11.05.2015 Views

Geomechanical modeling of fault reactivation related to pore ... - Force

Geomechanical modeling of fault reactivation related to pore ... - Force

Geomechanical modeling of fault reactivation related to pore ... - Force

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Geomechanical</strong><br />

modelling <strong>of</strong> <strong>fault</strong><br />

<strong>reactivation</strong> <strong>related</strong> <strong>to</strong><br />

<strong>pore</strong> pressure changes.<br />

Elin Skurtveit, Fabrice Cuisiat, Hans<br />

Petter Jostad, Lars Andresen<br />

FORCE HPHT workshop 10.Nov.2010


Focus <strong>of</strong> the talk<br />

• HPHT reservoirs and depletion<br />

• <strong>Geomechanical</strong> modelling <strong>related</strong> <strong>to</strong> depletion<br />

• Labora<strong>to</strong>ry testing <strong>of</strong> hydro-mechancial parameters<br />

• Case studies: Kristin and Statfjord Field


HPHT reservoirs and depletion<br />

p<br />

=( p + p s


Effect <strong>of</strong> depletion on <strong>fault</strong> in reservoirs<br />

Færseth et al. 2007<br />

• Flow and pressure<br />

barriers<br />

• Affect horizontal and<br />

vertical flow paths<br />

• Pressure<br />

compartments and<br />

large differential<br />

pressure across <strong>fault</strong>s<br />

• Stress concentration


<strong>Geomechanical</strong> modelling <strong>of</strong> pressure<br />

depletion at NGI<br />

Fault integrity<br />

Well integrity<br />

Special labora<strong>to</strong>ry testing<br />

on intact and <strong>fault</strong>ed<br />

material


<strong>Geomechanical</strong> modelling<br />

- Geometry<br />

- Stresses<br />

- Depletion<br />

- <strong>Geomechanical</strong><br />

properties<br />

- Stiffness<br />

- Strength<br />

- Permeability


How <strong>to</strong> model <strong>fault</strong> zones<br />

Geometry<br />

Complexity<br />

Fault core – type <strong>of</strong> material<br />

Damage zone<br />

Normal <strong>fault</strong>ing<br />

Drag<br />

Slumping<br />

Small <strong>fault</strong>ing parallel <strong>to</strong><br />

<strong>fault</strong> plane


Labora<strong>to</strong>ry tests<br />

Standard Triaxial testing<br />

Parameters<br />

• Strength<br />

• Deformation<br />

• Permeability<br />

• Seismic velocities<br />

• Resistivity<br />

Test conditions<br />

• Confining Pressure up <strong>to</strong> 100 MPa<br />

• Pore Pressure up <strong>to</strong> 80 MPa<br />

• Temperatures up <strong>to</strong> 160 o C


Challenges <strong>related</strong> <strong>to</strong> testing<br />

• Relevant material<br />

• Fresh and undisturbed material<br />

• Fault zone material – bad quality or missing<br />

Fault zone<br />

Shale


Ring shear test equipment<br />

Investigating basic mechanisms involved in <strong>fault</strong>ing<br />

n<br />

• Max normal s<br />

• Max shear st<br />

• Pore pressur<br />

• Flow measur<br />

ring filter segm<br />

• Test control:<br />

• Sample size:<br />

• Unlimited rota<br />

• Max rotation<br />

• Min rotation s<br />

Parameters tested:<br />

RingShearDescription.ppt<br />

Clausen & Gabrielsen,<br />

2002<br />

Shearing <strong>of</strong> pure sand, sand mixed with clay and clay layers producing clay smear<br />

Varying porosity, burial depth, clay content, number <strong>of</strong> clay layers


Ring shear tests<br />

Effect <strong>of</strong> various burial depth during shearing<br />

3 clay layers<br />

separated by<br />

sand<br />

Loading the<br />

sample <strong>to</strong><br />

required burial<br />

depth<br />

Faulting<br />

simulated by<br />

rotating lower<br />

part <strong>of</strong> ring cell<br />

Flow measurements


Observation <strong>of</strong> shear zone<br />

Clay smear<br />

• clay smear<br />

• grain rolling<br />

• cataclasis<br />

Increasing<br />

shear<br />

strength<br />

with<br />

increasing<br />

burial<br />

depth<br />

Sand shear


Field cases<br />

Kristin Field – HPHT reservoir<br />

Statfjord Field – Statfjord Late Life


Kristin Field - Halten bank<br />

<strong>Geomechanical</strong> <strong>modeling</strong> <strong>of</strong> depletion:<br />

• Reservoir deformation due increased effective stress<br />

• Total stress reduction in horizontal direction, develop<br />

shear deformation<br />

• Stress concentration around internal <strong>fault</strong>s<br />

5000 m depth<br />

90 MPa <strong>pore</strong> pressure<br />

Temperature 170 ºC<br />

Planned depletion: 60 MPa


Special labora<strong>to</strong>ry tests<br />

Material properties for calculation <strong>of</strong> compaction and deformation<br />

during depletion<br />

Defining bulk<br />

modulus<br />

Skomedal et al 2002<br />

Compressibility <strong>of</strong> the reservoir depends on the initial<br />

porosity and possibly quarts cementation


Depth (m)<br />

Fault integrity during<br />

depressurization <strong>of</strong> the Statfjord Field<br />

Poroelastic model <strong>to</strong> account for grains compressibility during depletion<br />

Use existing observations from Brent-Statfjord as verification/calibration<br />

Distance (m)<br />

10000 20000 30000 40000 50000 60000<br />

SW<br />

NE<br />

1000<br />

Brent Fault 9/4 Fault Horst<br />

2000<br />

Brent Field<br />

Statfjord Field<br />

Snorre Field<br />

3000<br />

4000<br />

4500<br />

Vertical exaggeration:3<br />

late life <strong>pore</strong> pressure depletion p ~ 300<br />

bar<br />

Sealing <strong>fault</strong> under<br />

existing pressure<br />

depletion in Brent field<br />

(300 bars)<br />

Behaviour <strong>of</strong> Horst<br />

barrier during<br />

depletion?


Fault properties<br />

• Throw from seismic sections<br />

• Empirical relationship between <strong>fault</strong><br />

throw and thickness from field analogue<br />

• Shale Gauge Ratio <strong>to</strong> define the clay<br />

content <strong>of</strong> the <strong>fault</strong><br />

• Uncertainty in thickness and damage<br />

zone investigated in parametric study<br />

(Sperrevik et al.)


Mechanical properties <strong>of</strong> <strong>fault</strong> material<br />

Controlled by clay content from<br />

SGR analysis<br />

• Clay rich <strong>fault</strong> rock<br />

assumed same<br />

properties as intact shale<br />

• Sealing <strong>fault</strong> rock with<br />

less clay assumed same<br />

properties as sands<strong>to</strong>ne<br />

or even stronger/stiffer<br />

(cataclasites)<br />

DST and CIU tests<br />

upper bound<br />

lower bound


Depth (m)<br />

Max. shear stress in Horst structure<br />

Highest shear stress for<br />

Brent group<br />

Failure possible in Brent<br />

group<br />

final<br />

initial<br />

SW<br />

Stress changes less<br />

than for Brent <strong>fault</strong><br />

1000<br />

2000<br />

Brent Field<br />

3000<br />

Distance (m)<br />

10000 20000 30000 40000 50000 60000<br />

Brent Fault 9/4 Fault Horst<br />

Statfjord Field<br />

Snorre Field<br />

NE<br />

20 MPa<br />

depletion<br />

4000<br />

4500<br />

Vertical exaggeration:3


Sources <strong>of</strong> uncertainties – parameter study<br />

- stiffness properties (reservoir, shale layers and overburden)<br />

- <strong>fault</strong> geometry (inclination, thickness, drag and juxtaposition);<br />

- pressure distribution and drainage <strong>of</strong> <strong>fault</strong> core zone.<br />

upper bound<br />

Normal <strong>fault</strong>ing<br />

Drag<br />

Slumping<br />

Small <strong>fault</strong>ing parallel <strong>to</strong><br />

<strong>fault</strong> plane<br />

lower bound


Effect <strong>of</strong> <strong>fault</strong> core thickness<br />

Highest shear stress mobilisation in sand:sand juxtaposition at the<br />

bot<strong>to</strong>m <strong>of</strong> the depleted reservoir.<br />

Maximum shear stress max in <strong>fault</strong> not significantly affected by reduced<br />

<strong>fault</strong> zone<br />

FZT = 10 m<br />

FZT = 5 m<br />

P=20 MPa<br />

Sand reservoir fm<br />

max = 11 - 12<br />

MPa<br />

max = 11 - 12<br />

MPa<br />

BASCE CASE<br />

(1)<br />

7


Effect <strong>of</strong> damage zone<br />

’damage zone’ modelled as stiffer material<br />

small positive effect<br />

Small reduction in shear stress (0.6 MPa)<br />

E = 20 MPa<br />

max = 11 - 12 MPa<br />

E = 10 MPa<br />

max = 11 - 12 MPa<br />

BASEC CASE (1)<br />

18


Results from parametric study<br />

• Maximum shear stress in <strong>fault</strong> core zone is relatively insensitive <strong>to</strong><br />

variations in geometry and stiffness parameters<br />

• positive effect <strong>of</strong> drag<br />

• largest uncertainty <strong>related</strong> <strong>to</strong> the <strong>fault</strong> peak shear strength


Conclusions<br />

• <strong>Geomechanical</strong> <strong>modeling</strong> <strong>to</strong>ols for <strong>fault</strong> integrity<br />

during depletion and methods for assessing material<br />

properties has been presented<br />

• 2D models have been used but 3D is needed for<br />

more complex geometries<br />

• Largest uncertainty <strong>related</strong> <strong>to</strong> the <strong>fault</strong> (core) peak<br />

shear strength<br />

• Further work:<br />

• Effect <strong>of</strong> shear mobilization on hydraulic communication<br />

• Determination <strong>of</strong> <strong>fault</strong> strength


Thanks!<br />

PROFUSE Project (JIP)<br />

F. Cuisiat, E. Skurtveit. (2010) An experimental investigation <strong>of</strong> the development and permeability <strong>of</strong> clay<br />

smears along <strong>fault</strong>s in uncemented sediments”. Journal <strong>of</strong> Structural Geology, In press. 2010<br />

Fabrice Cuisiat, Hans Petter Jostad; Lars Andresen; Elin Skurtveit; Eiliv Skomedal; Marc Hettema; Kellfrid Lyslo.<br />

(2010) <strong>Geomechanical</strong> integrity <strong>of</strong> sealing <strong>fault</strong>s during depressurisation <strong>of</strong> the Statfjord field”. Journal <strong>of</strong><br />

Structural Geology. In press. 2010<br />

Skomedal, E.; Jostad, H.P.; Hettema, M.H. (2002) Effect <strong>of</strong> <strong>pore</strong> pressure and stress path on rock mechanical<br />

properties for HPHT application. SPE/ISRM Rock Mechanics Conference. Irving, Texas 2002. CD-rom. Paper<br />

SPE 78152. 10p.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!