09.05.2015 Views

Spin-Orbit Torque in Magnetic Bilayers - Spintronics Theory Group

Spin-Orbit Torque in Magnetic Bilayers - Spintronics Theory Group

Spin-Orbit Torque in Magnetic Bilayers - Spintronics Theory Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sp<strong>in</strong></strong>-orbit <strong>Torque</strong>s <strong>in</strong> Metallic <strong>Bilayers</strong><br />

A. Manchon, X. Wang, C. Ortiz-Pauyac, S. Grytsyuk, P. Barba Gonzalez, H. Li, P.<br />

Birame Ndiaye, U. Schw<strong>in</strong>genschlogl<br />

K<strong>in</strong>g Abdullah University of Science and Technology,<br />

Physical Science and Eng., KAUST, Saudi Arabia<br />

External collaborators<br />

Rashba <strong>Torque</strong>: M. Chshiev, <strong>Sp<strong>in</strong></strong>tec, France<br />

<strong>Sp<strong>in</strong></strong> Hall effect: Kyung-J<strong>in</strong> Lee, Korea University;Hyun-woo Lee, Postech;<br />

Mark Stiles, Paul Haney, NIST<br />

Dzyalosh<strong>in</strong>skii-Moriya: Kyung-J<strong>in</strong> Lee, Korea University<br />

1


<strong>Sp<strong>in</strong></strong>tronics at KAUST<br />

<strong>Sp<strong>in</strong></strong> Transport <strong>Theory</strong> of Low Energy Consump7on Devices <br />

The <strong>Sp<strong>in</strong></strong>tronics <strong>Theory</strong> <strong>Group</strong> <br />

We are recruiOng!! <br />

Post-­‐Doctoral PosiOon <br />

<strong>Theory</strong> of Polariton Lasers <br />

And also <br />

Faculty posiOons, PhDs… <br />

h9p://<strong>Sp<strong>in</strong></strong>tronics.kaust.edu.sa <br />

Collaborators <br />

S. S. P. Park<strong>in</strong>, IBM Almaden <br />

P. Bha9acharya, U. Of Michigan <br />

X. Wa<strong>in</strong>tal, CEA; U. Schw<strong>in</strong>genschlogl, KAUST <br />

M. Chshiev, SPINTEC; K.-­‐J. Lee, Korea University <br />

H. Yang, NUS; M.D. SOles, NIST <br />

2


Consider Apply<strong>in</strong>g! <br />

<strong>Sp<strong>in</strong></strong>tronics at KAUST<br />

<strong>Sp<strong>in</strong></strong> Transport <strong>Theory</strong> of Low Energy Consump7on Devices <br />

3


1 st International Workshop on <strong>Sp<strong>in</strong></strong>-<strong>Orbit</strong><br />

<strong>Torque</strong> at KAUST (Feb. 2013)<br />

Before… <br />

AXer… <br />

4


1 st International Workshop on <strong>Sp<strong>in</strong></strong>-<strong>Orbit</strong><br />

<strong>Torque</strong> at KAUST (Feb. 2013)<br />

Before… <br />

Listen to experimentalists! <br />

The controversy <strong>Sp<strong>in</strong></strong> Hall versus Rashba effect is mean<strong>in</strong>gless (be.er <strong>in</strong>terface v.s. bulk) <br />

<strong>Sp<strong>in</strong></strong> Hall AND Rashba probably present (even more complex) <br />

Band AXer… structure is sCll to be idenCfied (experiments v.s. theory) <br />

Dyakonov-­‐Perel and Dzyalosh<strong>in</strong>skii-­‐Moriya play an important role (which one?) <br />

5


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

6


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

7


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

a. “The Usual Old Story” <br />

8


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

a. “The Usual Old Story” <br />

<strong>Sp<strong>in</strong></strong>-­‐orbit coupl<strong>in</strong>g <strong>in</strong> solids <br />

⇒ EffecCve k-­‐dependent magneCc field <br />

Transfer of angular momentum & coupl<strong>in</strong>g to the labce <br />

<strong>Sp<strong>in</strong></strong> relaxaOon <br />

Ellio.-­‐Yafet <br />

Dyakonov-­‐Perel <br />

Damp<strong>in</strong>g <br />

Magnon-­‐magnon <br />

Magnon-­‐phonon <br />

MagneOc Anisotropy <br />

Uniaxial, Biaxial etc. <br />

Dzyalosh<strong>in</strong>skii-­‐Moriya <br />

Anomalous Transport <br />

Anomalous Hall effect <br />

Anisotropic Magnetoresistance <br />

Banerjee, Nano Le.ers 2011 Krivorotov, Science 2005 <br />

McGuire, IEEE Trans. Mag 1975 <br />

9


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

b. A new hope… <br />

J. Slonczewski <br />

L. Berger <br />

J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). <br />

L. Berger, Phys. Rev. B 54, 9353 (1996). <br />

AlOx, MgO, TaN <br />

Transfer of the sp<strong>in</strong> angular momentum <br />

Need a polarizer and a free layer <br />

J. Hayakawa, JJAP 44, L1267 (2005) <br />

Co, NiFe, CoFeB <br />

Pt, Ta, Bi , W <br />

Possible Strategies <br />

<strong>Sp<strong>in</strong></strong> Hall effect <strong>in</strong> the Heavy Metal: sp<strong>in</strong> current <strong>in</strong>jecOon <br />

Miron et al., Nature Materials 2010, 2011, <br />

Pi et al., APL 2010; Suzuki et al., APL 2011 <br />

Liu et al, PRL 2011, PRL 2012, Science 2012 <br />

Kim et al., Nature Materials 2012 <br />

<br />

J z s ∝ y ⇒ T = J z<br />

s<br />

Miron Nature 2011 Liu et al., PRL 2011 Liu Science 2012 <br />

∝ m × ( y × m<br />

)<br />

HM /F<br />

Rashba effect at the Heavy Metal/Ferromagnet <strong>in</strong>terface: sp<strong>in</strong> density generaOon <br />

<br />

S ∝ y ⇒ T = Δm × S ∝ y × m<br />

<br />

z <br />

y <br />

x <br />

10


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

b. A new hope… <br />

S<strong>in</strong>gle Doma<strong>in</strong> Measurements <br />

Methods: GHz sp<strong>in</strong>-­‐FMR, kHz modulaOon <br />

Removes effects that depends on texture <br />

Doma<strong>in</strong> Wall Measurements <br />

Methods: Current-­‐<strong>in</strong>duced MoOon <br />

Averages the (SO, STT, Damp<strong>in</strong>g) torques <br />

Anatomy of <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> <strong>Torque</strong>s <br />

ˆT = T ⊥<br />

( θ) ˆm × ŷ +T || ( θ) ˆm × ( ŷ × ˆm )<br />

Miron, Nature Materials 2010, Nature 2011 <br />

Pi, APL 2010; Suzuki, APL 2011 <br />

Liu PRL 2011, PRL 2012, Science 2012; Fan Nat. Com. 2013 <br />

Kim, Nature Materials 2012, Garello Nature Nano 2013 <br />

New effects <br />

Reversed moCon (aga<strong>in</strong>st electron flow) <br />

Doma<strong>in</strong> wall distorCon and ClCng <br />

Complex Current dependence <br />

Miron, Nature Materials 2011 <br />

Emori, Nature Materials 2013 <br />

Ryu, Nature Nanotechnology 2013 <br />

Haazen, Nature Materials 2013 <br />

11


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

b. A new hope… <br />

ˆT = T ⊥<br />

( θ) ˆm × ŷ +T || ( θ) ˆm × ( ŷ × ˆm )<br />

<strong>Sp<strong>in</strong></strong> Hall does NOT fully expla<strong>in</strong> the data <br />

Rashba is NOT sufficient either <br />

12


I. <strong>Sp<strong>in</strong></strong>-­‐orbit Coupl<strong>in</strong>g Strikes Back <br />

b. A new hope… <br />

AlOx, MgO, TaN <br />

Co, NiFe, CoFeB <br />

Pt, Ta, Bi , W <br />

Bulk NM <br />

<strong>Sp<strong>in</strong></strong> Hall <br />

effect <br />

SHE <strong>Torque</strong> <br />

IOnerant sp<strong>in</strong>s <br />

SHE <strong>in</strong>duced AMR, AHE <br />

Band structure versus disorder? <br />

Rashba <strong>Torque</strong> <br />

Dy’akonov-­‐Perel RelaxaOon <br />

Interface <br />

NM/F <br />

“Rashba” <br />

SOC <br />

local sp<strong>in</strong>s <br />

Dzyalosh<strong>in</strong>skii-­‐Moriya <br />

Anisotropic Damp<strong>in</strong>g <br />

13


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

14


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

a. DriX-­‐diffusion model <br />

F: bulk AHE, bulk AMR <br />

P. Gonzales Barba <br />

NM: bulk SHE <br />

Shchelushk<strong>in</strong> and Brataas, PRB (2005) <br />

<strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> <strong>Torque</strong> <br />

AMR & AHE <br />

A. Vedyayev et al., arxiv.1108.2589 (2011) <br />

A. Manchon, arxiv (2012); Haney PRB (2013) <br />

15


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

a. DriX-­‐diffusion model <br />

P. Gonzales Barba <br />

Nice comparison with Kobs et al. PRL 2011 <br />

See also Nakayama Phys. Rev. Le.. 110, 206601 <br />

16


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

b. Boltzmann Approach <br />

CollaboraCon: M.D SCles, P. Haney (NIST); K.J. Lee (Korea U.); H.W. Lee (Postech) <br />

Account for the actual sca.er<strong>in</strong>g <strong>in</strong> the layers: f<strong>in</strong>ite size effect <br />

Kim Nature Materials 2013 <br />

Haney, KJ Lee, HW Lee, Manchon & SCles PRB 87, 174411 (2013) <br />

17


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

c. Beyond <strong>Sp<strong>in</strong></strong> Hall effect: <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

First order <strong>in</strong> SOC, second order <strong>in</strong> V <br />

è Captured by 1 Born ApproximaCon <br />

Fan Nature CommunicaCon 2013 <br />

Field-­‐effect that does NOT <br />

come from the <strong>in</strong>terface <br />

Shchelushk<strong>in</strong> and Brataas, PRB (2005) <br />

18


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

19


Metallic surfaces <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

a. Interfacial Band Structure <br />

Au surface Gd/GdO <strong>in</strong>terface <br />

Bi surface <br />

E. Rashba <br />

LaShell PRL 1996 <br />

Kupr<strong>in</strong> PRB 2005 <br />

Ast PRL 2007 <br />

Huge Rashba splibng at heavy metal surface!! <br />

What happens at heavy metal/ferromagnet <strong>in</strong>terfaces? <br />

20


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

a. Interfacial Band Structure <br />

CollaboraCon: U. Schw<strong>in</strong>genschlogl; S. Grytsyuk (KAUST) <br />

Noble Metal/Ferromagnet <br />

S. Grytsyuk <br />

M=-­‐M x x <br />

M=+M x x <br />

k y <br />

( σ )⋅ ˆk<br />

Ĥ = ε ( ˆk ) ⇒ Ĥ ≈ ε ( ˆk ) +α R ẑ × ˆ<br />

See Park, Kim, Lee & Han, Phys. Rev. B 87, 041301(R) 2013 <br />

21


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

a. Interfacial Band Structure <br />

CollaboraCon: U. Schw<strong>in</strong>genschlogl; S. Grytsyuk (KAUST) <br />

Noble Metal/Ferromagnet <br />

S. Grytsyuk <br />

M=-­‐M x x <br />

M=+M x x <br />

k y <br />

( σ )⋅ ˆk<br />

Ĥ = ε ( ˆk ) ⇒ Ĥ ≈ ε ( ˆk ) +α R ẑ × ˆ<br />

See Park, Kim, Lee & Han, Phys. Rev. B 87, 041301(R) 2013 <br />

22


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

c. Diffusive Model for Rashba <strong>Torque</strong> <br />

X. Wang C. OrCz Pauyac <br />

3 Major Consequences <br />

Inverse sp<strong>in</strong> Galvanic effect <br />

(Edelste<strong>in</strong>) <br />

<strong>Sp<strong>in</strong></strong> Galvanic effect <br />

(see S<strong>in</strong>ova PRL 2004) <br />

Anisotropic <strong>Sp<strong>in</strong></strong> RelaxaOon <br />

(Dyakonov-­‐Perel) <br />

<strong>Sp<strong>in</strong></strong> density is generated <br />

by the flow<strong>in</strong>g current <br />

Produces a sp<strong>in</strong> torque <br />

Non-­‐equilibrium sp<strong>in</strong> density <br />

generates a charge current <br />

Impacts the AMR+AHE <br />

Induces anisotropic Damp<strong>in</strong>g <br />

Induces angular dependence <br />

Manchon and Zhang, Phys. Rev. B 78, 212405 (2008); 79, 094422 (2009) <br />

X. Wang and A. Manchon, Phys. Rev. Le.. 108, 117201 (2012). <br />

M. Dyakonov <br />

I. Perel <br />

23


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

c. Diffusive Model for Rashba <strong>Torque</strong> <br />

Strong Rashba sp<strong>in</strong>-­‐orbit coupl<strong>in</strong>g: Dyakonov-­‐Perel relaxaOon <br />

X. Wang C. OrCz Pauyac <br />

Intermediate Rashba sp<strong>in</strong>-­‐orbit coupl<strong>in</strong>g (Δ=αk): Fermi surface breath<strong>in</strong>g <br />

E ±<br />

= 2 k 2<br />

2m ±<br />

2<br />

" Δ %<br />

$ '<br />

# 2 &<br />

C. OrCz, X. Wang, M. Chshiev, Manchon, APL 2013 <br />

+α 2 R<br />

k 2 + Δα R<br />

k s<strong>in</strong>θ s<strong>in</strong>( ϕ −ϕ k )<br />

24


II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

d. Anisotropic Damp<strong>in</strong>g <br />

Kambersky PRB 2007 <br />

α(θ 1 ) <br />

α(θ 2 ) <br />

See also Hankiewicz PRB 2007 <br />

Other source of anisotropic damp<strong>in</strong>g: Kim PRL 108, 217202 (2012) <br />

25


Summary on <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> <strong>Torque</strong>s <br />

<strong>Sp<strong>in</strong></strong> Hall effect <br />

Rashba effect <br />

<strong>Torque</strong>s <br />

Non-­‐adiabaCc SHE Direct SHE <br />

Edelste<strong>in</strong> effect (ISGE) Intr<strong>in</strong>sic+non-­‐adiabaCc <br />

D’yakonov-­‐Perel anisotropic sp<strong>in</strong> relaxaCon <strong>in</strong>troduces angular dependence <br />

Transport <br />

Both contribute to anisotropic AMR+ AHE <br />

Next… <br />

<strong>Sp<strong>in</strong></strong>-­‐pump<strong>in</strong>g+SHE: anisotropic damp<strong>in</strong>g? <br />

<strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

Anisotropic Damp<strong>in</strong>g <br />

α ≈ α 0<br />

+δα s<strong>in</strong> 2 θ<br />

Dzyalosh<strong>in</strong>skii-­‐Moriya <strong>in</strong>teracOon <br />

Rashba <strong>Torque</strong> <strong>in</strong> Doma<strong>in</strong> wall <br />

26


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

27


V. Dzyalosh<strong>in</strong>skii-­‐Moriya <strong>in</strong>teracOon <br />

a. A short <strong>in</strong>troducOon <br />

I. Dzyalosh<strong>in</strong>skii <br />

Interfacial <strong>Sp<strong>in</strong></strong>-­‐orbit coupl<strong>in</strong>g: Dzyalosh<strong>in</strong>skii-­‐Moriya <strong>in</strong>teracOon <br />

T. Moriya <br />

Heisenberg exchange <br />

(0 th order <strong>in</strong> soc) <br />

I. E. Dzyalosh<strong>in</strong>skii, JETP 5, 1259 (1957) <br />

T. Moriya, Phys. Rev. 120, 91 (1960). <br />

DM <strong>in</strong>teracCon <br />

(1 st order <strong>in</strong> soc) MC Anisotropy <br />

(2 nd order <strong>in</strong> soc) <br />

Fe/Ir <br />

Mn/W <br />

Mentzel PRL (2012) <br />

Bode et al. Nature 447 (2007) <br />

28


V. Dzyalosh<strong>in</strong>skii-­‐Moriya <strong>in</strong>teracOon <br />

a. A short <strong>in</strong>troducOon <br />

Dispersion of a Neel sp<strong>in</strong> spiral on Co/Ir <br />

FLEUR+non-­‐coll<strong>in</strong>ear magneCsm+SOC <br />

Ferriani et al., PRL 101, 027201 (2008) <br />

M. Heide et al, PRB 78, 140403R (2008) <br />

F. Schubert et al. PRB 83, 165442 (2011) <br />

A. Belabbes <br />

Nature of the Noble Metal/F <strong>in</strong>terface <br />

29


V. Dzyalosh<strong>in</strong>skii-­‐Moriya <strong>in</strong>teracOon <br />

b. Reversed doma<strong>in</strong> wall moOon <br />

DM <strong>in</strong>teracCon distort the Bloch wall <strong>in</strong>to a Neel wall <br />

Chen PRL 110, 177204 (2013) <br />

Emori, Nature Materials 2013 <br />

Ryu, Nature Nanotechnology 2013 <br />

Haazen, Nature Materials 2013 <br />

Thiaville et.al., Europhys. Le.. 100, 57002 (2012). <br />

30


Outl<strong>in</strong>e<br />

I. <strong>Sp<strong>in</strong></strong>-­‐<strong>Orbit</strong> Coupl<strong>in</strong>g Strikes Back <br />

AMR, AHE, SHE, Anisotropy, sp<strong>in</strong> relaxa;on…and <strong>Torque</strong>s <br />

II. What the sp<strong>in</strong> is go<strong>in</strong>g on ? <strong>Sp<strong>in</strong></strong> Hall <br />

<strong>Sp<strong>in</strong></strong> Hall <strong>Torque</strong>, <strong>Sp<strong>in</strong></strong> Hall AMR & AHE, <strong>Sp<strong>in</strong></strong> Swapp<strong>in</strong>g? <br />

III. What the sp<strong>in</strong> is go<strong>in</strong>g on ? Rashba <br />

Rashba torque, Dyakonov-­‐Perel, Dzyalsh<strong>in</strong>skii-­‐Moriya and more <br />

IV. Dzyalosh<strong>in</strong>skii-­‐Moriya InteracOon <br />

From Rashba to Dzyalosh<strong>in</strong>skii-­‐Moriya to doma<strong>in</strong> wall mo;on <br />

V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons: The Magnonic DM <strong>Torque</strong> <br />

Marry<strong>in</strong>g sp<strong>in</strong>-­‐orbitronics with sp<strong>in</strong> caloritronics <br />

31


V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons <br />

The Magnonic DM <strong>Torque</strong> <br />

CollaboraCon: K.J. Lee, J.H. Moon (Korea U.); H.W. Lee (Postech) <br />

P. Birame Ndiaye <br />

Rashba Hamiltonian for electrons <br />

Dzyalosh<strong>in</strong>skii-­‐Moriya Hamiltonian for magnons <br />

Therefore, one expects a DM torque mediated by the magnons <br />

èSame direcCon as the Rashba torque: z x j <br />

Birame Ndiaye, Jung-­‐Hwan Moon , K.-­‐J. Lee, and A. Manchon, unpublished (2013) <br />

32


V. <strong>Sp<strong>in</strong></strong>-­‐orbitronics with Magnons <br />

The Magnonic DM <strong>Torque</strong> <br />

CollaboraCon: K.J. Lee, J.H. Moon (Korea U.); H.W. Lee (Postech) <br />

M<br />

(+k)<br />

(−k)<br />

H = H 0 s<strong>in</strong>(2πf 0 t)y<br />

P. Birame Ndiaye <br />

Standard RF-­‐sp<strong>in</strong> waves <br />

Thermally-­‐<strong>in</strong>duced magnons <br />

The magneCzaCon is Clted when <strong>in</strong>jecCng magnons <strong>in</strong> the system <br />

Birame Ndiaye, Jung-­‐Hwan Moon , K.-­‐J. Lee, and A. Manchon, unpublished (2013) <br />

33


<strong>Sp<strong>in</strong></strong>-­‐orbitronics is not messy… <br />

just a li9le bit complex <br />

<strong>Sp<strong>in</strong></strong>-­‐waves (q>0) <br />

Magnons Transport <br />

Magnon Hall effect <br />

Topological magnonic crystal <br />

Damp<strong>in</strong>g <br />

Magnon-­‐magnon <br />

Magnon-­‐phonon <br />

<strong>Sp<strong>in</strong></strong> caloritronics <br />

Magnonic <strong>Torque</strong> <br />

<strong>Sp<strong>in</strong></strong>-­‐orbit torque <br />

Extr<strong>in</strong>sic v.s. Intr<strong>in</strong>sic <br />

Bulk v.s. <strong>in</strong>terfacial… <br />

RelaxaOon <br />

<strong>Sp<strong>in</strong></strong> relaxaOon Ellio.-­‐Yafet <br />

Dyakonov-­‐Perel <br />

MagneOc Anisotropy <br />

Uniaxial, Biaxial etc. <br />

Dzyalosh<strong>in</strong>skii-­‐Moriya <br />

Damp<strong>in</strong>g <br />

Breath<strong>in</strong>g Fermi <br />

Surface… <br />

Anomalous Transport <br />

Anomalous & <strong>Sp<strong>in</strong></strong> Hall effect <br />

Anisotropic Magnetoresistance <br />

Quantum <strong>Sp<strong>in</strong></strong> Hall effect <br />

Topological Insulators <br />

Skyrmion <br />

Chiral magnets <br />

34


Thank you for your a9enOon! <br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!