/IF —plasma closely regulated (kidney) hence IF regulated<br />

ICF/IF — cell membrane regulates ICF<br />

4. explain the effects of tonicity on cell volume<br />

Osmotic effect on cell volume of solutions of different concentrations of nonpenetrating<br />

solute: hypertonic— cell loses water…<br />

<strong>Body</strong> <strong>Fluids</strong> — Summary!<br />

Key <strong>importance</strong> — homeostasis"<br />

Fluid balance (outline)!<br />

Inputs/outputs"<br />

Compartments [Core concept]!<br />

Volumes"<br />

Exchanges (Starling’s Law)"<br />

Pathophysiology (oedema)"<br />

Estimation."<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!