11.05.2015 Views

Use of SBED as a tool for permeability modelling in ... - Force

Use of SBED as a tool for permeability modelling in ... - Force

Use of SBED as a tool for permeability modelling in ... - Force

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Use</strong> <strong>of</strong> <strong>SBED</strong> <strong>as</strong> a <strong>tool</strong> <strong>for</strong> <strong>permeability</strong> <strong>modell<strong>in</strong>g</strong> <strong>in</strong> heterolithic<br />

tidal reservoirs: a test study from the Njord Field<br />

<strong>SBED</strong> meet<strong>in</strong>g October 16 th 2006<br />

Mike Young


Outl<strong>in</strong>e<br />

• Introduction<br />

- Motivation beh<strong>in</strong>d the study<br />

- <strong>Use</strong> <strong>of</strong> <strong>SBED</strong> <strong>in</strong> Hydro<br />

• Tilje Formation, Njord Field - <strong>SBED</strong> test study<br />

- Challenge <strong>of</strong> <strong>modell<strong>in</strong>g</strong> the Tilje Fm.<br />

- Why <strong>SBED</strong>?<br />

- Data set used <strong>in</strong> the study<br />

- Methodology/workflow<br />

- Results<br />

• Summary/comments on the <strong>SBED</strong> approach


Introduction<br />

• Motivation<br />

- Theoretically <strong>SBED</strong> is a good concept<br />

- Hydro h<strong>as</strong> supported <strong>SBED</strong> <strong>for</strong> some time<br />

- Test out <strong>in</strong> practice … can the <strong>tool</strong> be implemented <strong>in</strong> the BU’s ?<br />

• Good test c<strong>as</strong>e: Heterolithic tidal facies <strong>of</strong> the Tilje Fm., Njord Field<br />

- Difficult to characterize us<strong>in</strong>g “conventional” petrophysical/property <strong>modell<strong>in</strong>g</strong><br />

- <strong>SBED</strong>/TBED designed to model tidal heterogeneity<br />

• Internal use <strong>in</strong> Hydro<br />

- Limited to a research activity<br />

- Low priority activity<br />

- At present, it is difficult and time consum<strong>in</strong>g (expensive) to get results !<br />

- Uncerta<strong>in</strong>ty <strong>in</strong> <strong>SBED</strong> is a key issue that is poorly addressed


Challenge <strong>of</strong> <strong>modell<strong>in</strong>g</strong> the Tilje Fm., Njord<br />

Th<strong>in</strong> <strong>in</strong>tercalations <strong>of</strong> mudstone and<br />

sandstone layers will have a strong <strong>in</strong>fluence<br />

on the flow properties!


Why use <strong>SBED</strong>?<br />

Core plug data: Tilje 3A Formation<br />

Question:<br />

Can we derive petrophysical properties from<br />

these data (core plugs) that are representative at<br />

the grid-cell scale <strong>of</strong> a reservoir model ?<br />

Problems:<br />

Kv and Kh are NOT well characterized by core<br />

plugs or wirel<strong>in</strong>e data.<br />

Permeability data me<strong>as</strong>ured from core plugs that<br />

have a sample volume below the REV will be<br />

unrepresentative.<br />

There<strong>for</strong>e we see extreme variability <strong>of</strong> plug<br />

permeabilities (Kv, Kh) even <strong>in</strong>side small vertical<br />

<strong>in</strong>tervals.<br />

Answer:<br />

No! But us<strong>in</strong>g <strong>SBED</strong> to model the heterogeneity<br />

at a more suitable volume (REV) and us<strong>in</strong>g flowb<strong>as</strong>ed<br />

upscal<strong>in</strong>g to determ<strong>in</strong>e properties could<br />

be a more realistic solution…<br />

Th<strong>in</strong> <strong>in</strong>tercalations <strong>of</strong> mudstone and<br />

sandstone layers will have a strong <strong>in</strong>fluence<br />

on the flow properties!


Data set<br />

6407/7-4 Tilje 3A<br />

• Cored well 6407/7-4 (Njord E<strong>as</strong>t Flank)<br />

- <strong>Use</strong>d <strong>as</strong> a test c<strong>as</strong>e<br />

- Thick Tilje 3A<br />

- Good petrophysical data set<br />

• Core plug & m<strong>in</strong>i-perm. data<br />

• Wirel<strong>in</strong>e and synthetic poro-perm data<br />

Tilje 3A<br />

50 m<br />

• Tidal heterolithics (Tilje 3A)<br />

- Vertically aggraded tidal flat deposits<br />

- Composed <strong>of</strong> tidal bundles<br />

- Wavy, fl<strong>as</strong>er and lenticular beds


Core plug poro. – perm. data (Tilje 3A, Njord)<br />

Large scatter <strong>in</strong> Kv and Kh !<br />

Correlation = 0,67


<strong>SBED</strong> Methodology/Workflow used<br />

• Generate bedd<strong>in</strong>g-scale sub-models/<strong>SBED</strong> templates<br />

• Petrophysical data analysis (core plugs/m<strong>in</strong>i-perm. data)<br />

• Populate sub-models with petrophysical values<br />

• Calibrate <strong>SBED</strong> petrophysical <strong>in</strong>put values<br />

• Mov<strong>in</strong>g w<strong>in</strong>dow upscal<strong>in</strong>g to generate the <strong>SBED</strong> output results


Generate <strong>SBED</strong> sub-models<br />

6407/7- 4 Tilje 3A<br />

• Split up core <strong>in</strong>to <strong>in</strong>tervals modelled with<br />

specific <strong>SBED</strong> templates<br />

- Different sub-models needed to capture variations <strong>in</strong><br />

the sand:shale ratio (NTG)<br />

- Intervals <strong>of</strong> approx. 5% sand:shale (<strong>SBED</strong> NTG)<br />

- i.e. 10%, 15%, 20% ….. 100% sand<br />

• Key parameters<br />

- Sand to shale ratio (NTG <strong>in</strong> <strong>SBED</strong>)<br />

- Geometry, thickness variation and frequency <strong>of</strong> the<br />

mud layers<br />

• Mean & STD <strong>for</strong> porosity and <strong>permeability</strong><br />

- Values needed <strong>for</strong> each lithotype <strong>in</strong> each submodel<br />

50 m<br />

Model size 30x30x30 cm<br />

26 different <strong>SBED</strong> models needed to capture variation <strong>in</strong><br />

sand:shale (NTG) and sedimentary architecture


Sand:shale ratio key <strong>in</strong> these tidal facies<br />

Key <strong>modell<strong>in</strong>g</strong> parameter - it will have a strong <strong>in</strong>fluence on vertical and horizontal <strong>permeability</strong>.<br />

Predictable relationship between sand:shale ratio and geometry/cont<strong>in</strong>uity <strong>of</strong> the bed<strong>for</strong>ms.<br />

Fl<strong>as</strong>er – Lenticular bedd<strong>in</strong>g transition<br />

<strong>SBED</strong> submodels<br />

95% sand<br />

50% sand<br />

Ca. 50m<br />

10% sand<br />

After Re<strong>in</strong>eck & Wunderlich (1968)


Petrophysical <strong>in</strong>put data<br />

• Porosity and <strong>permeability</strong> <strong>for</strong> each <strong>of</strong><br />

the lithological components <strong>of</strong> the<br />

model (i.e. ebb sand, flood sand, mud)<br />

• Mean and STD values<br />

2<br />

• Variogram value<br />

• Poro-perm correlation (e.g. 0,67)<br />

1


Petrophysical data analysis<br />

• We need to f<strong>in</strong>d <strong>permeability</strong>/porosity values <strong>for</strong> each lithotype (sand 1 & 2, mud…)<br />

• Not an e<strong>as</strong>y t<strong>as</strong>k …<br />

- There is typically a bi<strong>as</strong>ed data b<strong>as</strong>e sampl<strong>in</strong>g at the wrong volume (core plugs)<br />

- M<strong>in</strong>i-permeameter data are better, but rarely taken <strong>as</strong> standard …<br />

- Especially difficult to get <strong>permeability</strong> values <strong>for</strong> the mud layers<br />

• Key steps: Filter out “bi<strong>as</strong>ed plugs” that conta<strong>in</strong> multiple lithotypes<br />

Asses porosity and <strong>permeability</strong> distributions <strong>for</strong> the entire dat<strong>as</strong>et and <strong>for</strong> subsets:<br />

e.g. specific <strong>in</strong>tervals <strong>of</strong> NTG, depth <strong>in</strong>tervals …<br />

<strong>Use</strong> these results <strong>as</strong> a start<strong>in</strong>g po<strong>in</strong>t !<br />

M<strong>in</strong>i-perm<br />

Plug data<br />

Few data po<strong>in</strong>ts below 50%<br />

sand:shale ratio (essentially <strong>SBED</strong> submodel divisions)


Porosity (sand)<br />

Shapes <strong>of</strong> the distributions<br />

sketched to highlight their nature<br />

95-100<br />

Mean = 0,23<br />

STD = 0,03<br />

0-65<br />

Mean = 0,14<br />

STD = 0,04<br />

70-80<br />

Mean = 0,18<br />

STD = 0,04<br />

85-90<br />

Mean = 0,20<br />

STD = 0,03<br />

• Porosity distribution <strong>for</strong> the entire data set (sand layers)<br />

- Need to make sense <strong>of</strong> this and break it down <strong>in</strong>to subsets<br />

• Porosity distribution <strong>for</strong> specific <strong>in</strong>tervals <strong>of</strong> NTG (sand:shale ratios)<br />

- Divisions b<strong>as</strong>ed on visual <strong>in</strong>spection <strong>of</strong> the core and determ<strong>in</strong>ation <strong>of</strong> <strong>in</strong>tervals with “similar” sand type<br />

- B<strong>as</strong>ed on splitt<strong>in</strong>g up the data set <strong>in</strong>to various different <strong>in</strong>tervals <strong>of</strong> NTG<br />

- B<strong>as</strong>ed on this data it is possible to determ<strong>in</strong>e mean and STD values<br />

- May not be simple Gaussian distributions !


Permeability (sand)<br />

• Distributions <strong>for</strong> the NTG <strong>in</strong>tervals<br />

- Core plug data and m<strong>in</strong>i-perm<br />

- Complex distributions, commonly with at le<strong>as</strong>t<br />

two sand types <strong>in</strong> each <strong>of</strong> the NTG <strong>in</strong>tervals !<br />

• Permeability distribution <strong>for</strong> the entire<br />

data set<br />

Shapes <strong>of</strong> the distributions<br />

sketched to highlight their nature<br />

• Core plug data are bi<strong>as</strong>ed, so m<strong>in</strong>i-perm<br />

data are better at captur<strong>in</strong>g values <strong>for</strong><br />

<strong>in</strong>dividual sand layers<br />

- However, m<strong>in</strong>i-perm data show bi<strong>as</strong> towards<br />

the higher perm. layers !<br />

Shapes <strong>of</strong> the distributions<br />

sketched to highlight their nature


Effect <strong>of</strong> vary<strong>in</strong>g <strong>in</strong>put data (petrophysics)<br />

• Results from upscal<strong>in</strong>g <strong>of</strong> all realisations <strong>of</strong> <strong>SBED</strong> submodels <strong>for</strong> the Tilje 3A, 6407/7-4<br />

• 5 different model versions - same geometric <strong>in</strong>put, but different petrophysical <strong>in</strong>put<br />

- i.e. the variation is related almost exclusively to the petrophysics<br />

• Key observation: The petrophysical <strong>in</strong>put data have a significant impact on the results!<br />

Variation <strong>in</strong><br />

Kh between<br />

the different<br />

models<br />

Variation <strong>in</strong><br />

Kv between<br />

the different<br />

models


Calibration <strong>of</strong> the <strong>SBED</strong> model <strong>in</strong>put<br />

• An important step is to calibrate the petrophysical values <strong>in</strong> the models<br />

- Key question: Have we captured the true variation <strong>in</strong> petrophysical values ?<br />

- Answer: Almost certa<strong>in</strong>ly not at the first attempt !<br />

• Need to generate ”pseudo” core plugs from the <strong>SBED</strong> models<br />

- Extract volumes from the models that are the same <strong>as</strong> the actual core plugs<br />

- These need to be upscaled (flow b<strong>as</strong>ed, fixed boundary) and compared to the actual<br />

core plug data<br />

- Compare the porosity-<strong>permeability</strong> cross-plot<br />

- Compare the porosity and <strong>permeability</strong> frequency distributions<br />

Vertical plug<br />

10 cm<br />

10 cm<br />

2.5 cm<br />

Horizontal plug<br />

2.5 cm<br />

90% Sand model populated with <strong>permeability</strong>


• Input petrophysics should be adjusted until an acceptable match is obta<strong>in</strong>ed<br />

between pseudo and real core plugs<br />

• It is likely that several iterations <strong>of</strong> this process will be needed !<br />

0 - 65<br />

95 - 100<br />

Frequency %<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

Core plugs<br />

Pseudo plugs (<strong>SBED</strong> model)<br />

Kh<br />

Frequency %<br />

45,00<br />

40,00<br />

35,00<br />

30,00<br />

25,00<br />

20,00<br />

15,00<br />

Core plugs<br />

Pseudo plugs (<strong>SBED</strong> model)<br />

5,00<br />

10,00<br />

5,00<br />

0,00<br />

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29<br />

Porosity B<strong>in</strong>s<br />

0,00<br />

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29<br />

Porosity B<strong>in</strong>s<br />

70-80<br />

85-90<br />

30<br />

25<br />

Core plugs<br />

Pseudo plugs (<strong>SBED</strong> model)<br />

35<br />

30<br />

Core plugs<br />

Pseudo plugs (<strong>SBED</strong> model)<br />

Frequency %<br />

20<br />

15<br />

10<br />

Frequency %<br />

25<br />

20<br />

15<br />

10<br />

5<br />

5<br />

0<br />

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29<br />

Porosity B<strong>in</strong>s<br />

0<br />

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29<br />

Porosity B<strong>in</strong>s<br />

<strong>SBED</strong> pseudo plugs and the actual plugs have the same sample<br />

volume. We could expect a similar scatter <strong>in</strong> both data sets !


Results<br />

• Several different options here …<br />

• Chosen to build a “stacked model” <strong>for</strong> the<br />

cored <strong>in</strong>terval – i.e. a direct representation <strong>of</strong><br />

the core<br />

• Mov<strong>in</strong>g w<strong>in</strong>dow upscal<strong>in</strong>g enables upscaled<br />

results at a log scale (e.g. every 12.5 cm) <strong>for</strong><br />

Kh, Kv, Porosity<br />

• Upscal<strong>in</strong>g method is dynamic (flow-b<strong>as</strong>ed)<br />

method with fixed boundary conditions<br />

• Why log scale ?<br />

- Consistent with wirel<strong>in</strong>e data (same scale)<br />

- Can be used together with wirel<strong>in</strong>e data to predict<br />

properties (esp. Kh, Kv) <strong>in</strong> non-cored wells<br />

• The s<strong>of</strong>tware “Facimage” w<strong>as</strong> used to<br />

generate ”electr<strong>of</strong>acies” and predict<br />

<strong>permeability</strong> <strong>in</strong> non-cored wells/<strong>in</strong>tervals<br />

<strong>SBED</strong> results used <strong>as</strong> “tra<strong>in</strong><strong>in</strong>g” data


Us<strong>in</strong>g cluster<strong>in</strong>g and nearest neighbour <strong>in</strong>dex (NNI) the “electr<strong>of</strong>acies” and <strong>SBED</strong>-<strong>permeability</strong> (def<strong>in</strong>ed <strong>for</strong> cored<br />

<strong>in</strong>tervals) can be propagated to non-cored well <strong>in</strong>tervals. Us<strong>in</strong>g the <strong>in</strong>put from <strong>SBED</strong> this is a more geologically<br />

b<strong>as</strong>ed and accurate method <strong>for</strong> predict<strong>in</strong>g <strong>permeability</strong> and def<strong>in</strong><strong>in</strong>g “flow facies” that will be taken <strong>in</strong>to RMS.


Summary<br />

• In tidal heterolithic facies (e.g. Tilje Fm.) it is difficult to determ<strong>in</strong>e<br />

representative <strong>permeability</strong> values us<strong>in</strong>g conventional core plugs<br />

• <strong>SBED</strong> method w<strong>as</strong> used to generate log-scale <strong>permeability</strong> b<strong>as</strong>ed on<br />

process b<strong>as</strong>ed model<strong>in</strong>g <strong>of</strong> small-scale geology (bedd<strong>in</strong>g scale)<br />

• Mov<strong>in</strong>g w<strong>in</strong>dow upscall<strong>in</strong>g enabled Kh and Kv values to be generated at<br />

the log scale (ca. 12,5 cm), consistent with other wirel<strong>in</strong>e data<br />

• Kh and Kv logs from <strong>SBED</strong> can be used <strong>as</strong> “tra<strong>in</strong><strong>in</strong>g” data <strong>for</strong><br />

<strong>permeability</strong> and facies prediction <strong>in</strong> non-cored wells<br />

- E.g. Us<strong>in</strong>g the NNI method <strong>in</strong> Paradigm Facimage<br />

• <strong>SBED</strong>/Facimage can provide a more realistic (Kh and Kv) and consistent<br />

data <strong>in</strong>put to the geo-model (RMS)<br />

- All <strong>in</strong>put data with a similar sample volume<br />

- Bedd<strong>in</strong>g scale, but not necessarily representative at the grid block !<br />

- Additional <strong>modell<strong>in</strong>g</strong> and upscal<strong>in</strong>g step may be necessary


Comments on the use <strong>of</strong> <strong>SBED</strong><br />

• Calibrat<strong>in</strong>g the <strong>in</strong>put data is an important/critical step<br />

- Otherwise it is difficult to determ<strong>in</strong>e whether the results can be trusted<br />

- Potentially a large range <strong>in</strong> uncerta<strong>in</strong>ty<br />

- <strong>SBED</strong> could be equally <strong>as</strong> uncerta<strong>in</strong> <strong>as</strong> conventional plug-b<strong>as</strong>ed methods<br />

- Manual and very time consum<strong>in</strong>g, but critical step <strong>in</strong> the workflow !!<br />

• <strong>SBED</strong> projects are labour <strong>in</strong>tensive and thus expensive<br />

- Possibly hundreds <strong>of</strong> man hours <strong>for</strong> a relatively small project !<br />

- Especially with the manual calibration technique<br />

• <strong>SBED</strong> is a specialist <strong>tool</strong> and still somewhat immature<br />

- Not recommended <strong>for</strong> wider use <strong>in</strong> Hydro BU’s yet !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!