11.05.2015 Views

Offshore field experience with Bright Water - Force

Offshore field experience with Bright Water - Force

Offshore field experience with Bright Water - Force

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Offshore</strong> <strong>field</strong> <strong>experience</strong> <strong>with</strong> <strong>Bright</strong><strong>Water</strong><br />

Presenter: Nancy Lugo<br />

Chevron Upstream Europe<br />

Stavanger 20/01/2010<br />

Team Members:<br />

Nancy Lugo, David May, Elaine Campbell – Chevron Upstream Europe, Aberdeen<br />

Rick Ng, Steve Cheung – Energy Technology Company, Houston, Texas<br />

© Chevron 2005<br />

DOC ID


Agenda<br />

•What is <strong>Bright</strong><strong>Water</strong><br />

•Applications in the world<br />

•<strong>Bright</strong><strong>Water</strong> in Strathspey<br />

•Strathspey <strong>field</strong> and geology<br />

• <strong>Bright</strong><strong>Water</strong> treatment in Strathspey<br />

•Modeling process<br />

•Treatment execution<br />

•Results<br />

•Lessons Learned<br />

•Conclusions<br />

2


What is <strong>Bright</strong><strong>Water</strong><br />

• Novel particulate system for in–<br />

depth waterflood conformance<br />

control<br />

• Co-developed between Chevron,<br />

BP and Nalco<br />

• Small cross-linked polymer<br />

particles bullheaded into<br />

injection well<br />

• Propagate deep into the<br />

reservoir<br />

• Once heated polymer expands to<br />

block pore throats and prevent<br />

further fluid flow through rock<br />

• Injected water diverts into less<br />

swept zones<br />

3


STC<br />

<strong>Bright</strong><strong>Water</strong> applications<br />

Milne Pt 2004<br />

Prudhoe 2004/05 (3)<br />

NWFB 2005 (2)<br />

Arbroath 2002<br />

Strathspey<br />

2006<br />

Tangri 2006<br />

Horn Mt 2006<br />

BW for carbonates<br />

Minas 2001<br />

Kotabatak 2006/07<br />

PanAm 2006<br />

Barrow Island<br />

Completed Planned Development<br />

• 2001<br />

Minas Field – Indonesia (Chevron<br />

operated)<br />

• Extra oil observed (SPE<br />

84897)<br />

• 2002/03<br />

Arbroath, North Sea (BP)<br />

• No extra oil. Ownership<br />

changes & production issues<br />

stopped assessment of <strong>field</strong><br />

benefit.<br />

• 2004/05<br />

Alaska - Milne Point & Prudhoe Bay<br />

(BP)<br />

• Over half a million extra<br />

barrels recovered from four<br />

trial wells. Treatment cost of<br />

just $3.20 - $3.80 per barrel.<br />

• 2006<br />

Strathspey<br />

• Over 130 mboe increase first<br />

12 months. Treatment cost of<br />

$3.5 - $4 per boe.<br />

4


<strong>Bright</strong>water treatment in Strathspey Field<br />

• Subsea development<br />

• Consists of a tilted fault block (10° West)<br />

• Two Reservoirs<br />

• Brent Group (Black Oil)<br />

• Banks Group, Statfjord Fm. (Gas<br />

Condensate)<br />

• Production Mechanism<br />

• Brent: water flooding, best candidate for<br />

<strong>Bright</strong><strong>Water</strong> application<br />

• Statfjord: depletion drive<br />

• <strong>Bright</strong>water deployed in Brent reservoir<br />

Upper Brent<br />

Reservoir<br />

Lower Statfjord<br />

Reservoir<br />

Brent<br />

W<br />

Dunlin<br />

Statfjord<br />

Triassic


Strathspey Brent Geology<br />

W<br />

Main Field<br />

Reservoir Units Dip 10° West<br />

Reworked<br />

Rotated Fault Blocks<br />

E<br />

M6 Injector<br />

M10<br />

MS9 MS19<br />

2d<br />

B<br />

C<br />

D<br />

GR<br />

F<br />

ER<br />

Original OWC -9380ft TVDSS<br />

Top B7<br />

Top B6<br />

Top B5<br />

1km<br />

Top Brent Depth Structure<br />

1000ft<br />

Top B4<br />

Top B3<br />

Brent<br />

Central<br />

MS9<br />

MS19<br />

Top B2<br />

Top B1<br />

M6<br />

M10<br />

Top<br />

Dunln<br />

Log<br />

Section<br />

• Favorable mobility ratio has led to efficient sweep in<br />

general – Main Field wells<br />

• Geological heterogeneity and complex faulting in the<br />

slumped areas has led to localized early water<br />

breakthrough and poorer waterflood efficiencies.<br />

Brent<br />

South<br />

M5<br />

M9<br />

M11<br />

M3<br />

12<br />

MS14<br />

M15z<br />

M7<br />

5<br />

1km<br />

6


Cumulative RBO<br />

Produced<br />

MS14 as candidate for BW treatment<br />

MS19 Cumulative Plot 2003<br />

For Every 100 RBW Produced<br />

Top Brent Depth Structure – MS14 to MS19<br />

4000000<br />

3500000<br />

3000000<br />

2500000<br />

2000000<br />

1500000<br />

111rbo<br />

53rbo<br />

18rbo<br />

Brent<br />

Central<br />

MS19<br />

MS9<br />

M10<br />

M6<br />

MS14<br />

227rbo<br />

1000000<br />

500000<br />

0<br />

0 500000 1000000 1500000 2000000 2500000 3000000 3500000<br />

1km<br />

M9<br />

M15z<br />

Cumulative RBW Produced<br />

•Fast watercurt development at MS19<br />

after MS14 injection started<br />

•Reservoir simulation indicated high oil<br />

saturation around MS19.<br />

•Conventional water shut-off methods<br />

require well intervention<br />

• Cost prohibitive in a subsea environment<br />

• <strong>Bright</strong><strong>Water</strong> treatment recommended<br />

for well MS14<br />

• Treatment deployed in September 2006


Cross Section (W-E) along MS19 well path<br />

•Reworked fault blocks<br />

•Faults act as baffles not sealing<br />

•M6 injector give underlying support but not enough direct<br />

support <strong>with</strong>in the fault compartments<br />

•MS14 considered a good injector candidate as it could sweep<br />

north towards the faulted compartments<br />

•Hard to get efficient sweep in this area<br />

Cross Section 1 - along MS19 Well Path<br />

Top Brent Depth Structure – MS14 to MS19<br />

Brent<br />

Central<br />

1km<br />

M6<br />

MS19<br />

MS9<br />

M10<br />

M9<br />

Cross Section 1<br />

Cross Section 2<br />

MS14<br />

M15z<br />

MS19<br />

Cross Section 2<br />

Rework Fault<br />

-9380ft<br />

TVDSS OWC<br />

B5<br />

B3<br />

250m<br />

W<br />

Main Field<br />

Rework<br />

E


Cross Section MS14 to MS19<br />

•N to S fault structure indicates channeling was likely<br />

Top Brent Depth Structure – MS14 to MS19<br />

•Perm differences between layers indicated thief zones<br />

were likely<br />

•Possible improved vertical sweep efficiency was a target<br />

•MS14 was proposed as target for BW<br />

Brent<br />

Central<br />

M6<br />

MS19<br />

MS9<br />

M10<br />

Cross Section 1<br />

Cross Section 2<br />

MS14<br />

Cross Section 2 - MS14 to MS19<br />

1km<br />

M9<br />

M15z<br />

MS14<br />

MS19<br />

Rework<br />

Fault<br />

B5<br />

High Perm Layer<br />

Rework<br />

Main<br />

Field<br />

S<br />

250m<br />

-9380ft<br />

TVDSS OWC<br />

N


STC<br />

Modeling Process – <strong>Bright</strong><strong>Water</strong><br />

Temperature regime around injector<br />

Extent of open perfs in MS19<br />

•Use tracer<br />

• Determine well-well transit time and<br />

temp (help select best grade for the<br />

application)<br />

• Look at where the bulk injected BW<br />

would go<br />

MS14<br />

Temperature Profile<br />

MS19<br />

intersecting<br />

MS14<br />

Layer 7<br />

Cooling around<br />

Tracer Concentration<br />

Layer 7 (part of B5):<br />

Black lines show position of sealing or part-sealing faults<br />

Bulk BW would go –<br />

Thief layer<br />

Flank<br />

injector<br />

MS14<br />

Layer 7: grid blocks in the main area are 125ftx125ft so 700ft is cooled towards MS19<br />

Tracer in Layer 7 thief: 3 months after injection<br />

10


STC<br />

Modeling Process <strong>Bright</strong><strong>Water</strong> (cont…)<br />

Determine <strong>Bright</strong><strong>Water</strong> Grade using Lab Tests<br />

• Check activation times using bottle tests<br />

• Inject selected BW grade into sand packs to check<br />

activation time/strength<br />

• Calculate Resistance Factor<br />

• Reservoir core test to select optimum formulation<br />

11


STC<br />

Modeling Process <strong>Bright</strong><strong>Water</strong> (cont…)<br />

Predict Incremental Oil<br />

•Run full waterflood history match<br />

•Reduce permeability in the model at the<br />

position reached by tracer after heating<br />

MS19<br />

intersecting<br />

Layer 7<br />

•Rerun tracer (assess if water takes a different<br />

route)<br />

Flank<br />

injector<br />

•Predict oil recovery <strong>with</strong> and <strong>with</strong>out BW<br />

•Predict incremental oil<br />

MS14<br />

•Calculate required treatment quantity<br />

Layer 7: grid blocks in the main area are 125ftx125ft so 700ft is cooled towards MS1<br />

BW - Total Incremental: 250 - 500 mboe<br />

12


STC<br />

Treatment Execution<br />

STRATHSPEY SUBSEA LAYOUT<br />

_________________________________<br />

BRENT IGLOO<br />

BRENT 'A'<br />

BRENT RECEIVER<br />

TEE STRUCTURE<br />

Satellite wells<br />

SATELLITE WELLS<br />

MS9(B) & MS14(B)<br />

Fore and aft cluster wells<br />

16" WELGAS PIPELINE<br />

Gas to St<br />

Fergus via<br />

FLAGS system<br />

NINIAN<br />

CENTRAL<br />

16" GAS EXPORT<br />

MS14 INJECTOR<br />

M6<br />

(WI)<br />

M5<br />

(WI)<br />

'F' CLUSTER WELLS<br />

M1(S)<br />

M10(B)<br />

M2Z(S)<br />

M3(B)<br />

M4(S)<br />

Manifold<br />

'A' CLUSTER WELLS<br />

M9(B)<br />

M7(B)<br />

M8(S)<br />

Liquids to<br />

Sullom Voe<br />

through<br />

Ninian<br />

pipeline<br />

SUDS<br />

GAS EXPORT<br />

SSIV/LAUNCHER<br />

SSIV UMB.<br />

E/H CONTROLS<br />

TEXACO SSIV<br />

PROTECTION<br />

STRUCTURE<br />

2 Brent lines, 2<br />

Statfjord lines,<br />

methanol and utilities<br />

lines<br />

12" WATER INJECTION<br />

<strong>Water</strong> injection<br />

from Ninian<br />

South<br />

NINIAN<br />

SOUTHERN<br />

13


<strong>Bright</strong>water Treatment - Logistics<br />

• Planned<br />

• 140,000 litres <strong>Bright</strong>water<br />

• 70,000 litres BW Surfactant<br />

• Spiked to 58,000 BBL Injection <strong>Water</strong><br />

1.5% Polymer Concentration<br />

• Pump Time at 22,000 bpd (15bpm)<br />

• Actual<br />

2.7 DAYS<br />

• Metering Error<br />

First Half Of Polymer Treatment At 1%<br />

Second Half At 1.5%


Oil Rate (bopd)<br />

BOEPD<br />

19/12/2001<br />

19/06/2002<br />

19/12/2002<br />

19/06/2003<br />

19/12/2003<br />

19/06/2004<br />

19/12/2004<br />

19/06/2005<br />

19/12/2005<br />

19/06/2006<br />

19/12/2006<br />

19/06/2007<br />

<strong>Water</strong>cut<br />

Results<br />

8,000<br />

MS19 Pre and Post BW1<br />

0.9<br />

7,000<br />

0.8<br />

0.7<br />

6,000<br />

0.6<br />

5,000<br />

0.5<br />

4,000<br />

0.4<br />

3,000<br />

0.3<br />

2,000<br />

0.2<br />

5,000 7,000 9,000 11,000 13,000 15,000 17,000 19,000<br />

Total Fluid Rate (bpd)<br />

bopd 2003 bopd 2007 %wtcut 2003 %wtcut 2003<br />

MS19 Production History<br />

• In 2007 the watercut appeared to be<br />

more controlled.<br />

• Under similar voidage replacement<br />

conditions water cut accelerated to 80%<br />

over a matter of nine months in 2003<br />

• <strong>Bright</strong><strong>Water</strong>® slowed down the passage<br />

of water considerably between injector<br />

and producer.<br />

• Allows MS19 to flow naturally at higher<br />

fluid rates <strong>with</strong> lower water-cut.<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

• Data indicated oil production rise of 575<br />

boepd.<br />

• Incremental of 130 MBOE first year<br />

• Total incremental hydrocarbon estimated<br />

to rise to 317,300 boe<br />

Base BOE<br />

Inc BOE<br />

15


Best Practices and Lessons Learned<br />

Best Practices.<br />

• Committed cooperative efforts among operators, vendors and research<br />

insititutes can deliver innovative technologies for enhancing hydrocarbon<br />

recovery.<br />

• Investigate all data available to determine transit time between injector and<br />

producer. Consider an interwell tracer test first if there is a chance of very rapid<br />

connection between wells<br />

• Simple simulation studies add valuable insights to the design and provide useful<br />

estimation of incremental oil recovery.<br />

Lessons Learned.<br />

• Long term operator commitment is needed assign resource, monitor results and<br />

document.<br />

• Failure of of crucial subsea equipment can make monitoring of well performance<br />

very difficult for long periods until opportune availability of vessels is possible.<br />

• More thorough yard trials for pumping <strong>Bright</strong>water should be conducted <strong>with</strong> the<br />

vendor and operator personnel present.<br />

16


Conclusions<br />

• <strong>Bright</strong>water was successfully deployed via a 10 mile<br />

subsea water injection line from the Ninian South<br />

Platform<br />

• The treatment reduced the rate of water injection<br />

channeling between injector MS14 and producer MS19.<br />

• The impact on MS19 is that the well can produce at a<br />

higher total fluid rate <strong>with</strong> a lower watercut leading to<br />

increased oil production.<br />

• Incremental oil delivered in the first 12 months is<br />

130,000 boe.<br />

17


STC<br />

Any questions?<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!