07.05.2015 Views

FROM C4 PbSn FLIP CHIP TO LEAD-FREE µBUMP FLIP ... - VeMet

FROM C4 PbSn FLIP CHIP TO LEAD-FREE µBUMP FLIP ... - VeMet

FROM C4 PbSn FLIP CHIP TO LEAD-FREE µBUMP FLIP ... - VeMet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>FROM</strong> <strong>C4</strong> <strong>PbSn</strong> <strong>FLIP</strong> <strong>CHIP</strong> <strong>TO</strong><br />

<strong>LEAD</strong>-<strong>FREE</strong> µBUMP <strong>FLIP</strong> <strong>CHIP</strong><br />

ERIC BEYNE<br />

“VIJF JAAR LOODVRIJ SOLDEREN”<br />

22 SEPTEMBER 2011<br />

TNO, EINDHOVEN<br />

© IMEC 2011


OUTLINE<br />

o Introduction: Flip chip Scaling<br />

o µbump interconnect<br />

o Improving Bond quality<br />

o Die stacking strategies<br />

o Wafer-level underfill<br />

o Conclusion<br />

© IMEC 2011 E.BEYNE 2


SCALING <strong>FLIP</strong>-<strong>CHIP</strong> INTERCONNECTS<br />

IMC<br />

100µm pad diameter<br />

150-200µm bump pitch<br />

40µm pad Ø<br />

60µm pitch<br />

20µm pad<br />

40µm pitch<br />

10µm pad<br />

20µm pitch<br />

- With solder joint scaling, the intermetallics formed by<br />

UBM solder interaction are of increasing importance<br />

- For the smallest flip chip pitches : only intermetallic<br />

compounds after solder bump reflow<br />

© IMEC 2011<br />

ERIC BEYNE 3


MICRO-BUMP JOINING<br />

Si<br />

Si<br />

Si<br />

M<br />

Si<br />

M<br />

Solder<br />

M<br />

Si<br />

M<br />

Solder<br />

M<br />

Si<br />

M<br />

IMC<br />

M<br />

M<br />

Solder - IMC<br />

Similar to flip chip interconnect:<br />

▸ Low temperature melting solder metal, UBM metals.<br />

However:<br />

▸ Entire solder volume is transformed into intermetallic compounds<br />

▸ Small dimension : no solder „ball‟, typically < 10m thick<br />

▸ Connection by thermo/compression-reflow method<br />

▸ Requires improved control and flatness of the solder “bumps”<br />

© IMEC 2011<br />

ERIC BEYNE 4


APPLICATION SPACE µBUMP JOINING<br />

‣ Si-Si face-to-face bonding<br />

‣ 2.5D integration:<br />

Si chips to Si interposers<br />

DRAM<br />

Logic<br />

‣ 3D integration : chip stacking with TSV<br />

© IMEC 2011<br />

ERIC BEYNE 5


OUTLINE<br />

o Introduction: Flip chip Scaling<br />

o Baseline µbump interconnect<br />

o Improving Bond quality<br />

o Die stacking strategies<br />

o Wafer-level underfill<br />

o Conclusion<br />

© IMEC 2011 E.BEYNE 6


BASELINE µBUMPING SCHEME: Cu/Sn<strong>TO</strong> Cu<br />

Baseline µbump scheme<br />

▸ Die 1: Cu/Sn (5/3.5 µm)<br />

▸ Die 2: Cu (5 µm)<br />

µBump Ø: 25 down to 7.5 µm<br />

µBump pitch: 40 down to 20 µm<br />

Cu/Sn bump<br />

5µm Cu<br />

3.5µm Sn<br />

5µm Cu<br />

Top Si die<br />

Bottom Si die<br />

‣ Smooth side wall for<br />

Cu and Sn<br />

‣ No residues after<br />

seed layer etch<br />

© IMEC 2011<br />

ERIC BEYNE<br />

7


DEMONSTRATION OF COLLECTIVE<br />

TRANSIENT-LIQUID PHASE µBUMP BONDING<br />

Bonding procedure:<br />

• Pick & place die on wafer by Flip Chip bonding Tool, at<br />

room temperature<br />

• Collective Bonding in Wafer Bonder @ 250ºC<br />

© IMEC 2011 ERIC BEYNE 8


SOLID METAL BONDING:<br />

CuSn INTERMETALLIC BONDING @ 150ºC<br />

Ф 25m bump, 40/15m<br />

pitch/spacing<br />

Top die<br />

(Cu/Sn bump)<br />

Bottom wafer<br />

(Cu bump)<br />

150°C/50MPa<br />

150C/150MPa<br />

150C/50MPa<br />

Ф 25m bump, 40/15m<br />

pitch/spacing<br />

with no-flow underfill<br />

© IMEC 2011 ERIC BEYNE 9


40 µm PITCH, Cu/Sn µBUMP DIE STACKING<br />

PTCM/N TEST <strong>CHIP</strong>S<br />

© IMEC 2011<br />

5x5mm PTCM,<br />

40 µm pitch<br />

µbumps,<br />

2 peripheral rows<br />

ERIC BEYNE<br />

8x8mm PTCN<br />

“landing”die<br />

Cu/Sn microbump samples:<br />

‣ 3.5 µm and 8µm thick Sn on 40µm pitch Cu bumps,<br />

100 µm thick Silicon<br />

‣ Si-Si assembly in BGA package and SMD on test board<br />

‣ Use of a no-flow underfill<br />

Package level reliability of TLP bumps demonstrated<br />

‣ >1800 temp cycles<br />

‣ >1000 hrs in electromigration tests<br />

‣ 96 hrs HAST<br />

PTCN/M stack wire<br />

bonded in BGA package<br />

10


Resistance [Ohm]<br />

Daisy chain Resistance (Ohm)<br />

Resistance [Ohm]<br />

Daisy chain Resistance (Ohm)<br />

Resistance [Ohm]<br />

Daisy chain Resistance (Ohm)<br />

THERMAL CYCLING 40 µm PITCH Cu/Sn<br />

µBUMP PTCM/N BGA ASSEMBLIES ON PCB<br />

180<br />

180<br />

THERMAL CYCLING (-45°C/125°C) – IN-SITU<br />

160<br />

140<br />

RESISTANCE MONI<strong>TO</strong>RING<br />

120<br />

In-situ measurement at 125°C<br />

170<br />

100<br />

80<br />

60<br />

40<br />

20<br />

8.0µm Sn bump DC<br />

3.5µm Sn bump DC<br />

160<br />

110<br />

In-situ R at 125°C<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Time (h) = # cycles Time -45°C/+125°C<br />

[h] = Cycles [#]<br />

In-situ resistance monitoring during<br />

30’ 45ºC/30’125ºC thermal cycling<br />

Cu/Sn microbump samples:<br />

▸ 3.5 µm and 8µm thick Sn on 40µm pitch<br />

Cu bumps, 100 µm thick Silicon<br />

▸ Use of a no-flow underfill (NCP)<br />

150<br />

3000 3100 3200 3300<br />

100<br />

90<br />

In-situ R @-45°C<br />

No failures up to 4000 cycles<br />

80<br />

2950 3050 3150 3250 3350<br />

© IMEC 2011<br />

ERIC BEYNE 11


AGEING BEHAVIOUR OF LOW T Cu/SnTLP<br />

µBUMP: VOID FORMATION<br />

• Shift over time from Cu 6 Sn 5 to Cu 3 Sn, due to the excess of Cu.<br />

• The difference in diffusion rates of Cu and Sn results in vacancies<br />

that aglomerate to form voids : Kirkendall voids.<br />

Initial state<br />

Cu<br />

Cu 3 Sn<br />

After ageing at 250ºC for 15’<br />

Cu<br />

Cu 3 Sn<br />

Cu 6 Sn 5<br />

Cu 3 Sn<br />

Cu<br />

Cu 6 Sn 5<br />

Cu 3 Sn<br />

Cu<br />

After ageing at 250ºC for<br />

45’<br />

Cu<br />

Cu 3 Sn<br />

Cu<br />

© IMEC 2011<br />

ERIC BEYNE 12


WHY FULL TRANSFORMATION <strong>TO</strong> IMC?<br />

When using low volume “mini-bumps” with excess Sn, the risk of<br />

electro-migration failure strongly increases<br />

EM reliability test comparison: 40 µm pitch Cu/Sn µbump packaged<br />

F2F chip assemblies on PCB<br />

Cu/Sn microbump samples:<br />

‣ 3.5 µm and 8µm thick Sn on 40µm pitch<br />

Cu bumps, 100 µm thick Silicon<br />

‣ Si-Si assembly in BGA package and SMD<br />

on test board<br />

‣ Use of a no-flow underfill<br />

EM test structure with build-in<br />

temperature monitor<br />

© IMEC 2011<br />

ERIC BEYNE<br />

13


No data<br />

WHY FULL TRANSFORMATION <strong>TO</strong> IMC?<br />

When using low volume “mini-bumps” with excess Sn, the risk of<br />

electro-migration failure strongly increases<br />

EM reliability test comparison: Early failures when using excess Sn<br />

(8 vs. 3.5 µm)<br />

voiding at Cu-Cu 3 Sn interface<br />

150 o C – 200 o C eff – 1.1mA/um 2<br />

NUF particle entrapment<br />

8.0µm Sn µbump<br />

3.5µm Sn µbump<br />

© IMEC 2011<br />

ERIC BEYNE<br />

14


OUTLINE<br />

o Introduction: Flip chip Scaling<br />

o Baseline µbump interconnect<br />

o Improving Bond quality<br />

o Die stacking strategies<br />

o Wafer-level underfill<br />

o Conclusion<br />

© IMEC 2011 E.BEYNE 15


INTERMETALLIC µBUMP CONNECTIONS<br />

Issues with pure Cu/Sn system:<br />

▸ CuSn intermetallics already form at low<br />

temperature: no elevated temperature<br />

processes between bump formation<br />

and assembly<br />

Sn<br />

Cu<br />

IMC<br />

voids<br />

• Cu and Sn form 2 intermetallic compounds: Cu 3 Sn and Cu 6 Sn 5<br />

• When soldering at high T: single Cu 3 Sn alloy can be obtained<br />

• Unfortunately, low bonding T is required (particularly for memory,<br />

even below 200ºC)<br />

• At practical assembly conditions : Cu 3 Sn and Cu 6 Sn 5 are formed<br />

• Over time this is transformed to Cu 3 Sn, causing Kirkendall void<br />

formation<br />

© IMEC 2011<br />

ERIC BEYNE<br />

16


µBUMPS WITH THIN Ni UBM<br />

Introduction of solder diffusion layer: Cu/Ni/Sn<br />

Sn<br />

Cu<br />

Ni<br />

Sn<br />

Ni<br />

Cu<br />

This resolves thermal stability of the µbump prior to<br />

assembly, it however does not avoid the formation of<br />

Cu 3 Sn intermetallics and Kirkendall voids upon ageing at<br />

Cu-bump side<br />

© IMEC 2011<br />

ERIC BEYNE<br />

17


AVOIDING KIRKENDALL VOIDS AND (Cu, Ni) 3 Sn<br />

FORMATION IN THE Ni/ Thin Cu/Sn SYSTEM<br />

Study using blanket layers and controlled thermal ageing at 200ºC<br />

Sn<br />

3.0 µm ECD Sn<br />

Sn<br />

200˚C/96h<br />

Cu<br />

Ni<br />

0.5 µm ECD Cu<br />

1.5 µm ECD Ni<br />

150 nm PVD Cu<br />

30 nm PVD Ti<br />

(Cu,Ni) 6 Sn 5<br />

Ni<br />

2.5h@200C 4h@200C 96h@200C<br />

Sn Sn Sn<br />

(Cu,Ni) 6 Sn 5 (Cu,Ni) 6 Sn 5<br />

(Cu,Ni) 6 Sn 5<br />

No Kirkendall voids and<br />

no cracks observed in the<br />

(Cu, Ni) 6 Sn 5 phase (all<br />

samples), even after long<br />

ageing at high temperature<br />

© IMEC 2011 ERIC BEYNE 18


NOVEL µBUMP SCHEME: Ni/Cu BI-LAYER UBM<br />

Top Si die<br />

Ni/Cu/Sn bump<br />

3-5 µm Ni<br />

0.5-1µm Cu<br />

3-4 µm Sn<br />

0.5-1µm Cu<br />

3-5 µm Ni<br />

Sn<br />

Cu<br />

Ni<br />

Ni/Cu bump<br />

Cu<br />

Bottom Si die<br />

Ni<br />

3-5 µm Ni bump can also be a Cu/Ni bump<br />

© IMEC 2011<br />

ERIC BEYNE<br />

19


THERMAL AGEING Ni/Cu/Sn<strong>TO</strong> Ni/Cu<br />

µBUMP CONNECTIONS<br />

After ageing at 150°C for 730 hours only a<br />

single phase (Cu,Ni)6Sn5 is observed<br />

150C/730h<br />

pt Ni Cu Sn Phase<br />

4<br />

Ni/Cu/Sn(2/1/4 um)<br />

1<br />

2<br />

3<br />

Ni<br />

1 9.23 39.73 51.04 ~(Cu, Ni) 6 Sn 5<br />

2 - 10.31 89.69 ~Sn (diff. Cu)<br />

3 8.54 41.80 49.66 ~(Cu, Ni) 6 Sn 5<br />

Ni/Cu(2.5/0.5 um)<br />

Ni<br />

4 - 8.65 91.35 ~Sn (diff. Cu)<br />

• Uniform (Cu, Ni) 6 Sn 5 no (Cu,Ni) 3 Sn<br />

• No Kirkendall voids in (Cu,Ni) 6 Sn 5<br />

• Some remaining Sn<br />

© IMEC 2011<br />

ERIC BEYNE<br />

20


BUMP-PLANARIZATION<br />

DIAMOND BIT CUTTING TECHNIQUE<br />

As deposited bump structures<br />

Wafer<br />

Chuck table<br />

Cutting direction<br />

Cutting bit<br />

Fixed distance<br />

from chuck table<br />

Interconnect line<br />

Wafer<br />

Planarized bumps<br />

Cut Cu surface<br />

R a ~ 9nm / R z ~ 50nm<br />

in collaboration with DISCO<br />

© IMEC 2011 ERIC BEYNE 21


CU-BUMP FLY CUTTING RESULTS<br />

After plating :<br />

After fly-cutting:<br />

passivation opening<br />

• Ra = 0.5 µm<br />

• Rt = 1.7 µm<br />

• Within Die variation = 1.0 µm<br />

• Ra = 0.009 µm<br />

• Rt = 0.033 µm<br />

• Within Die variation = 0.020 µm<br />

in collaboration with DISCO<br />

© IMEC 2011 ERIC BEYNE 22


SN-BUMP FLY CUTTING RESULTS<br />

After plating :<br />

After fly-cutting:<br />

• Ra = 0.25 µm<br />

• Rt = 1.60 µm<br />

• Within Die variation = 0.7 µm<br />

in collaboration with DISCO<br />

• Ra = 0.01 µm<br />

• Rt = 0.05 µm<br />

• Within Die variation = 0.10 µm<br />

© IMEC 2011 ERIC BEYNE 23


CU/SN SOLID METAL BONDING @ 150ºC USING<br />

FLY-CUT CU AND CU/SN BUMPS<br />

Cu and Cu/Sn bumps:<br />

▸ 40 µm bump Ø<br />

▸ 15 µm bump spacing<br />

Bonding conditions:<br />

Cu<br />

▸ max. temperature 150ºC<br />

▸ Nom. pressure 50 MPa<br />

▸ Using a no-flow underfill<br />

Results:<br />

▸ Clear formation of an<br />

intermetallic bond<br />

▸ Very smooth interfaces<br />

after bonding<br />

▸ Some misalignment in this<br />

sample<br />

Cu<br />

Cu x Sn y<br />

© IMEC 2011 ERIC BEYNE 24


OUTLINE<br />

o Introduction: Flip chip Scaling<br />

o Baseline µbump interconnect<br />

o Improving Bond quality<br />

o Die stacking strategies<br />

o Wafer-level underfill<br />

o Conclusion<br />

© IMEC 2011 E.BEYNE 25


3D DIE STACKING APPROACHES<br />

1. Sequential Die-to-package-substrate stacking<br />

1<br />

2<br />

3<br />

- Close to standard packaging practice<br />

- Challenge: substrate warpage after first die assembly will limit µbump<br />

assembly capability for next tier die stacking<br />

1. Sequential Die-to-Wafer stacking, followed by stacked die-topackage<br />

stacking.<br />

2 2<br />

3<br />

1<br />

- Si-Si stacking : highest alignment accuracy, finest pitch and narrow gap between<br />

die possible.<br />

- Challenge: fragile thin TSV bottom wafer Wafer “reconstruction”<br />

© IMEC 2011<br />

ERIC BEYNE<br />

26


© IMEC 2011


WAFER-LEVEL UNDERFILL ASSEMBLY<br />

Wafer-level Spin Coated Underfill<br />

Wafer-level Laminated Film Underfill<br />

Stacking Assembly<br />

Die-to-Die Assembly<br />

Die-to-Wafer Assembly<br />

© IMEC 2011<br />

ERIC BEYNE 28


WAFER-LEVEL LAMINATED WLUF<br />

Good transparency of the WLUF film<br />

PTCM/PTCN stacks<br />

after Assembly<br />

Some (up to 100µm)<br />

underfill squeeze out:<br />

to be minimized<br />

CSAM<br />

T-SCAN<br />

Particle entrapment seen on some bumps seen.<br />

May be also due to bump topography<br />

Initial results:<br />

• Good electrical yields w/high bond force<br />

• Good material transparency<br />

• Good filling capability (no voids and delamination)<br />

© IMEC 2011<br />

SAM : No voids or<br />

delamination seen<br />

ERIC BEYNE 29


<strong>TO</strong>POGRAPHY AFTER DIE-<strong>TO</strong>-WAFER STACKING<br />

25µm thin ETNA test die stacked on DRAM-Die:<br />

Dispensed<br />

NUF (single point)<br />

NO underfill<br />

Laminated WLUF<br />

Sample #1 Sample #2<br />

Significant topography after stacking:<br />

NUF process requires multiple point dispense & accurate volume control.<br />

WLUF allows for flattest assembly, even flatter than when not using<br />

underfill during stacking<br />

May be a problem for multi-tier stacking<br />

Expected to be less severe with thicker die (Die bending stiffness t 3 )<br />

© IMEC 2011 ERIC BEYNE 30


ASSEMBLY MODULE<br />

SUCCESSFUL LOGIC-ON-DRAM STACKING W. FILM-WLUF<br />

SAM: No UF Voids<br />

Topo by optical<br />

profilometry < 2μm<br />

© IMEC 2011 ERIC BEYNE 31


OUTLINE<br />

o Introduction: Flip chip Scaling<br />

o Baseline µbump interconnect<br />

o Improving Bond quality<br />

o Die stacking strategies<br />

o Wafer-level underfill<br />

o Conclusion & Outlook<br />

© IMEC 2011 E.BEYNE 32


CONCLUSIONS<br />

‣ Flip chip scaling results in an increased<br />

importance of the intermetallic phases.<br />

‣ µbump flip-chip for Silicon-to-Silicon relies<br />

on full transformation of the solder joint<br />

into intermetallics<br />

‣ This allows for an improved<br />

electromigration resistance<br />

‣ Requires „bump engineering‟ to<br />

avoid Kirkenadll voiding<br />

‣ What are the pitch limits<br />

µbump solder joining?<br />

© IMEC 2011 E.BEYNE 33


BUMP SIZE DEFINED BY BUMP ALIGNMENT<br />

Contact/no contact and/or contact area reduction<br />

H Sn<br />

Optimum condition : Bump<br />

diameter Ø b = Pad spacing S p<br />

Ø b<br />

Ø P<br />

P<br />

S p<br />

P<br />

Before reaching an open<br />

connection, the bump to pad<br />

contact area is reduced,<br />

resulting in an increase in<br />

contact resistance<br />

Non-contact<br />

area<br />

Non-contact<br />

area<br />

Ø p >Ø b : Capture Solder squeeze-out<br />

Misalignment <br />

Misalignment <br />

H Sn<br />

Ø b<br />

Ø P<br />

Ø’ b<br />

H’ Sn<br />

‣ Ø p ≥ Ø b SQRT(H Sn /H‟ Sn )<br />

‣ Therefore : S = P/(1+SQRT(H Sn /H‟ Sn ))<br />

If e.g. (H Sn /H‟ Sn ) max is 4 : S= P/3<br />

© IMEC 2011<br />

34<br />

Eric<br />

beyne


St.dev. alignment (µm)<br />

SCALING ROADMAP<br />

ALIGNMENT ACCURACY REQUIREMENTS<br />

Required alignment accuracy for a maximum increase in contact resistance<br />

of 100% and a Yield of 99.9999 (4N)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

R/Rn < 2<br />

Y = 4N<br />

P=10µm<br />

0 5 10 15 20 25 30 35 40<br />

© IMEC 2011<br />

P=20µm<br />

P=40µm<br />

Pad Diameter, Dp (µm)<br />

ERIC BEYNE 35<br />

5<br />

10<br />

15<br />

20<br />

25<br />

5<br />

10<br />

3<br />

4<br />

5<br />

Db (µm)<br />

for<br />

P=40µm<br />

Db (µm)<br />

for<br />

P=20µm<br />

Db (µm)<br />

for<br />

P=10µm


ACKNOWLEDGEMENT<br />

3D SYSTEM INTEGRATION PROGRAM<br />

Logic IDM Memory IDM<br />

Foundries<br />

FABLESS<br />

3D Program<br />

SAT<br />

Material Suppliers<br />

EDA<br />

Equipment Suppliers<br />

Lam<br />

RESEARCH<br />

© IMEC 2011 3D SYSTEM INTEGRATION PROGRAM 36


© IMEC 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!